MODULAR NUMERICAL SEMIGROUPS WITH EMBEDDING DIMENSION EQUAL TO THREE

AURELIANO M. ROBLES-PÉREZ AND JOSÉ CARLOS ROSALES

Abstract. In this paper, we give explicit descriptions of all numerical semigroups, generated by three positive integer numbers, that are the set of solutions of a Diophantine inequality of the form $a x \bmod b \leq x$.

1. Introduction

Let \mathbb{N} be the set of nonnegative integer numbers. A numerical semigroup is a subset S of \mathbb{N} such that it is closed under addition, $0 \in S$ and $\mathbb{N} \backslash S$ is finite. If $A \subseteq \mathbb{N}$, we denote by $\langle A\rangle$ the submonoid of $(\mathbb{N},+)$ generated by A, that is,

$$
\langle A\rangle=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{1}, \ldots, a_{n} \in A, \text { and } \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\} .
$$

It is well known (see [7], [8]) that $\langle A\rangle$ is a numerical semigroup if and only if $\operatorname{gcd}\{A\}=1$, where gcd means greatest common divisor.

Let S be a numerical semigroup and let X be a subset of S. We say that X is a system of generators of S if $S=\langle X\rangle$. In addition, if no proper subset of X generates S, then we say that X is a minimal system of generators of S. Every numerical semigroup admits a unique minimal system of generators and, moreover, such system has finitely many elements (see [2], [7], [8]). The cardinal of this system is known as the embedding dimension of S and it is denoted by e (S). On the other hand, if $X=\left\{n_{1}<n_{2}<\cdots<n_{e}\right\}$ is a minimal system of generators of S, then n_{1}, n_{2} are known as the multiplicity and the ratio of S, and the first of them is denoted by $\mathrm{m}(S)$. Let us observe that $\mathrm{m}(S)$ is the least positive integer of S.

Let m, n be integers such that $n \neq 0$. We denote by $m \bmod n$ the remainder of the division of m by n. Following the notation of [9], we say that a

[^0]proportionally modular Diophantine inequality is an expression of the form
\[

$$
\begin{equation*}
a x \bmod b \leq c x \tag{1.1}
\end{equation*}
$$

\]

where a, b, c are positive integers. We call a, b, and c the factor, the modulus, and the proportion of the inequality, respectively. Let $\mathrm{S}(a, b, c)$ be the set of integer solutions of (1.1). Then $\mathrm{S}(a, b, c)$ is a numerical semigroup (see [9]) that we call proportionally modular numerical semigroup (PM-semigroup).

Let $x_{1}, x_{2}, \ldots, x_{q}$ be a sequence of integers. We say that it is arranged in a convex form if one of the following conditions is satisfied,
(1) $x_{1} \leq x_{2} \leq \cdots \leq x_{q}$;
(2) $x_{1} \geq x_{2} \geq \cdots \geq x_{q}$;
(3) there exists $h \in\{2, \ldots, q-1\}$ such that $x_{1} \geq \cdots \geq x_{h} \leq \cdots \leq x_{q}$.

As a consequence of [11, Theorem 31] (see its proof and [11, Corollary 18]), we have an easy characterization for PM-semigroups.

Lemma 1.1. A numerical semigroup S is a PM-semigroup if and only if there exists a convex arrangement $n_{1}, n_{2}, \ldots, n_{e}$ of its set of minimal generators that satisfies the following conditions,
(1) $\operatorname{gcd}\left\{n_{i}, n_{i+1}\right\}=1$ for all $i \in\{1, \ldots, e-1\}$,
(2) $\left(n_{i-1}+n_{i+1}\right) \equiv 0 \bmod n_{i}$ for all $i \in\{2, \ldots, e-1\}$.

A modular Diophantine inequality (see [10]) is an expression of the form

$$
\begin{equation*}
a x \bmod b \leq x \tag{1.2}
\end{equation*}
$$

that is, it is a proportionally modular Diophantine inequality with proportion equal to one. A numerical semigroup is a modular numerical semigroup (M-semigroup) if it is the set of integer solutions of a modular Diophantine inequality. Therefore, every M-semigroup is a PM-semigroup, but the reciprocal is false. In effect, from [9, Example 26], we have that the numerical semigroup $\langle 3,8,10\rangle$ is a PM-semigroup, but is not an M-semigroup.

Let us observe that it is easy to determine whether or not a numerical semigroup is a PM-semigroup via the previous characterization. On the other hand, this question is more complicated for M-semigroups. In [10], there is an algorithm to give the answer to this problem, but we have not got a good characterization for M-semigroups.

The purpose of this paper is to give explicit descriptions of all M-semigroups with embedding dimension equal to three. The content is summarized in the following way. After a section of preliminaries, in Section 3 we use the idea of numerical semigroup associated to an interval (see [9]) and give three families of M-semigroups with embedding dimension equal to three in an explicit way. In Section 4, we will prove that every M-semigroup with embedding dimension equal to three belongs to one of these families. Finally, in Section 5 we give another description by fixing the multiplicity and the ratio of the numerical semigroup.

2. Preliminaries

Let α, β be two positive rational numbers with $\alpha<\beta$ and let T be the submonoid of $\left(\mathbb{Q}_{0}^{+},+\right)$generated by the interval $[\alpha, \beta]$. Here we denote by \mathbb{Q} the set of rational numbers and by \mathbb{Q}_{0}^{+}the set of nonnegative rational numbers. In [9], it is shown that $\mathrm{T} \cap \mathbb{N}$ is a PM-semigroup and that every PM-semigroup is of this form. We will refer to $\mathrm{T} \cap \mathbb{N}$ as the PM-semigroup associated to the interval $[\alpha, \beta]$, and it will be denoted by $\mathrm{S}([\alpha, \beta])$. As a reformulation of [9, Corollary 9], we have the following result.

