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DIRICHLET HEAT KERNEL ESTIMATES FOR Δα/2 + Δβ/2

ZHEN-QING CHEN, PANKI KIM AND RENMING SONG

Abstract. For d ≥ 1 and 0 < β < α < 2, consider a family of
pseudo differential operators {Δα + aβΔβ/2; a ∈ [0,1]} on R

d

that evolves continuously from Δα/2 to Δα/2 + Δβ/2. It gives

arise to a family of Lévy processes {Xa, a ∈ [0,1]} on R
d, where

each Xa is the independent sum of a symmetric α-stable process

and a symmetric β-stable process with weight a. For any C1,1

open set D ⊂ R
d, we establish explicit sharp two-sided estimates,

which are uniform in a ∈ (0,1], for the transition density func-
tion of the subprocess Xa,D of Xa killed upon leaving the open

set D. The infinitesimal generator of Xa,D is the nonlocal oper-
ator Δα + aβΔβ/2 with zero exterior condition on Dc. As conse-
quences of these sharp heat kernel estimates, we obtain uniform

sharp Green function estimates for Xa,D and uniform boundary
Harnack principle for Xa in D with explicit decay rate.

1. Introduction

It is well known that, for a second order elliptic differential operator L on
R

d satisfying some natural conditions, there is a diffusion process X on R
d

with L as its infinitesimal generator. The fundamental solution p(t, x, y) of
∂tu = Lu (also called the heat kernel of L) is the transition density function
of X . Thus obtaining sharp two-sided estimates for p(t, x, y) is a fundamental
problem in both analysis and probability theory. Such relationship is also true
for a large class of Markov processes with discontinuous sample paths, which
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constitute an important family of stochastic processes in probability theory.
They have been widely used in various applications.

One of the most important and most widely used family of Markov pro-
cesses is the family of (rotationally) symmetric α-stable processes on R

d,
0 < α ≤ 2. A symmetric α-stable process X = {Xt, t ≥ 0,Px, x ∈ R

d} on R
d is

a Lévy process such that

Ex

[
eiξ·(Xt −X0)

]
= e−t|ξ|α

for every x ∈ R
d and ξ ∈ R

d.

When α = 2, X is a Brownian motion on R
d whose infinitesimal generator is

the Laplacian Δ. When 0 < α < 2, the infinitesimal generator of a symmetric
α-stable process X on R

d is the fractional Laplacian Δα/2, which is a pro-
totype of nonlocal operators. The fractional Laplacian can be written in the
form

(1.1) Δα/2u(x) = A(d, −α) lim
ε↓0

∫
{y∈Rd:|y−x|>ε}

(
u(y) − u(x)

) dy

|x − y|d+α

for some constant A(d, −α) := α2α−1π−d/2Γ(d+α
2 )Γ(1 − α

2 )−1. Here and in
the sequel, we use := as a way of definition. Here Γ is the Gamma function
defined by Γ(λ) :=

∫ ∞
0

tλ−1e−t dt for every λ > 0.
Two-sided heat kernel estimates for diffusions on R

d have a long history
and many beautiful results have been established. See [16], [18] and the ref-
erences therein. But, due to the complication near the boundary, two-sided
estimates for the transition density functions of killed diffusions in a domain D
(equivalently, the Dirichlet heat kernels) have been established only recently.
See [17], [18], [19] for upper bound estimates and [31] for the lower bound
estimates of the Dirichlet heat kernels in bounded C1,1 domains. In a recent
paper [6], we succeeded in establishing sharp two-sided estimates for the heat
kernel of the fractional Laplacian Δα/2 with zero exterior condition on Dc (or
equivalently, the transition density function of the killed α-stable process) in
any C1,1 open set.

The approach developed in [6] provides a road map for establishing sharp
two-sided heat kernel estimates of some other jump processes in open subsets
of R

d. In [7], the ideas of [6] were adapted to establish two-sided heat kernel
estimates of censored stable-like processes in C1,1 open subsets of R

d. One of
the main tools used in [7] is the boundary Harnack principle established in [2]
and [21]. Very recently in [4], [5], the heat kernel of the fractional Laplacian
in nonsmooth open set was discussed.

In [8], the ideas of [6] were adapted to establish two-sided heat kernel
estimates of relativistic stable processes in C1,1 open subsets of R

d. One of
the main facts used in [8] is that relativistic stable processes can be regarded
as perturbations of symmetric stable processes in bounded open sets and
therefore the Green functions of killed relativistic stable processes in bounded
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open sets are comparable to the Green functions of killed stable processes in
the same open sets.

The goal of this paper is to establish sharp two-sided heat kernel estimates
for a Lévy process Z that is the sum of an α-stable process X and an inde-
pendent β-stable process Y , 0 < β < α < 2, in C1,1 open subsets of R

d. The
infinitesimal generator of the Lévy process Z is Δα/2 + Δβ/2. Let p1

D(t, x, y)
and G1

D(x, y) to denote the transition density function and the Green func-
tion of the subprocess ZD of Z killed upon exiting a C1,1 open set D ⊂ R

d.
Let pD(t, x, y) and GD(x, y) denote the transition density function and Green
function of the subprocess XD of X killed upon exiting D. Intuitively, one
expects the following Duhamel’s formulas (or Trotter–Kato formula) hold:

p1
D(t, x, y) = pD(t, x, y) +

∫ t

0

∫
D

p1
D(s,x, z)Δβ/2

z pD(t − s, z, y)dz,(1.2)

G1
D(x, y) = GD(x, y) +

∫
D

G1
D(x, z)Δβ/2

z GD(z, y)dz.(1.3)

Although the sharp two-sided estimates on pD(t, x, y) have been derived re-
cently in [6] while the estimates on GD(x, y) were obtained sometime ago
in [14], [23], no sharp estimates on Δβ/2

z pD(s, z, y) and Δβ/2
z GD(z, y) are

known and sharp estimates seem to be quite challenging to get, at least for
Δβ/2

z pD(s, z, y). Hence at this stage, Duhamel’s formula (1.2) does not seem
to be useful in deriving sharp two-sided estimates on p1

D(t, x, y).
The Lévy process Z runs on two different scales: on the small spatial

scale, the α component dominates, while on the large spatial scale the β
component takes over. Both components play essential roles, and so in general
this process can not be regarded as a perturbation of the α-stable process or
of the β-stable process. Note that this process can not be obtained from
symmetric stable processes through a combination of Girsanov transform and
Feynman–Kac transform. So the method of [8] cannot be used to establish the
comparability of the Green functions of this process and the Green functions
of symmetric stable processes in bounded open sets. Since the differences
of the Lévy measure of this process and those of symmetric stable processes
have infinite total mass, the methods of [20], [25] also could not be used to
establish the comparability of the Green functions of these processes and the
Green functions of symmetric stable processes in bounded open sets. The
approach of this paper will be described in the second paragraph below after
the statement of Corollary 1.2.