Lemma 2.1.
(1) Let $c<a<b$ be positive integers. Then

$$
\{x \in \mathbb{N} \mid a x \bmod b \leq c x\}=\mathrm{T} \cap \mathbb{N}
$$

where T is the submonoid of $\left(\mathbb{Q}_{0}^{+},+\right)$generated by $\left[\frac{b}{a}, \frac{b}{a-c}\right]$.
(2) Conversely, let $a_{1}, a_{2}, b_{1}, b_{2}$ be positive integers such that $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$ and let T be the submonoid of $\left(\mathbb{Q}_{0}^{+},+\right)$generated by $\left[\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}}\right]$. Then

$$
\mathrm{T} \cap \mathbb{N}=\left\{x \in \mathbb{N} \mid a_{1} b_{2} x \bmod b_{1} b_{2} \leq\left(a_{1} b_{2}-a_{2} b_{1}\right) x\right\}
$$

Since the inequality $a x \bmod b \leq c x$ has the same set of solutions as the inequality $(a \bmod b) x \bmod b \leq c x$, we will always assume that $a<b$. Besides, if $c \geq a$, then $\{x \in \mathbb{N} \mid a x \bmod b \leq c x\}=\mathbb{N}$. Therefore, the condition $c<a<b$ imposed in the previous lemma is not restrictive.

A sequence of rational numbers $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\cdots<\frac{b_{p}}{a_{p}}$ is a Bézout sequence if $a_{1}, a_{2}, \ldots, a_{p}, b_{1}, b_{2}, \ldots, b_{p}$ are positive integers such that $a_{i} b_{i+1}-a_{i+1} b_{i}=1$ for all $i \in\{1,2, \ldots, p-1\}$. The fractions $\frac{b_{1}}{a_{1}}$ and $\frac{b_{p}}{a_{p}}$ are the ends of the sequence and p is the length of the sequence. We will say that a Bézout sequence is proper if $a_{i} b_{i+h}-a_{i+h} b_{i} \geq 2$ for all $h \geq 2$ such that $i, i+h \in\{1,2, \ldots, p\}$.

The next result is [11, Theorem 12]. It shows the relation between Bézout sequences and PM-semigroups.

Lemma 2.2. Let $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\cdots<\frac{b_{p}}{a_{p}}$ be a Bézout sequence. Then

$$
\mathrm{S}\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{p}}{a_{p}}\right]\right)=\left\langle b_{1}, b_{2}, \ldots, b_{p}\right\rangle
$$

The following result is part of [3, Theorem 2.7].
Lemma 2.3. Let $a_{1}, a_{2}, b_{1}, b_{2}$ be positive integers such that $\operatorname{gcd}\left\{a_{1}, b_{1}\right\}=$ $\operatorname{gcd}\left\{a_{2}, b_{2}\right\}=1$ and $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$. Then there exists a unique proper Bézout sequence with ends $\frac{b_{1}}{a_{1}}$ and $\frac{b_{2}}{a_{2}}$.

Let us observe that in [3] it is given an algorithm to compute the unique proper Bézout sequence with ends $\frac{b_{1}}{a_{1}}$ and $\frac{b_{2}}{a_{2}}$.

We will say that two fractions $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$ are adjacent if

$$
\frac{b_{2}}{a_{2}+1}<\frac{b_{1}}{a_{1}} \quad \text { and } \quad \text { either } a_{1}=1 \text { or } \frac{b_{2}}{a_{2}}<\frac{b_{1}}{a_{1}-1}
$$

The next result is [11, Theorem 20].
Lemma 2.4. Let $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\cdots<\frac{b_{p}}{a_{p}}$ be a proper Bézout sequence with adjacent ends. Then $\left\{b_{1}, b_{2}, \ldots, b_{p}\right\}$ is the minimal system of generators of the PM-semigroup $\mathrm{S}\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{p}}{a_{p}}\right]\right)$.

We finish this section with a remark about the definition of PM-semigroup. In [12], it is shown that we can consider any type of interval for such definition. In fact, by [12, Proposition 5], we have that $\mathrm{S}(I)=T \cap \mathbb{N}$ is a PM-semigroup if T is the submonoid of $\left(\mathbb{Q}_{0}^{+},+\right)$generated by any (not necessarily closed) interval I with positive rational numbers as ends.

3. Three families of M-semigroups

The aim of this section is to prove Propositions 3.1, 3.2 and 3.6 in order to obtain M-semigroups with embedding dimension equal to three.

Proposition 3.1. Let m_{1}, m_{2} be integers greater than or equal to three such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$. Then $S=\left\langle m_{1}, m_{2}, m_{1} m_{2}-m_{1}-m_{2}\right\rangle$ is an Msemigroup and $\mathrm{e}(S)=3$.

Proof. Because $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$, there exist two positive integers u, v such that $\frac{m_{1}}{u}<\frac{m_{2}}{v}$ is a Bézout sequence. By a straightforward computation, it is easy to see that $\frac{m_{1} m_{2}-m_{1}-m_{2}}{m_{2} u-u-v}<\frac{m_{1}}{u}<\frac{m_{2}}{v}<\frac{m_{1} m_{2}-m_{1}-m_{2}}{m_{1} v-v-u}$ is also a Bézout sequence. Let us have $a=m_{2} u-u-v$ and $b=m_{1} m_{2}-m_{1}-m_{2}$. It is clear that $\frac{m_{1} m_{2}-m_{1}-m_{2}}{m_{2} u-u-v}=\frac{b}{a}$ and $\frac{m_{1} m_{2}-m_{1}-m_{2}}{m_{1} v-v-u}=\frac{b}{a-1}$. By Lemma 2.2, we have that $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ and, by Lemma 2.1, S is an M-semigroup. Since $\frac{b}{a}<\frac{m_{2}}{v}$ are adjacent fractions, we conclude from Lemma 2.4 that $\mathrm{e}(S)=3$.