Let us first recall some basic facts about the sum of independent stable
processes and state our main result.

Throughout the remainder of this paper, we assume that d ≥ 1 and 0 < β <
α < 2. The Euclidean distance between x and y will be denoted as |x − y|.
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We will use B(x, r) to denote the open ball centered at x ∈ R
d with radius

r > 0.
Suppose X is a symmetric α-stable process and Y is a symmetric β-stable

process on R
d and that X and Y are independent. For any a ≥ 0, we define

Xa by Xa
t := Xt + aYt. We will call the process Xa the independent sum

of the symmetric α-stable process X and the symmetric β-stable process Y
with weight a. The infinitesimal generator of Xa is Δα/2 + aβΔβ/2. Let
pa(t, x, y) denote the transition density of Xa (or equivalently the heat kernel
of Δα/2 + aβΔβ/2) with respect to the Lebesgue measure on R

d. We will use
p(t, x, y) = p0(t, x, y) to denote the transition density of X = X0. Recently, it
is proven in [13] that

(1.4) p1(t, x, y) �
(
t−d/α ∧ t−d/β

)
∧

(
t

|x − y|d+α
+

t

|x − y|d+β

)
on (0, ∞) × R

d × R
d. Here and in the sequel, for a, b ∈ R, a ∧ b := min{a, b}

and a ∨ b := max{a, b}; for any two positive functions f and g, f � g means
that there is a positive constant c ≥ 1 so that c−1g ≤ f ≤ cg on their common
domain of definition.

For every open subset D ⊂ R
d, we denote by Xa,D the subprocess of

Xa killed upon leaving D. The infinitesimal generator of Xa,D is (Δα/2 +
aβΔβ/2)|D, the sum of two fractional Laplacians in D with zero exterior con-
dition. It is known (see [13]) that Xa,D has a Hölder continuous transition
density pa

D(t, x, y) with respect to the Lebesgue measure.
Unlike the case of the symmetric α-stable process X := X0, Xa does not

have the stable scaling for a > 0. Instead, the following approximate scal-
ing property is true and will be used several times in the rest of this pa-
per: If {Xa,D

t , t ≥ 0} is the subprocess of Xa killed upon leaving D, then
{λ−1Xa,D

λαt , t ≥ 0} is the subprocess of {Xaλ(α−β)/β

t , t ≥ 0} killed upon leaving
λ−1D := {λ−1y : y ∈ D}. Consequently, for any λ > 0, we have

(1.5) paλ(α−β)/β

λ−1D (t, x, y) = λdpa
D

(
λαt, λx,λy

)
for t > 0 and x, y ∈ λ−1D.

In particular, letting a = 1, λ = aβ/(α−β) and D = R
d, we get

pa(t, x, y) = a
βd

α−β p1
(
a

αβ
α−β t, a

β
α−β x,a

β
α−β y

)
for t > 0 and x, y ∈ R

d.

So we deduce from (1.4) that there exists a constants C > 1 depending only
on d, α and β such that for every a > 0 and (t, x, y) ∈ (0, ∞) × R

d × R
d

(1.6) C−1fa(t, x, y) ≤ pa(t, x, y) ≤ Cfa(t, x, y),

where

fa(t, x, y) :=
((

aβt
)−d/β ∧ t−d/α

)
∧

(
t

|x − y|d+α
+

aβt

|x − y|d+β

)
.
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The purpose of this paper is to establish the following two-sided sharp esti-
mates on pa

D(t, x, y) in Theorem 1.1 for every t > 0. To state this theorem, we
first recall that an open set D in R

d (when d ≥ 2) is said to be a (uniform) C1,1

open set if there exist a localization radius R0 > 0 and a constant Λ0 > 0 such
that for every z ∈ ∂D, there exist a C1,1-function φ = φz : R

d−1 → R satisfy-
ing φ(0) = 0, ∇φ(0) = (0, . . . ,0), ‖ ∇φ‖ ∞ ≤ Λ0, | ∇φ(x) − ∇φ(z)| ≤ Λ0|x − z|,
and an orthonormal coordinate system CS z with its origin at z such that

B(z,R0) ∩ D =
{
y = (ỹ, yd) in CS z : |y| < R0, yd > φ(ỹ)

}
.

The pair (R0,Λ0) is called the characteristics of the C1,1 open set D. Note that
a C1,1 open set D with characteristics (R0,Λ0) can be unbounded and dis-
connected; the distance between two distinct components of D is at least R0.
Let δ∂D(x) be the Euclidean distance between x and ∂D. It is well known
that any C1,1 open set D satisfies both the uniform interior ball condition
and the uniform exterior ball condition: there exists r0 < R0 such that for
every x ∈ D with δ∂D(x) < r0 and y ∈ R

d \ D with δ∂D(y) < r0, there are zx,
zy ∈ ∂D so that |x − zx| = δ∂D(x), |y − zy | = δ∂D(y) and that B(x0, r0) ⊂ D

and B(y0, r0) ⊂ R
d \ D for x0 = zx + r0(x − zx)/|x − zx| and y0 = zy + r0(y −

zy)/|y − zy |. By a C1,1 open set in R we mean an open set which can be
written as the union of disjoint intervals so that the minimum of the lengths
of all these intervals is positive and the minimum of the distances between
these intervals is positive.

Theorem 1.1. Suppose M > 0. Let D be a C1,1 open subset of R
d with

characteristics (R0,Λ0) and δD(x) the Euclidean distance between x and Dc.

(i) For every T > 0, there is a constant C1 = C1(R0,Λ0,M,α,β,T, d) ≥ 1
such that for every a ∈ (0,M ],

C−1
1 fa

D(t, x, y) ≤ pa
D(t, x, y) ≤ C1f

a
D(t, x, y),

where

fa
D(t, x, y) :=

(
1 ∧ δD(x)α/2

√
t

)(
1 ∧ δD(y)α/2

√
t

)
×

(
t−d/α ∧

(
t

|x − y|d+α
+

aβt

|x − y|d+β

))
.

(ii) Suppose in addition that D is bounded. For every T > 0, there is a con-
stant C2 ≥ 1 depending only on diam(D),R0,Λ0,M,α,β, d and T so that
for every a ∈ (0,M ] and (t, x, y) ∈ [T, ∞) × D × D,

C−1
2 e−λ1tδD(x)α/2δD(y)α/2 ≤ pa

D(t, x, y) ≤ C2e
−λ1tδD(x)α/2δD(y)α/2,

where λ1 > 0 is the smallest eigenvalue of −(Δα/2 + aβΔβ/2)|D.