The following result is deduced from [6, Corollary 6, Proposition 9].
Proposition 3.2. Let λ, d, d^{\prime} be integers greater than or equal to 2 such that $\operatorname{gcd}\left\{d, d^{\prime}\right\}=\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$. Then $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$ is an Msemigroup with $\mathrm{e}(S)=3$.

If S is a numerical semigroup, then the largest integer that does not belong to S is called the Frobenius number of S (see [5]) and denoted here by $\mathrm{F}(S)$. A numerical semigroup S is symmetric if $x \in \mathbb{Z} \backslash S$ implies $\mathrm{F}(S)-x \in S$ (as it is usual, \mathbb{Z} is the set of integers). This type of semigroups has been widely studied and has relevance in Algebraic Geometry because they are those numerical semigroups whose semigroup ring is Gorenstein (see [4]). As a result of the study in [6], we have that the family of numerical semigroups
given by Proposition 3.2 is precisely the family of all symmetric M-semigroups with embedding dimension equal to three.

Before showing the third family of M-semigroups, we need some lemmas. Firstly, we remember that, if a, b are two positive integers, then we denote by $a \mid b$ that a divides b.

Lemma 3.3. Let $a_{1}, a_{2}, b_{1}, b_{2}$ be positive integers such that $\operatorname{gcd}\left\{a_{1}, b_{1}\right\}=$ $\operatorname{gcd}\left\{a_{2}, b_{2}\right\}=1, \frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$, and $a_{1} b_{2}-a_{2} b_{1}=q$. Let t be a positive integer. If $\operatorname{gcd}\left\{b_{1}, b_{2}\right\}=1$ and $q \mid\left(t b_{1}+b_{2}\right)$, then $q \mid\left(t a_{1}+a_{2}\right)$.

Proof. If $q \mid\left(t b_{1}+b_{2}\right)$, then there exists a positive integer k such that $t b_{1}+b_{2}=k q$. Therefore, $t=\frac{k q-b_{2}}{b_{1}}$, and consequently $t a_{1}+a_{2}=\frac{q\left(k a_{1}-1\right)}{b_{1}}$.

Because $\operatorname{gcd}\left\{b_{1}, q\right\}=\operatorname{gcd}\left\{b_{1}, a_{1} b_{2}-a_{2} b_{1}\right\}=\operatorname{gcd}\left\{b_{1}, a_{1} b_{2}\right\}=\operatorname{gcd}\left\{b_{1}, b_{2}\right\}=1$ and $\frac{q\left(k a_{1}-1\right)}{b_{1}}$ is an integer, then $b_{1} \mid\left(k a_{1}-1\right)$. Now we conclude that $q \mid$ $\left(t a_{1}+a_{2}\right)$.

Let us observe that the previous lemma is not true in general if $\operatorname{gcd}\left\{b_{1}\right.$, $\left.b_{2}\right\} \neq 1$. In fact, if we consider $\frac{8}{5}<\frac{10}{3}$, then $q=26,26 \mid(2 * 8+10)$, and $26 \nmid(2 * 5+3)$.

Lemma 3.4. Let m_{1}, m_{2} be positive integers such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$. Let q be a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$. Then $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$ is an M-semigroup.

Proof. Let us have $b=\frac{m_{2}-1}{q} m_{1}$. Since $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$, then there exist $s, t \in \mathbb{N} \backslash\{0\}$ such that $s m_{2}-t m_{1}=q$. So, let us have $a=\frac{m_{2}-1}{q} s$. In order to finish the proof, we will show that $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$.

In fact, by Lemma 3.3 and an easy computation, it is clear that $\frac{m_{1}}{s}<$ $\frac{\left(m_{1}+m_{2}\right) / q}{(s+t) / q}<\frac{m_{2}}{t}<\frac{b}{a-1}$ is a Bézout sequence. Moreover, $\frac{b}{a}=\frac{m_{1}}{s}$. By Lemma 2.2, we deduce that $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$.

Finally, by Lemma 2.1, S is an M-semigroup.
In the next result, we will see for what values of q the M-semigroups described in the previous lemma have embedding dimension equal to three.

Lemma 3.5. Let m_{1}, m_{2} be positive integers such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$. Let q be a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$. Then $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$ has embedding dimension equal to three if and only if $2 \leq q<\min \left\{m_{1}, m_{2}\right\}$.

Proof. (Necessity) We have that $q \geq 2$. Let us suppose that $q \geq \min \left\{m_{1}\right.$, $\left.m_{2}\right\}$. Because $q \mid\left(m_{2}-1\right)$, then $q<m_{2}$. Moreover, $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}=$ $\operatorname{gcd}\left\{m_{2}-1, m_{1}+1\right\}$. Therefore, $q=m_{1}+1$. Consequently, there exists $k \in$ $\mathbb{N} \backslash\{0\}$ such that $m_{2}=k\left(m_{1}+1\right)+1$. Thus $S=\left\langle m_{1}, k+1, m_{2}\right\rangle=\left\langle m_{1}, k+1\right\rangle$, which is a contradiction to the fact that $\mathrm{e}(S)=3$.
(Sufficiency) Let us have s, t as in the proof of the previous lemma. Then $\frac{m_{1}}{s}<\frac{\left(m_{1}+m_{2}\right) / q}{(s+t) / q}<\frac{m_{2}}{t}$ is a Bézout sequence with adjacent ends. By Lemma 2.4, we conclude that $\mathrm{e}(S)=3$.

As an immediate consequence of Lemmas 3.4 and 3.5, we have the last result of this section.

Proposition 3.6. Let m_{1}, m_{2} be positive integers such that $\operatorname{gcd}\left\{m_{1}\right.$, $\left.m_{2}\right\}=1$. Let q be a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$ such that $2 \leq q<$ $\min \left\{m_{1}, m_{2}\right\}$. Then $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$ is an M-semigroup with embedding dimension equal to three.

4. All M-semigroups with embedding dimension equal to three

In this section, we will see that every M-semigroup with embedding dimension equal to three belongs to one of the families described in Propositions 3.1, 3.2 and 3.6.

Let us remember (see Lemma 2.1) that a numerical semigroup S is an Msemigroup if and only if there exist two integers $a, b(2 \leq a<b)$ such that $S=$ $\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$. We begin with Proposition 4.6, where we prove that, if $\operatorname{gcd}\{a, b\}=$ $\operatorname{gcd}\{a-1, b\}=1$ and $\mathrm{e}(S)=3$, then S is one of the M-semigroups described in Proposition 3.1.

Let us denote by $] \alpha, \beta[=\{x \in \mathbb{Q} \mid \alpha<x<\beta\}$, that is, the opened interval with ends α and β. From [12, Proposition 8, Theorems 11 and 20], we deduce the following result.

Lemma 4.1. Let a, b be integers such that $2 \leq a<b$ and $\operatorname{gcd}\{a, b\}=\operatorname{gcd}\{a-$ $1, b\}=1$. Then
(1) S(]$\frac{b}{a}, \frac{b}{a-1}[)=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right) \backslash\{b\}$.
(2) b is the Frobenius number of S(]$\frac{b}{a}, \frac{b}{a-1}[)$.
(3) S(]$\frac{b}{a}, \frac{b}{a-1}[)$ is a symmetric numerical semigroup.

The next result is a consequence of [10, Proposition 29].
Lemma 4.2. Let a, b be integers such that $2 \leq a<b$ and $\operatorname{gcd}\{a, b\}=\operatorname{gcd}\{a-$ $1, b\}=1$. Then b is the largest minimal generator of $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$. Moreover, $b=\mathrm{F}(S)+\mathrm{m}(S)$.

If S is a numerical semigroup and $n \in S \backslash\{0\}$, then the Apéry set of n in S (see [1]) is the set $\operatorname{Ap}(S, n)=\{s \in S \mid s-n \notin S\}$. It is well known (see [7], [8]) that $\operatorname{Ap}(S, n)=\{\omega(0)=0, \omega(1), \ldots, \omega(n)\}$, where $\omega(i)$ is the least element in S congruent to i modulo n. It is evident that $\max \{\operatorname{Ap}(S, n)\}=\mathrm{F}(S)+n$ and that, if $m_{1}<m_{2}<\cdots<m_{p}$ is the minimal system of generators of S, then $\left\{m_{2}, \ldots, m_{p}\right\} \subseteq \operatorname{Ap}\left(S, m_{1}\right)$.

Lemma 4.3. Let S be a symmetric numerical semigroup with $\mathrm{m}(S) \geq 3$ and let $\left\{m_{1}<m_{2}<\cdots<m_{p}\right\}$ be its minimal system of generators. Then $m_{p}<\mathrm{F}(S)$.

Proof. Let us have $\omega \in \operatorname{Ap}\left(S, m_{1}\right)$. Then $\omega-\mathrm{m}(S)=\omega-m_{1} \notin S$. Because S is symmetric, then $\mathrm{F}(S)-\omega+m_{1} \in S$. Moreover, since $\left(\mathrm{F}(S)-\omega+m_{1}\right)-$ $m_{1}=\mathrm{F}(S)-\omega \notin S$, then $\omega^{\prime}=\mathrm{F}(S)-\omega+m_{1} \in \operatorname{Ap}\left(S, m_{1}\right)$.

Now, let us have $\omega=m_{p}$. Then $\mathrm{F}(S)-m_{p}+m_{1}=\omega^{\prime} \in \operatorname{Ap}\left(S, m_{1}\right)$. If $\omega^{\prime} \neq 0$, we have the conclusion. In other case, $m_{p}=\mathrm{F}(S)+m_{1}$ and $\mathrm{F}(S)-$ $m_{2}+m_{1}=m_{p}-m_{2} \in \operatorname{Ap}\left(S, m_{1}\right)$, which is a contradiction to the fact that $\left\{m_{1}, m_{2}, \ldots, m_{p}\right\}$ is a minimal system of generators.

From this result it follows the next lemma.
Lemma 4.4. Let S be a numerical semigroup with minimal system of generators given by $m_{1}<m_{2}<\cdots<m_{p}$. If $p \geq 3, m_{p}=\mathrm{F}(S)+m_{1}$, and $S \backslash\left\{m_{p}\right\}$ is symmetric, then $S \backslash\left\{m_{p}\right\}=\left\langle m_{1}, \ldots, m_{p-1}\right\rangle$.

Proof. Let us observe that $\mathrm{F}\left(S \backslash\left\{m_{p}\right\}\right)=m_{p}$. Moreover, it is obvious that $\left\langle m_{1}, \ldots, m_{p-1}\right\rangle \subseteq S \backslash\left\{m_{p}\right\}$. Let us suppose that there exists $x \in S \backslash\left\{m_{p}\right\}$ such that $x \notin\left\langle m_{1}, \ldots, m_{p-1}\right\rangle$. Then, by Lemma $4.3, x<m_{p}$. Therefore, such x must be a minimal generator of S, in contradiction with the hypothesis.