1362 Z.-Q. CHEN, P. KIM AND R. SONG

In the above theorem, we assumed that the weight a is contained in the
compact interval [0,M ] for some M > 0. Without this assumption, the esti-
mates in the above theorem are not valid. As one can see from (1.6), as a ↑ ∞,
the β component will play the dominating role.

The above heat kernel estimates are uniform in a ∈ (0,M ]. Letting a → 0,
Theorem 1.1 recovers the heat kernel estimates for symmetric α-stable pro-
cesses obtained in [6]. By integrating the two-sided heat kernel estimates in
Theorem 1.1 with respect to t, we obtain the following estimates on the Green
function Ga

D(x, y) :=
∫ ∞
0

pa
D(t, x, y)dt.

Corollary 1.2. Suppose M > 0. For any bounded C1,1 open set D with
characteristics (R0,Λ0) in R

d, there is a constant C3 = C3(diam(D),R0,Λ0,
M,α,β) ≥ 1 so that for every a ∈ (0,M ],

C−1
3 gD(x, y) ≤ Ga

D(x, y) ≤ C3gD(x, y) for x, y ∈ D,

where

gD(x, y)(1.7)

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 ∧ δD(x)α/2δD(y)α/2

|x−y|α

)
|x − y|α−d when d > α,

log
(
1 + δD(x)α/2δD(y)α/2

|x−y|α

)
when d = 1 = α,(

δD(x)δD(y)
)(α−1)/2 ∧ δD(x)α/2δD(y)α/2

|x−y| when d = 1 < α.

To the best of our knowledge, the above Green function estimates are new,
which says that for any bounded C1,1 open set D, Ga

D is comparable to the
Green function G0

D of the symmetric α stable process in D. The two-sided
estimates for G0

D were first established independently in [14] and [23], when
d ≥ 2, and in [3] and [6] for d = 1.

Theorem 1.1(i) will be established through Theorems 2.8 and 3.5, which
give the upper bound and lower bound estimates respectively. Unlike [6],
[8], Theorem 1.1(ii) is not a consequence of the intrinsic ultracontractivity of
Xa in a bounded open set since the constant C3 depends on D only through
its diameter and C1,1 characteristics. We will prove Theorem 1.1(ii) using
Theorem 1.1(i) and some elementary facts from the spectral theory of compact
self-adjoint operators and the estimates of eigenvalues established in [15].

In fact, the upper bound estimates in both Theorem 1.1 and Corollary 1.2
hold for any open set D with a weak version of the uniform exterior ball
condition in place of the C1,1 condition, while the lower bound estimates in
both Theorem 1.1 and Corollary 1.2 hold for any open set D with the uniform
interior ball condition in place of the C1,1 condition (see Theorems 2.8 and 3.5,
and the proofs for Theorem 1.1(ii) and Corollary 1.2).

Although we follow the general strategy developed in [6], there are several
new difficulties to overcome in obtaining two-sided Dirichlet heat kernel es-
timates for Xa. First, Xa is not self-similar; it is the mixture of two stable
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processes with two different parameters. Secondly, even though the boundary
Harnack principle has been extended in [22] to a large class of pure jump
Lévy processes including Xa, the explicit decay rate of harmonic functions of
Xa near the boundary of D was unknown. Instead, following the approach
in [11], we establish necessary estimates using suitably chosen subharmonic
and superharmonic functions of the process Xa to get the desired boundary
decay rate for Xa. As in [11], we need to use the finite range (or truncated)
symmetric β-stable process Ŷ λ obtained from Y by suppressing all its jumps
of size larger than λ. The infinitesimal generator of Ŷ λ is

(1.8) Δ̂β/2
λ u(x) := A(d, −β) lim

ε↓0

∫
{y∈Rd:ε<|y−x|≤λ}

(
u(y) − u(x)

) dy

|x − y|d+β
.

When λ = 1, we will simply denote Δ̂β/2
λ by Δ̂β/2. We first establish the

desired estimates for the Lévy process X̂a := X + aŶ 1/a. The infinitesimal
generator of X̂a is Δα/2+aβΔ̂β/2. The desired estimates for Xa = X +aY can
then be obtained by adding back those jumps of Y of size larger than 1/a.
To obtain the lower bound of pa

D(t, x, y), we use the Dirichlet heat kernel
estimates for the fractional Laplacian in [6] and a comparison of the killed
subordinate stable process with the subordinate killed stable process where
we will use some of the results obtained in [29]. Also some ideas in [5], [10] to
obtain the lower bound are adapted in this paper.

We like to point out that, unlike [6], the boundary Harnack principle for Xa

is not used in this paper, which indicates that it might be possible to obtain
sharp heat kernel estimates for processes for which the boundary Harnack
principle fails.

As a consequence of Corollary 1.2, we have the following uniform boundary
Harnack principle with explicit decay rate.

Theorem 1.3. Suppose that M > 0. For any C1,1 open set D in R
d with

characteristics (R0,Λ0), there exists a positive constant C4 = C4(α,β, d,Λ0,
R0,M) ≥ 1 such that for a ∈ [0,M ], r ∈ (0,R0], Q ∈ ∂D and any nonnegative
function u in R

d that is harmonic in D ∩ B(Q,r) with respect to Xa and
vanishes continuously on Dc ∩ B(Q,r), we have

(1.9)
u(x)
u(y)

≤ C4
δD(x)α/2

δD(y)α/2
for every x, y ∈ D ∩ B(Q,r/2).

Throughout this paper, we will use capital letters C1,C2, . . . to denote
constants in the statements of results, and their labeling will be fixed. The
lower case constants c1, c2, . . . will denote generic constants used in proofs,
whose exact values are not important and can change from one appearance
to another. The labeling of the lower case constants starts anew in every
proof. The dependence of the constants on dimension d may not be mentioned
explicitly. For every function f , let f+ := f ∨ 0. We will use ∂ to denote a
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cemetery point and for every function f , we extend its definition to ∂ by
setting f(∂) = 0. We will use dx to denote the Lebesgue measure in R

d. For
a Borel set A ⊂ R

d, we also use |A| to denote its Lebesgue measure.

2. Upper bound estimate

Throughout this section, we assume that D is an open set satisfying the
uniform exterior ball condition with radius r0 > 0 in the following sense: for
every z ∈ ∂D and r ∈ (0, r0), there is a ball Bz of radius r such that Bz ⊂
R

d \ D and ∂Bz ∩ ∂D = {z}. The goal of this section is to establish the
upper bound for the transition density (heat kernel) pa

D(t, x, y). One of the
main difficulties of getting the upper bound for pa

D(t, x, y) is to obtaining the
correct boundary decay rate.