The next one is a classic result by Sylvester [13].
Lemma 4.5. Let m_{1}, m_{2} be positive integers such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$. Then $\mathrm{F}\left(\left\langle m_{1}, m_{2}\right\rangle\right)=m_{1} m_{2}-m_{1}-m_{2}$.

We are now ready to prove the announced result.
Proposition 4.6. Let $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ be a numerical semigroup such that $\operatorname{gcd}\{a, b\}=\operatorname{gcd}\{a-1, b\}=1$ and $\mathrm{e}(S)=3$. Then there exist two integers m_{1}, m_{2} greater than or equal to three such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$ and $S=$ $\left\langle m_{1}, m_{2}, m_{1} m_{2}-m_{1}-m_{2}\right\rangle$.

Proof. By Lemma 4.2, we deduce that there exist two integers m_{1}, m_{2} greater than or equal to three such that $m_{1}<m_{2}<b$ is the minimal system of generators of S. By Lemma 4.1, we know that $S \backslash\{b\}$ is symmetric. Therefore, by Lemma 4.4, we have that $S \backslash\{b\}=\left\langle m_{1}, m_{2}\right\rangle$ and, by Lemma 4.1 again, that $b=\mathrm{F}\left(\left\langle m_{1}, m_{2}\right\rangle\right)$. We finish the proof using Lemma 4.5.

Our next aim will be Proposition 4.9, where we prove that, if $\operatorname{gcd}\{a, b\} \neq$ 1 , $\operatorname{gcd}\{a-1, b\} \neq 1$, and $\mathrm{e}(S)=3$, then $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ is one of the Msemigroups described in Proposition 3.2.

The following result is [11, Lemma 4].
Lemma 4.7. Let $a_{1}, a_{2}, b_{1}, b_{2}, x, y$ be positive integers such that $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$. Then $\frac{b_{1}}{a_{1}}<\frac{x}{y}<\frac{b_{2}}{a_{2}}$ if and only if $\frac{x}{y}=\frac{\lambda b_{1}+\mu b_{2}}{\lambda a_{1}+\mu a_{2}}$ for some $\lambda, \mu \in \mathbb{N} \backslash\{0\}$.

LEMMA 4.8. Let $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\frac{b_{3}}{a_{3}}$ be a proper Bézout sequence. If $q=a_{1} b_{3}-$ $a_{3} b_{1}$, then $a_{2}=\frac{a_{1}+a_{3}}{q}$ and $b_{2}=\frac{b_{1}+b_{3}}{q}$.

Proof. By Lemma 4.7, there exist three positive integers λ, μ, t such that $a_{2}=\frac{\lambda a_{1}+\mu a_{3}}{t}$ and $b_{2}=\frac{\lambda b_{1}+\mu b_{3}}{t}$. Because $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$ and $\frac{b_{2}}{a_{2}}<\frac{b_{3}}{a_{3}}$ are Bézout sequences, then $\mu q=t$ and $\lambda q=t$. Therefore, $\lambda=\mu$ and the conclusion is obvious.

Now, we can prove the above mentioned result.
Proposition 4.9. Let $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ be a numerical semigroup such that $\operatorname{gcd}\{a, b\}=d \neq 1, \operatorname{gcd}\{a-1, b\}=d^{\prime} \neq 1$, and $\mathrm{e}(S)=3$. Then there exists an integer λ greater than or equal to two such that $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$ and $\operatorname{gcd}\left\{d, d^{\prime}\right\}=\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$.

Proof. By straightforward computations, $\frac{b / d}{a / d}<\frac{b / d^{\prime}}{(a-1) / d^{\prime}}$ are adjacent fractions and $\frac{a}{d} \frac{b}{d^{\prime}}-\frac{a-1}{d^{\prime}} \frac{b}{d}=\frac{b}{d d^{\prime}}$. Since $S=\mathrm{S}\left(\left[\frac{b / d}{a / d}, \frac{b / d^{\prime}}{(a-1) / d^{\prime}}\right]\right)$ and $\mathrm{e}(S)=3$, we apply Lemma 2.2 to deduce that $\frac{b}{d d^{\prime}} \neq 1$. Moreover, by Lemmas 2.3 and 2.4, there exist two positive integers x, y such that $\frac{b / d}{a / d}<\frac{x}{y}<\frac{b / d^{\prime}}{(a-1) / d^{\prime}}$ is a proper Bézout sequence. By Lemma 4.8, it follows that $x=d+d^{\prime}$. Finally, by Lemma 2.2 , if $\lambda=\frac{b}{d d^{\prime}}$, then $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$.

In the following proposition we show that, if $\operatorname{gcd}\{a, b\} \neq 1, \operatorname{gcd}\{a-1, b\}=1$, and $\mathrm{e}(S)=3$, then $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ is one of the M-semigroups described in Proposition 3.6. Before this, we remember [11, Lemma 17].

Lemma 4.10. Let $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\cdots<\frac{b_{p}}{a_{p}}$ be a proper Bézout sequence. Then

$$
\max \left\{b_{1}, b_{2}, \ldots, b_{p}\right\}=\max \left\{b_{1}, b_{p}\right\}
$$

Proposition 4.11. Let $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ be a numerical semigroup such that $\operatorname{gcd}\{a, b\}=d \neq 1$, $\operatorname{gcd}\{a-1, b\}=1$, and $\mathrm{e}(S)=3$. Then there exist three positive integers m_{1}, m_{2}, q such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1, q$ is a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}, 2 \leq q<\min \left\{m_{1}, m_{2}\right\}$, and $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$.