Recall that Δα/2 and Δ̂β/2
λ are defined by (1.1) and (1.8). The next two

lemmas can be proved by direct computation, whose proofs can be found in
[21] and [11], respectively.

For p > 0, let wp(x) := (x+
1 )p.

Lemma 2.1. For any x ∈ (0, ∞) × R
d−1, we have

Δα/2wα/2(x) = 0.

Moreover, for every p ∈ (α/2, α), there is a positive constant C5 = C5(d,α, p)
such that for every x ∈ (0, ∞) × R

d−1

Δα/2wp(x) = C5x
p−α
1 .

Lemma 2.2. There are constants R∗ ∈ (0,1), C6 > C7 > 0 depending on p,
d and α only such that for every x ∈ (0,R∗] × R

d−1

C7x
p−α
1 ≤ Δ̂α/2wp(x) ≤ C6x

p−α
1 for α/2 < p < α,∣∣Δ̂α/2wp(x)

∣∣ ≤ C6| logx1| for p = α

and ∣∣Δ̂α/2wp(x)
∣∣ ≤ C6 for p > α.

In the remainder of this paper, R∗ will always stand for the constant in
Lemma 2.2. The following result and its proof are similar to [11, Lemma 3.2]
and the proof there. For reader’s convenience, we spell out the details of the
proof here.

Lemma 2.3. Assume that r1 ∈ (0,1/2] and p ≥ α
2 . Let δ1 := R∗ ∧ (r1/4),

U := {z ∈ R
d : r1 < |z| < 3r1/2} and

hp(y) :=
(
yd −

√
r2
1 − |ỹ|2

)p

1U ∩{zd>0,|z̃|<r1/2}(y).

Then there exist Ci = Ci(α,p, r1) > 0, i = 8, . . . ,12, such that
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(i) when p ∈ (α/2, α), we have for all y ∈ {z ∈ R
d : zd > 0, r1 < |z| < r1 +

δ1, |z̃| < r1/4},

(2.1) C8

(
yd −

√
r2
1 − |ỹ|2

)p−α

≤ Δ̂α/2hp(y) ≤ C9

(
yd −

√
r2
1 − |ỹ|2

)p−α

and

(2.2) C8

(
yd −

√
r2
1 − |ỹ|2

)p−α

≤ Δα/2hp(y) ≤ C9

(
yd −

√
r2
1 − |ỹ|2

)p−α

;

(ii) when p > α, we have for all y ∈
{
z ∈ R

d : zd > 0, r1 < |z| < r1 + δ1, |z̃| <

r1/4
}
,

(2.3)
∣∣Δ̂α/2hp(y)

∣∣ ≤ C10

(iii) when p = α/2, we have for all y ∈
{
z ∈ R

d : zd > 0, r1 < |z| < r1 +δ1, |z̃| <

r1/4
}
,

(2.4)
∣∣Δα/2hα/2(y)

∣∣ ≤ C11

(iv) when p = α, we have for every y ∈ {z ∈ R
d : zd > 0, r1 < |z| < r1+δ1, |z̃| <

r1/4},

(2.5)
∣∣Δ̂α/2hα/2(y)

∣∣ ≤ C12

∣∣∣log
(
yd −

√
r2
1 − |ỹ|2

)∣∣∣.
Proof. Let

Γ(ỹ) :=
√

r2
1 − |ỹ|2 and h(y) := yd − Γ(ỹ), y ∈ U.

Fix x ∈ {z ∈ R
d : zd > 0, r1 < |z| < r1 + R∗ ∧ (r1/8), |z̃| < r1/4} and choose

a point x0 ∈ ∂B+(0, r1) := {zd > 0, |z| = r1} satisfying x̃ = x̃0. Denote by
−→n (x0) the inward unit normal vector at x0 for the exterior ball B(0, r1)c and
set Φ(y) = 〈y − x0,

−→n (x0)〉 for y ∈ R
d. Π = {y : Φ(y) = 0} is the hyperplane

tangent to ∂B+(0, r1) at the point x0. Let Γ∗ : ỹ ∈ R
d−1 → R be the function

describing the hyperplane Π, that is, 〈(ỹ,Γ∗(ỹ)) − x0,
−→n (x0)〉 = 0. We also let

E :=
{
y = (ỹ, yd) : y ∈ U, |y − x| < r1/4

}
,

A :=
{
y : Γ∗(ỹ) > yd > Γ(ỹ), |y − x| < r1/4

}
and h(y) := (yd − Γ∗(ỹ))1{yd>Γ∗(ỹ)}(y) for y ∈ R

d. Since ∇Γ(x̃) − ∇Γ∗(x̃) = 0,
by the mean value theorem,∣∣h(y) − h(y)

∣∣ ≤
∣∣Γ(ỹ) − Γ∗(ỹ)

∣∣ ≤ Λ|ỹ − x̃|2, y ∈ E.(2.6)

Let δΠ(y) = dist(y,Π) for y ∈ R
d and UΓ∗ = {y ∈ R

d : yd > Γ∗(ỹ)}. Let bx :=√
1 + | ∇Γ(x̃)|2 and

hx,p(y) :=
(
h(y)

)p
.
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Note that hx,p(x) = hp(x) and B(x, r1/4) ∩ U ⊂ E. Since h(y) = bxδΠ(y)
on DΓ∗ , by Lemma 2.1,

Δα/2hx,α/2(x) = 0(2.7)

and, if α/2 < p < α,

Δα/2hx,p(x) = c1b
p
xδp−α

Π
(x) = c1b

α
x

(
h(x)

)p−α(2.8)

for some c1 > 0. By Lemma 2.2, there are constants ci > 0, i = 2, . . . ,6, such
that for y ∈ DΓ∗ and δΠ(y) < R∗, when α/2 < p < α,

c2

(
h(x)

)p−α ≤ c3b
p
xδp−α

Π
(x) ≤ Δ̂α/2hx,p(x) = bp

xΔ̂α/2
(
δΠ(x)

)p(2.9)

≤ c4b
p
xδp−α

Π
(x) ≤ c5

(
h(x)

)p−α
,

when p > α, ∣∣Δ̂α/2hx,p(x)
∣∣ = bp

x

∣∣Δ̂α/2
(
δΠ(x)

)p∣∣ ≤ c6(2.10)

and when p = α,

(2.11)
∣∣Δ̂α/2hx,p(x)

∣∣ ≤ c6

∣∣ log
(
h(x)

)∣∣.
Note that ∣∣Δ̂α/2(hp − hx,p)(x)

∣∣(2.12)

= A(d, −α)
∣∣∣∣ limε↓0

∫
{1≥ |y−x|>ε}

(hp(y) − hp,x(y))
|x − y|d+α

dy

∣∣∣∣
≤ A(d, −α)

∣∣∣∣ ∫
{1≥ |y−x|>r1/4}

(hp(y) − hp,x(y))
|x − y|d+α

dy

∣∣∣∣
+ A(d, −α) lim

ε↓0

∫
{r1/4≥ |y−x|>ε}

|hp(y) − hp,x(y)|
|x − y|d+α

dy

≤ c7 + A(d, −α)
∫

A

hp(y) + hp,x(y)
|x − y|d+α

dy

+ A(d, −α)
∫

E

|hp(y) − hp,x(y)|
|x − y|d+α

=: c7 + I1 + I2

and, similarly,∣∣Δα/2(hp − hx,p)(x)
∣∣(2.13)

≤ A(d, −α)
∣∣∣∣ ∫

{ |y−x|>r1/4}

(hp(y) − hp,x(y))
|x − y|d+α

dy

∣∣∣∣
+ A(d, −α)

∫
A

hp(y) + hp,x(y)
|x − y|d+α

dy

+ A(d, −α)
∫

E

|hp(y) − hp,x(y)|
|x − y|d+α

=: I3 + I1 + I2.
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Since for y ∈ B(x, r1/4)c,∣∣hx,p(y) − hx,p(x)
∣∣ ≤ c8|y − x|p and

∣∣hp(y)
∣∣ ≤ c8

and hp(y) = 0 for |ỹ| > r1/2, for α/2 ≤ p < α we get

I3 ≤ A(d, −α)
∫

B(x,r1/4)c

|hx,p(y) − hx,p(x)|
|x − y|d+α

dy(2.14)

+ A(d, −α)
∫

B(x,r1/4)c ∩ { |ỹ|≤r1/2}

|hp(y) − hp(x)|
|x − y|d+α

dy

+ A(d, −α)
∣∣∣∣ ∫

B(x,r1/4)c ∩ { |ỹ|>r1/2}

hp(x)
|x − y|d+α

dy

∣∣∣∣
≤ c9

∫
B(x,r1/4)c

1
|x − y|d+α−p

dy + c9

∫
B(x,r1/4)c

1
|x − y|d+α

dy

≤ c10 < ∞.

We claim that, if p ≥ α/2,

(2.15) I1 + I2 ≤ c11 < ∞.

Note that for y ∈ A∣∣hx,p(y)
∣∣ +

∣∣hp(y)
∣∣(2.16)

≤
∣∣yd − Γ∗(ỹ)

∣∣p +
∣∣yd − Γ(ỹ)

∣∣p ≤ 2
∣∣Γ(ỹ) − Γ∗(ỹ)

∣∣p
≤ 2

∣∣Γ(ỹ) − Γ(x̃) − ∇Γ(x̃) · (ỹ − x̃)
∣∣p ≤ 2cp

12|ỹ − x̃|2p.

Furthermore, since |Γ(ỹ) − Γ∗(ỹ)| ≤ c13|ỹ − x̃|2 ≤ c12r
2 on |y − x| = r, this

together with (2.16) yields that

I1 ≤ c14

∫ r1/4

0

r2p−α−d

∫
|y−x|=r

1A(y)md−1(dy)dr

= c14

∫ r1/4

0

r2p−α−dmd−1

({
y : |y − x| = r,Γ∗(ỹ) > yd > Γ(ỹ)

})
dr

≤ c15

∫ r1/4

0

r2p−α dr < ∞.

Note that, if y ∈ E, yd ≥ xd − |x − y| ≥
√

|x|2 − |x̃|2 − r1/4 ≥
√

15r1/4 −
r1/4 > 0 and |ỹ| ≤ |x̃| + |x − y| < r1/2. Thus E ⊂ U ∩ {zd > 0, |z̃| < r1/2}, and
so we have that for y ∈ E∣∣hp(y) − hx,p(y)

∣∣ ≤ c16

∣∣(h(y)
)p −

(
h(y)

)p∣∣(2.17)

≤ c17

(
h(y)

)(p−1)− ∣∣h(y) − h(y)
∣∣,

where (p − 1)− := (p − 1) ∧ 0. In the last inequality above, we have used the
inequalities ∣∣bp − ap

∣∣ ≤ bp−1|b − a| for a, b > 0,0 < p ≤ 1
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and ∣∣bp − ap
∣∣ ≤ (p + 1)|b − a| for a, b ∈ (0,1), p > 1.

For y = (ỹ, yd) ∈ R
d, we use an affine coordinate system z = (z̃, zd) to represent

it so that zd = yd − Γ∗(ỹ) and z̃ is the coordinates in an orthogonal coordinate
system centered at x0 for the (d − 1)-dimensional hyperplane Π for the point
(ỹ,Γ∗(ỹ)). Denote such an affine transformation y �→ z by z = Ψ(y). It is clear
that there is a constant c18 > 1 so that for every y ∈ R

d,

c−1
18 |ỹ − x̃| ≤ |z̃| ≤ c18|ỹ − x̃|, c−1

18 |y − x| ≤
∣∣Ψ(y) − Ψ(x)

∣∣ ≤ c18|y − x|
and that

Ψ(E) ⊂
{
z = (z̃, zd) ∈ R

d : |z̃| < c18r1 and 0 < zd ≤ c18r1

}
.

Denote xd − Γ∗(x̃) by w; that is, Ψ(x) = (0̃,w). Hence by (2.6) and (2.17)
and applying the transform Ψ, we have by using polar coordinates for z̃ on
the hyperplane Π,

I2 ≤ c19

∫
E

h(y)(p−1)− |ỹ − x̃|2
|y − x|d+α

dy ≤ c19

∫
Ψ(E)

z
(p−1)−
d |z̃|2

|z − (0̃,w)|d+α
dz

≤ c20

∫ c18r1

0

z
(p−1)−
d

(∫ c18r1

0

rd−2

(r + |zd − w|)d+α−2
dr

)
dzd

≤ c20

∫ c18r1

0

z
(p−1)−
d

(∫ c18r1

0

1
(r + |zd − w|)α

dr

)
dzd

≤ c21

∫ c18r1

0

z
(p−1)−
d

(
1

|zd − w|α−1
− 1

(c18r1 + |zd − w|)α−1

)
dzd

< c22

∫ c18r1

0

1

z
(1−p)+

d |zd − w|α−1
dzd ≤ c23 < ∞,

where all the constants depend only on α,d, p and r1. The last inequality is
due to the fact that since p > 0, 0 < α < 2 and (1 − p)+ + α − 1 = max{α −
p,α − 1} < 1, by the dominated convergence theorem, φ(w) :=∫ c18r1

0
1

z
(1−p)+
d |zd −w|α−1

dzd is a strictly positive continuous function in xd ∈
[0, c18r1] and hence is bounded.