Proof. Firstly, by Lemma 4.10, if $\frac{b / d}{a / d}<\frac{b_{1}}{a_{1}}<\cdots<\frac{b_{e}}{a_{e}}<\frac{b}{a-1}$ is a proper Bézout sequence, then $b_{e} \leq b$. Consequently, by an easy computation, we have that $\frac{b / d}{a / d}<\frac{b_{1}}{a_{1}}<\cdots<\frac{b_{e}}{a_{e}}$ is a proper Bézout sequence with adjacent ends.

From this observation, Lemmas 2.2, 2.3, 2.4, and that e $(S)=3$, we deduce that there exists a proper Bézout sequence of the form $\frac{b / d}{a / d}<\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\frac{b}{a-1}$. Because $b_{2} \frac{a}{d}-a_{2} \frac{b}{d}=\frac{1}{d}\left(b_{2}+(a-1) b_{2}-a_{2} b\right)=\frac{b_{2}-1}{d}$, by Lemma 4.8, we have that $b_{1}=\frac{b / d+b_{2}}{\left(b_{2}-1\right) / d}$. Therefore, by Lemma $2.2, S=\left\langle\frac{b}{d}, \frac{b / d+b_{2}}{\left(b_{2}-1\right) / d}, b_{2}\right\rangle$. Finally, since $\operatorname{gcd}\left\{b_{2}, b\right\}=1$, then $\operatorname{gcd}\left\{b_{2}, \frac{b}{d}\right\}=1$ and, taking $q=\frac{b_{2}-1}{d}$, we finish the proof using Lemma 3.5.

By [10, Lemma 3], we know that $\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)=\mathrm{S}\left(\left[\frac{b}{b+1-a}, \frac{b}{b-a}\right]\right)$. It is obvious that $\operatorname{gcd}\{a, b\}=\operatorname{gcd}\{b-a, b\}$ and $\operatorname{gcd}\{a-1, b\}=\operatorname{gcd}\{b+1-a, b\}$. Therefore, if $S=\mathrm{S}\left(\left[\frac{b}{a}, \frac{b}{a-1}\right]\right)$ is a numerical semigroup such that $\operatorname{gcd}\{a, b\}=1, \operatorname{gcd}\{a-$ $1, b\}=d \neq 1$, and $\mathrm{e}(S)=3$, and if $a^{\prime}=b+1-a$, then $S=\mathrm{S}\left(\left[\frac{b}{a^{\prime}}, \frac{b}{a^{\prime}-1}\right]\right)$ with $\operatorname{gcd}\left\{a^{\prime}, b\right\}=d \neq 1, \operatorname{gcd}\left\{a^{\prime}-1, b\right\}=1$, and $\mathrm{e}(S)=3$. In consequence, S is one of the M-semigroups described in Proposition 3.6 too.

We summarize the results of Section 3 and Section 4 in the next theorem.
THEOREM 4.12. S is an M-semigroup with $\mathrm{e}(S)=3$ if and only if it is one of the following types.
(T1) $S=\left\langle m_{1}, m_{2}, m_{1} m_{2}-m_{1}-m_{2}\right\rangle$ where m_{1}, m_{2} are integers greater than or equal to three such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$.
(T2) $S=\left\langle\lambda d, d+d^{\prime}, \lambda d^{\prime}\right\rangle$ where λ, d, d^{\prime} are integers greater than or equal to two such that $\operatorname{gcd}\left\{d, d^{\prime}\right\}=\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$.
(T3) $S=\left\langle m_{1}, \frac{m_{1}+m_{2}}{q}, m_{2}\right\rangle$ where m_{1}, m_{2}, q are positive integers such that $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1, q$ is a divisor of $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$, and $2 \leq q<$ $\min \left\{m_{1}, m_{2}\right\}$.

A natural question that arises after Theorem 4.12 is whether the three types are disjoint. Let us see the answer.
(1) If we take $m_{1}=m_{1}^{\prime} m_{2}^{\prime}-m_{1}^{\prime}-m_{2}^{\prime}, m_{2}=m_{2}^{\prime}$, and $q=m_{2}^{\prime}-1$ in the third type, then we obtain the first one.
(2) If $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$, it is clear that $\operatorname{gcd}\left\{m_{1}, m_{1} m_{2}-m_{1}-m_{2}\right\}=\operatorname{gcd}\left\{m_{2}\right.$, $\left.m_{1} m_{2}-m_{1}-m_{2}\right\}=1$. Therefore, there is not any relation between the first two types.
(3) Let us suppose, without loss of generality, that $d<d^{\prime}$ and $m_{1}<m_{2}$. Then $\lambda d<d+d^{\prime}<\lambda d^{\prime}$ or $d+d^{\prime}<\lambda d<\lambda d^{\prime}$ in the second type, and $m_{1}<\frac{m_{1}+m_{2}}{q}<m_{2}$ or $\frac{m_{1}+m_{2}}{q}<m_{1}<m_{2}$ in the third one.

If we consider $m_{1}=\lambda d$ and $m_{2}=\lambda d^{\prime}$, then $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=\lambda$. On the other hand, if we consider $\frac{m_{1}+m_{2}}{q}=\lambda d$ and $m_{2}=\lambda d^{\prime}$, then $m_{1}=$ $\lambda\left(q d-d^{\prime}\right)$, and consequently $\lambda \mid \operatorname{gcd}\left\{m_{1}, m_{2}\right\}$. Because $\operatorname{gcd}\left\{m_{1}, m_{2}\right\}=1$, we conclude that there is no relation between the last two types.
Therefore, S is an M-semigroup with embedding dimension equal to three if and only if it is (T2) or (T3). Moreover, this is a disjoint classification.