Thus, we have proved the claim (2.15). The desired estimates (2.1)–(2.5)
now follow from (2.7)–(2.15). �

It is well-known that X1 has Lévy intensity

J1(x, y) = j1
(

|x − y|
)

=
A(d, −α)

|x − y|d+α
+

A(d, −β)
|x − y|d+β

.

A scaling argument yields that

Ja(x, y) = ja
(

|x − y|
)

=
A(d, −α)

|x − y|d+α
+ aβ A(d, −β)

|x − y|d+β
.
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Put

ψa(r) =
(

r−α + aβ A(d, −β)
A(d, −α)

r−β

)−1

.(2.18)

Clearly

Ja(x, y) = ja
(

|x − y|
)

=
A(d, −α)

|x − y|dψa(|x − y|) .

The function ψa plays an important role in the study of mixed stable-like
processes including Xa in [13], which serves as the ‘scale function’ for the
heat kernel estimates and global parabolic Harnack inequality.

The Lévy intensity gives rise to a Lévy system for Xa, which describes
the jumps of the process Xa: for any nonnegative measurable function f on
R+ × R

d × R
d with f(s, y, y) = 0 for all y ∈ R

d, x ∈ R
d and stopping time T

(with respect to the filtration of Xa),

(2.19) Ex

[∑
s≤T

f
(
s,Xa

s−,Xa
s

)]
= Ex

[∫ T

0

(∫
Rd

f
(
s,Xa

s , y
)
Ja

(
Xa

s , y
)
dy

)
ds

]
.

(See, for example, [12, Proof of Lemma 4.7] and [13, Appendix A].)
For any open set D ⊂ R

d, let τa
D = τa(D) := inf{t > 0 : Xa

t /∈ D} denote the
first exit time from D by Xa.

Note that by the approximate scaling property in (1.5), we have for every
r > 0.

(2.20) Ga
B(0,r)(x, y) = rα−dGar(α−β)/β

B(0,1) (x/r, y/r).

The next lemma follows immediately from a special case of [22, Proposi-
tion 2.10 and Lemma 3.6] and (2.20).

Lemma 2.4. For any b,M ∈ (0, ∞), there exists C13 = C13(M,b,α,β) > 0
such that for every x0 ∈ R

d, a ∈ [0,M ] and r ∈ (0, b],

(2.21) Ex

[
τa
B(x0,r)

]
≤ C13r

α/2
(
r − |x − x0|

)α/2 for x ∈ B(x0, r).

For λ > 0, Ŷ λ = (Ŷ λ
t ,Px) is a Lévy process on R

d such that

Ex

[
eiξ·(Ŷ λ

t −Ŷ λ
0 )

]
= e−tψ(ξ) for every x ∈ R

d and ξ ∈ R
d,

with

ψ(ξ) = A(d, −β)
∫

{ |y|≤λ}

1 − cos(ξ · y)
|y|d+β

dy.

In other words, Ŷ λ is a pure jump symmetric Lévy process on R
d with a

Lévy density given by A(d, −β)|x|−d−β1{ |x|≤λ}. For a > 0, suppose Ŷ 1/a is
independent of the symmetric α-stable process X on R

d. Define

X̂a
t := Xt + aŶ

1/a
t , t ≥ 0.
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We will call the process X̂a the independent sum of the symmetric α-stable
process X and the truncated symmetric β-stable process Ŷ 1/a with weight
a > 0. The infinitesimal generator of X̂a is Δα/2 + aβΔ̂β/2.

For any open set U ⊂ R
d, let τ̂a

U = inf{t > 0 : X̂a
t /∈ U } be the first exit time

from U by X̂a. The truncated process X̂a will be used in the proof of next
lemma.

Lemma 2.5. Assume r1 ∈ (0, 1
4 ] and M > 0. Let U := {z ∈ R

d : r1 < |z| <
3r1/2}. There are constants C14 = C14(r1, α) > 0 and C15 = C15(r1,M,α,
β) > 0 such that for every a ∈ [0,M ]

Ex

[
τa
U

]
≤ C14Px

(∣∣Xa
τa

U

∣∣ ≥ 3r1/2
)

(2.22)

≤ C15δU (x)α/2 for r1 < |x| < 5r1/4.

Proof. The first inequality in (2.22) is easy. In fact, by the Lévy system
(2.19) with

f(s,x, y) = 1U (x)1{5r1<|y|<10r1}(y)

and T = τa
U , we have that for x ∈ U

Px

(∣∣Xa
τa

U

∣∣ ≥ 3r1/2
)

≥ Px

(
10r1 >

∣∣Xa
τa

U

∣∣ > 5r1

)
= Ex

[∫ τa
U

0

∫
{5r1<|y|<10r1}

Ja
(
Xa

s , y
)
dy ds

]
≥ Ex

[∫ τa
U

0

∫
{5r1<|y|<10r1}

A(d, −α)
|Xa

s − y|d+α
dy ds

]
≥ c1Ex

[
τa
U

]
,

where c1 = c1(r1, α) > 0.
It is enough to prove the second inequality in (2.22) for r1 < |x| < r1 + δ

for some small δ > 0. Without loss of generality, we assume x̃ = 0̃ and xd > 0.
Let p > 0 be such that p �= β and

α − (β/2) < p < α ∧
(
α − (β/2) + (α − β)/3

)
.

Note that α/2 < p < α ∧ (3α/2 − β). Define

h(y) :=
(
yd −

√
r2
1 − |ỹ|2

)α/2

1U ∩{zd>0,|z̃|<r1/2}(y),

gp(y) :=
(
yd −

√
r2
1 − |ỹ|2

)p

1U ∩{zd>0,|z̃|<r1/2}(y),

and let φ be a smooth function on R
d with bounded first and second partial

derivatives such that φ(y) = 24+p|ỹ|2/r2
1 for y ∈ {zd > 0, r1 < |z| < 4r1/5, |z̃| <

r1/4} and 2p ≤ φ(y) ≤ 4p if |ỹ| ≥ r1/2 or |y| ≥ 3r1/2.
Since r1 ≤ 1/4, it is easy to see that ‖gp‖ ∞ < 1. Now we define

u(y) := h(y) + φ(y) − gp(y).
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By Taylor’s expansion with remainder of order 2, we get that for any a ∈ (0,M ]
and y ∈ R

d,∣∣(Δα/2 + aβΔ̂β/2
)
φ(y)

∣∣ ≤
∥∥Δα/2φ

∥∥
∞ + Mβ

∥∥Δ̂β/2φ
∥∥

∞(2.23)

≤ c2(α,β,M) < ∞.

Moreover, by (2.1)–(2.3), there exist c3 = c3(α,β) > 0, c4 = c4(α,β) > 0 and
δ1 = δ1(α,β) ∈ (0, r1/8) such that for y ∈

{
z ∈ R

d : zd > 0, r1 < |z| < r1 +
δ1, |z̃| < r1/4

}
Δα/2gp(y) ≥ c3δU (y)p−α

and for y ∈
{
z ∈ R

d : zd > 0, r1 < |z| < r1 + δ1, |z̃| < r1/4
}

Δ̂β/2gp(y) ≥ −c4δU (y)(p−β)∧0.

Note that p − α > p − β and p − α < 0. Thus there exist c5 = c5(α,β,M) >
0 and δ2 = δ2(α,β,M) ∈ (0, δ1) such that for all a ∈ (0,M ] and y ∈ {z ∈
R

d : zd > 0, r1 < |z| < r1 + δ2, |z̃| < r1/4},(
Δα/2 + aβΔ̂β/2

)
gp(y) ≥ c3δU (y)p−α − c4M

βδU (y)(p−β)∧0(2.24)

≥ c5δU (y)p−α.

Furthermore by (2.1) and (2.3)–(2.5), there exist c6 = c6(α,β,M) > 0 and δ3 =
δ3(α,β) ∈ (0, δ1) such that for all a ∈ (0,M ] and for every y ∈ {z ∈ R

d : zd >
0, r1 < |z| < r1 + δ3, |z̃| < r1/4},∣∣(Δα/2 + aβΔ̂β/2

)
h(y)

∣∣ ≤
∣∣Δα/2h(y)

∣∣ + Mβ
∣∣Δ̂β/2h(y)

∣∣(2.25)

≤
{

c6 + c6δU (y)(α/2−β)∧0 if β �= α/2,

c6 + c6

∣∣ log δU (y)
∣∣ if β = α/2.

Since p − α < α/2 − β, by (2.23)–(2.25), there exists δ4 = δ4(α,β,M) ∈ (0, δ2 ∧
δ3) such that for all a ∈ (0,M ] and y ∈ V := {z ∈ R

d : zd > 0, r1 < |z| < r1 +
δ4, |z̃| < r1/4}(

Δα/2 + aβΔ̂β/2
)
u(y)(2.26)

≤ c2 + c6 + c6

(
δU (y)(α/2−β)∧0 +

∣∣ log δU (y)
∣∣) − c5δU (y)p−α

≤ 0.

Let η be a nonnegative smooth radial function with compact support in
R

d such that η(x) = 0 for |x| > 1 and
∫

Rd η(x)dx = 1. For k ≥ 1, define
ηk(x) = 2kdη(2kx). Set u(k)(z) := (ηk ∗ u)(z). As (Δα/2 + aβΔ̂β/2)u(k) = ηk ∗
(Δα/2 + aβΔ̂β/2)u, we have by (2.26) that(

Δα/2 + aβΔ̂β/2
)
u(k) ≤ 0
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on Vk := {z ∈ R
d : zd > 0, r1 +2−k < |z| < r1 + δ4 − 2−k and |z̃| < r1/4 − 2−k }.

Since u(k) is a bounded smooth function on R
d with bounded first and second

partial derivatives, by Ito’s formula and the Lévy system (2.19),

(2.27) Mk
t := u(k)

(
X̂a

t

)
− u(k)

(
X̂a

0

)
−

∫ t

0

(
Δα/2 + aβΔ̂β/2

)
u(k)

(
X̂a

s

)
ds

is a martingale. Thus, it follows from (2.27) that t �→ u(k)(X̂a
t∧τ̂a

Vk

) is a
bounded supermartingale. Since Vk increases to V and u is bounded and
continuous on V , we conclude that

(2.28) t �→ u
(
X̂a

t∧τ̂a
V

)
is a bounded supermartingale.

We observe that, since φ(x) = 0,

(2.29) u(x) ≤ δU (x)α/2.

We also observe that, since φ ≥ 2gp outside of {z ∈ U : zd > 0, |z̃| < r1/2} and

u(y) ≥
(
yd −

√
r2
1 − |ỹ|2

)α/2

−
(
yd −

√
r2
1 − |ỹ|2

)p

> c7

on {zd > 0, r1 + δ4 ≤ |z| < 3r1/2, |z̃| < r1/2}, we have

u(y) ≥ c8 > 0 for y ∈ V c \ B(0, r1),(2.30)

where c8 depends on δ4, α, β and r1. Therefore, by (2.28)–(2.30) we get

δU (x)α/2 ≥ u(x) ≥ Ex

[
u
(
X̂a

τ̂a
V

)]
≥ c8Px

(
X̂a

τ̂a
V

∈ V c \ B(0, r1)
)

(2.31)

≥ c8Px

(∣∣X̂a
τ̂a

U

∣∣ ≥ 3r1/2
)
.

Note that there exist c9 = c9(α,d, r1) > 0 and c10 = c10(β,d, r1) > 0 such
that for z ∈ U ,∫

{ |y|≥2r1}

dy

|z − y|d+α
≤ c9

∫
{2r1≤ |y|<3r1}

dy

|z − y|d+α

and ∫
{ |y|≥2r1}

dy

|z − y|d+β
≤ c10

∫
{2r1≤ |y|<3r1}

dy

|z − y|d+β
.

Thus by (2.19), there exists a positive constant c11 = c11(d,α,β,M) such that
for any a ∈ (0,M ],

Px

(∣∣Xa
τa

U

∣∣ ≥ 2r1

)
= Ex

[∫ τa
U

0

∫
{ |y|≥2r1}

Ja
(
Xa

s , y
)
dy ds

]
≤ c11Ex

[∫ τa
U

0

∫
{2r1≤ |y|<3r1}

Ja
(
Xa

s , y
)
dy ds

]
= c11Px

(
3r1 >

∣∣Xa
τa

U

∣∣ ≥ 2r1

)
.
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Since r1 ≤ 1/4 and the processes X and Y do not jump simultaneously, we
have by (2.31) that there is a positive constant c12 = c12(d,α,β,M, r1) such
that for all a ∈ (0,M ],

Px

(∣∣Xa
τa

U

∣∣ ≥ 3r1/2
)

≤ (c11 + 1)Px

(
3r1 >

∣∣Xa
τa

U

∣∣ ≥ 3r1/2
)

= (c11 + 1)Px

(
3r1 >

∣∣X̂a
τ̂a

U

∣∣ ≥ 3r1/2
)

≤ (c11 + 1)Px

(∣∣X̂a
τ̂a

U

∣∣ ≥ 3r1/2
)

≤ c12δU (x)α/2. �

Lemma 2.6. Assume M > 0 and r1 ∈ (0, 1
4 ]. Let E = {x ∈ R

d : |x| > r1}.
Then for every T > 0, there is a constant C16 = C16(r1, α, β,T,M) > 0 such
that for every a ∈ [0,M ],

pa
E(t, x, y) ≤ C16δE(x)α/2Ja(x, y) for r1 < |x| < 5r1/4, |y| ≥ 2r1 and t ≤ T.

Proof. Define U := {z ∈ R
d : r1 < |z| < 3r1/2}. For r1 < |x| < 5r1/4,

|y| ≥ 2r1 and t ∈ (0, T ], it follows from the strong Markov property of Xa

and (2.19) that

pa
E(t, x, y)
= Ex

[
pa

E

(
t − τa

U ,Xa
τa

U
, y

)
; τa

U < t, (3r1/4) +
(

|y|/2
)

≥
∣∣Xa

τa
U

∣∣ ≥ 3r1/2
]

+ Ex

[
pa

E

(
t − τa

U ,Xa
τa

U
, y

)
; τa

U < t,
∣∣Xa

τa
U

∣∣ > (3r1/4) +
(

|y|/2
)]

≤
(

sup
s:s∈(0,t)

w:(3r1/4)+(|y|/2)≥ |w|≥3r1/2

pa
E(t − s,w, y)

)
× Px

(
τa
U < t, (3r1/4) +

(
|y|/2

)
≥

∣∣Xa
τa

U

∣∣ ≥ 3r1/2
)

+
∫ t

0

∫
U

pU (s,x, z)

×
(∫

{w:|w|>(3r1/4)+(|y|/2)}
Ja(z,w)pa

E(t − s,w, y)dw

)
dz ds

=: I + II .

Note that for |w| ≤ (3r1/4) + (|y|/2),

(2.32) |w − y| ≥ |y| − |w| ≥ 1
2

(
|y| − 3r1

2

)
≥ |y|

8
≥ |x − y|

16
.

Since pa
E(t − s,w, y) ≤ pa(t − s,w, y), by (1.6) and (2.32), there exists a con-

stant c1 = c1(α,β,M) > 0 such that for a ∈ (0,M ]

I ≤ c1TJa(x, y)Px

(∣∣Xa
τa

U

∣∣ ≥ 3r1/2
)
.

By Lemma 2.5, we have for |x| ∈ (r1,5r1/4),

Px

(∣∣Xa
τa

U

∣∣ ≥ 3r1/2
)

≤ c2δU (x)α/2 = c2δE(x)α/2
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for some positive constant c2 = c2(r1, α, β,M). Thus,

(2.33) I ≤ c3TδE(x)α/2Ja(x, y)

for some positive constant c3 = c3(r1, α, β,M).
On the other hand, for z ∈ U and w ∈ R

d with |w| > (3r1/4) + (|y|/2),

|z − w| ≥ |w| − |z| ≥ 1
2

(
|y| − 3r1

2

)
≥ |y|

8
≥ |x − y|

16
.

Thus by the symmetry of pa
E(t − s,w, y) in (w,y), we have

II ≤ c4J
a(x, y)

×
∫ t

0

∫
U

pa
U (s,x, z)

(∫
{w:|w|>(3r1/4)+(|y|/2)}

pa
E(t − s, y,w)dw

)
dz ds

≤ c4J
a(x, y)

∫ ∞

0

∫
U

pa
U (s,x, z)dz ds

= c4J
a(x, y)Ex

[
τa
U

]
≤ c5δE(x)α/2Ja(x, y)

for some positive constants ck = ck(r1, α, β,M), k = 4,5. In the last inequality,
we used Lemma 2.5 to deduce that Ex[τa

U ] ≤ cδU (x)α/2 = c6δE(x)α/2 for some
positive constant c6 = c6(r1, α, β,M). This together with (2.33) proves the
lemma. �

Theorem 2.7. Assume that M > 0 and D is an open set that satisfies
the uniform exterior ball condition with radius r0 > 0. Then for every T > 0,
there is a constant C17 = C17(r0/T,α,β,M) > 0 such that for all a ∈ (0,M ],
λ ∈ (0, T ] and x, y ∈ λ−1D,

pa
λ−1D(1, x, y) ≤ C17

(
1 ∧ Ja(x, y)

)
δλ−1D(x)α/2.

Proof. Note that for every λ ∈ (0, T ], λ−1D satisfies the uniform exterior
ball condition with radius r0/T . For x, y ∈ λ−1D, let z ∈ ∂(λ−1D) be that
|x − z| = δλ−1D(x). Let Bz ⊂ (λ−1D)c be the ball with radius r1 := 4−1 ∧
(r0/T ) so that ∂Bz ∩ ∂(λ−1D) = {z}. Since, by (1.6)

pa
λ−1D(1, x, y) ≤ pa(1, x, y) ≤ c

(
1 ∧ Ja(x, y)

)
,

it suffices to prove the theorem for x ∈ λ−1D with δλ−1D(x) < r1/4. When
δλ−1D(x) < r1/4 and |x − y| ≥ 5r1, we have δBc

z
(y) > 2r1 and so, by Lemma 2.6,

there is a constant c1 > 0 that depends only on (r0/T, d,α,β,M) such that
for t ∈ (0,1],

pa
λ−1D(t, x, y) ≤ pa

(Bz)c(t, x, y) ≤ c1δ(Bz)c(x)α/2Ja(x, y)(2.34)

= c1δλ−1D(x)α/2Ja(x, y).

So it remains to show that, when δλ−1D(x) < r1/4 and |x − y| < 5r1, there
exists a positive constant c2 = c2(r0/T, d,α,β,M) such that

(2.35) pa
λ−1D(1, x, y) ≤ c2δλ−1D(x)α/2.
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Let zx ∈ ∂(λ−1D) be such that |x − zx| = δλ−1D(x) and z0 ∈ R
d so that

B(z0, r1) ⊂
(
λ−1D

)c and ∂B(z0, r1) ∩ ∂
(
λ−1D

)
= {zx}.

Define U := {w ∈ R
d : |w − z0| ∈ (r1,8r1)}. Note that x, y ∈ U ∩ λ−1D and

δU (x) = δλ−1D(x). By the strong Markov property and the symmetry of
pa

λ−1D(1, x, y) in x and y, we have

pa
λ−1D(1, x, y) = pa

U ∩λ−1D(1, x, y)

+ Ey

[
pa

λ−1D

(
1 − τa

U ∩λ−1D,Xa
τa

U ∩λ−1D
, x

)
; τa

U ∩λ−1D < 1
]
.

By the semigroup property and (1.6),

pa
U ∩λ−1D(1, x, y) =

∫
U ∩λ−1D

pa
U ∩λ−1D(1/2, x, z)pa

U ∩λ−1D(1/2, z, y)dz

≤
∥∥pa(1/2, ·, ·)

∥∥
∞