5. Multiplicity and ratio fixed

Let $\left\{n_{1}<n_{2}<n_{3}\right\}$ be the minimal system of generators of a numerical semigroup S. The aim of this section is to describe all M-semigroups with embedding dimension equal to three when we fix the multiplicity and the ratio of S, that is, when n_{1} and n_{2} are fixed. In what follows, we will suppose that n_{1}, n_{2} are integers such that $3 \leq n_{1}<n_{2}$ and $\operatorname{gcd}\left\{n_{1}, n_{2}\right\}=1$. Moreover, to simplify the notation we will use the following sets:

* $A\left(n_{1}\right)=\left\{2, \ldots, n_{1}-1\right\}$;
* $A\left(n_{1}, n_{2}\right)=\left\{\left\lceil\frac{2 n_{2}}{n_{1}}\right\rceil, \ldots, n_{2}-1\right\}$;
* $D(n)=\{k \in \mathbb{N}$ such that $k \mid n\}$.

Here, if $q \in \mathbb{Q}$, then $\lceil q\rceil=\min \{z \in \mathbb{Z} \mid q \leq z\}$.
Since an M-semigroup is a PM-semigroup, by Lemma 1.1, we have two cases.
(1) $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ such that $n_{1}<n_{2}<n_{3}$ and $\left(n_{1}+n_{3}\right) \equiv 0 \bmod n_{2}$. Since $\mathrm{e}(S)=3$, then $n_{3}=k n_{2}-n_{1}$ with $k \in A\left(n_{1}\right)$.
(2) $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ such that $n_{1}<n_{2}<n_{3}$ and $\left(n_{2}+n_{3}\right) \equiv 0 \bmod n_{1}$. Since $\mathrm{e}(S)=3$, then $n_{3}=t n_{1}-n_{2}$ with $t \in A\left(n_{1}, n_{2}\right)$.

Remark 5.1. It is easy to show that S is a PM-semigroup such that e $(S)=$ 3 if and only if it has a minimal system of generators given by one of the previous cases. Moreover, both of these cases coincide if and only if $k=n_{1}-1$ and $t=n_{2}-1$, that is, when we consider the M-semigroup of type ($T 1$) given by $S=\left\langle n_{1}, n_{2}, n_{1} n_{2}-n_{1}-n_{2}\right\rangle$.

The main result of this section is Theorem 5.6. We need some preliminary lemmas in order to prove it.

Lemma 5.2. Let $S=\left\langle n_{1}, n_{2}, k n_{2}-n_{1}\right\rangle$ be a numerical semigroup such that $k \in A\left(n_{1}\right)$. Then S is (T2) if and only if $k \mid n_{1}$.

Proof. If $k \mid n_{1}$, then S is (T2) for $d=\frac{n_{1}}{k}, d^{\prime}=n_{2}-\frac{n_{1}}{k}$, and $\lambda=k$.
For the opposite implication, let us suppose, without loss of generality, that $d<d^{\prime}$. Then we have two possibilities to relate $\left(n_{1}, n_{2}, k n_{2}-n_{1}\right)$ and $\left(\lambda, d, d^{\prime}\right)$. The first one is given by $n_{1}=\lambda d, n_{2}=d+d^{\prime}$, and $k n_{2}-n_{1}=\lambda d^{\prime}$. This election is valid if $k\left(d+d^{\prime}\right)-\lambda d=\lambda d^{\prime}$, and consequently if $\lambda=k$. We conclude that $k \mid n_{1}$.

The second choice is $n_{1}=d+d^{\prime}, n_{2}=\lambda d$, and $k n_{2}-n_{1}=\lambda d^{\prime}$. In this case, $k \lambda d-\left(d+d^{\prime}\right)=\lambda d$, and then $d+d^{\prime}=\lambda\left(k d-d^{\prime}\right)$. But this is not possible because we need that $\operatorname{gcd}\left\{\lambda, d+d^{\prime}\right\}=1$.

Lemma 5.3. Let $S=\left\langle n_{1}, n_{2}, k n_{2}-n_{1}\right\rangle$ be a numerical semigroup such that $k \in A\left(n_{1}\right) \backslash\left\{n_{1}-1\right\}$. Then S is (T3) if and only if $k \mid\left(n_{1}-1\right)$ or $k \mid\left(n_{1}+1\right)$.

Proof. On the one hand, if $k \mid\left(n_{1}-1\right)$, then S is $(T 3)$ for $m_{1}=k n_{2}-n_{1}$, $m_{2}=n_{1}$, and $q=k$. On the other hand, if $k \mid\left(n_{1}+1\right)$, then S is (T3) for $m_{1}=n_{1}, m_{2}=k n_{2}-n_{1}$, and $q=k$.

For the opposite implication, let us suppose, without loss of generality, that $m_{1}<m_{2}$, but we accept that $q \mid\left(m_{1}-1\right)$ or $q \mid\left(m_{2}-1\right)$. Then we have two possibilities to relate $\left(n_{1}, n_{2}, k n_{2}-n_{1}\right)$ and $\left(m_{1}, m_{2}, q\right)$. The first one is given by $n_{1}=m_{1}, n_{2}=\frac{m_{1}+m_{2}}{q}$, and $k n_{2}-n_{1}=m_{2}$. This option is valid if $k \frac{m_{1}+m_{2}}{q}-m_{1}=m_{2}$, and consequently if $q=k$. If $q \mid \operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}$, since $\operatorname{gcd}\left\{m_{2}-1, m_{1}+m_{2}\right\}=\operatorname{gcd}\left\{n_{1}+1, k n_{2}\right\}$, we conclude that $k \mid\left(n_{1}+1\right)$.

If $q \mid \operatorname{gcd}\left\{m_{1}-1, m_{1}+m_{2}\right\}$, since $\operatorname{gcd}\left\{m_{1}-1, m_{1}+m_{2}\right\}=\operatorname{gcd}\left\{n_{1}-1, k n_{2}\right\}$, we conclude that $k \mid\left(n_{1}-1\right)$.

The second choice is $n_{1}=\frac{m_{1}+m_{2}}{q}, n_{2}=m_{1}$, and $k n_{2}-n_{1}=m_{2}$. But then we have $q=\frac{(k+1) n_{2}}{n_{1}}-1$, which is not possible because $\operatorname{gcd}\left\{n_{1}, n_{2}\right\}=1$ and $k \leq n_{1}-2$.

Using similar arguments to those of Lemmas 5.2 and 5.3, we have the next two lemmas.

Lemma 5.4. Let $S=\left\langle n_{1}, n_{2}, t n_{1}-n_{2}\right\rangle$ be a numerical semigroup such that $t \in A\left(n_{1}, n_{2}\right)$. Then S is (T2) if and only if $t \mid n_{2}$.

Lemma 5.5. Let $S=\left\langle n_{1}, n_{2}, t n_{1}-n_{2}\right\rangle$ be a numerical semigroup such that $t \in A\left(n_{1}, n_{2}\right) \backslash\left\{n_{2}-1\right\}$. Then S is (T3) if and only if $t \mid\left(n_{2}-1\right)$ or $t \mid\left(n_{2}+1\right)$.

From Remark 5.1 and Lemmas 5.2, 5.3, 5.4, and 5.5, we deduce the announced theorem.

THEOREM 5.6. Let n_{1}, n_{2}, n_{3} be integers such that $3 \leq n_{1}<n_{2}<n_{3}$, $\operatorname{gcd}\left\{n_{1}, n_{2}\right\}=1$, and $n_{3} \notin\left\langle n_{1}, n_{2}\right\rangle$. Then $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ is an M-semigroup if and only if n_{3} belongs to one of the following sets.
(1) $B_{1}=\left\{k n_{2}-n_{1} \mid k \in A\left(n_{1}\right) \cap\left[D\left(n_{1}-1\right) \cup D\left(n_{1}\right) \cup D\left(n_{1}+1\right)\right]\right\}$.
(2) $B_{2}=\left\{t n_{1}-n_{2} \mid t \in A\left(n_{1}, n_{2}\right) \cap\left[D\left(n_{2}-1\right) \cup D\left(n_{2}\right) \cup D\left(n_{2}+1\right)\right]\right\}$.

Moreover, $B_{1} \cap B_{2}=\left\{n_{1} n_{2}-n_{1}-n_{2}\right\}$.
Acknowledgment. We would like to thank the referee for his/her helpful suggestions that have improved the correctness of this paper.

References

[1] R. Apéry, Sur les branches superlinéaires des courbes algébriques, C. R. Math. Acad. Sci. Paris 222 (1946), 1198-1200. MR 0017942
[2] V. Barucci, D. E. Dobbs and M. Fontana, Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. 598 (1997). MR 1357822
[3] M. Bullejos and J. C. Rosales, Proportionally modular Diophantine inequalities and the Stern-Brocot tree, Math. Comp. 78 (2009), 1211-1226. MR 2476582
[4] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751. MR 0265353
[5] J. L. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Univ. Press, Oxford, 2005. MR 2260521
[6] J. C. Rosales, Symmetric modular Diophantine inequalities, Proc. Amer. Math. Soc. 134 (2006), 3417-3421. MR 2240650
[7] J. C. Rosales and P. A. García-Sánchez, Finitely generated commutative monoids, Nova Science Publishers, New York, 1999. MR 1694173
[8] J. C. Rosales and P. A. García-Sánchez, Numerical semigroups, Developments in Mathematics, vol. 20, Springer, New York, 2009. MR 2549780
[9] J. C. Rosales, P. A. García-Sánchez, J. I. García-García and J. M. Urbano-Blanco, Proportionally modular Diophantine inequalities, J. Number Theory 103 (2003), 281294. MR 2020273
[10] J. C. Rosales, P. A. García-Sánchez and J. M. Urbano-Blanco, Modular Diophantine inequalities and numerical semigroups, Pacific J. Math. 218 (2005), 379-398. MR 2218353
[11] J. C. Rosales, P. A. García-Sánchez and J. M. Urbano-Blanco, The set of solutions of a proportionally modular Diophantine inequality, J. Number Theory 128 (2008), 453-467. MR 2389850
[12] J. C. Rosales and J. M. Urbano-Blanco, Opened modular numerical semigroups, J. Algebra 306 (2006), 368-377. MR 2271340
[13] J. J. Sylvester, Problem 7382, Mathematical questions, with their solutions, from The Educational Times, vol. 41 (W. J. C. Miller, ed.), Francis Hodgson, London, 1884, p. 21.

Aureliano M. Robles-Pérez, Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain

E-mail address: arobles@ugr.es
José Carlos Rosales, Departamento de Álgebra, Facultad de Ciencias, UniverSidad de Granada, 18071-Granada, Spain

E-mail address: jrosales@ugr.es

[^0]: Received March 20, 2009; received in final form March 9, 2010.
 Both authors were supported by MTM2007-62346, MEC (Spain), and FEDER funds. 2010 Mathematics Subject Classification. Primary 11D75, 20M14. Secondary 13H10.

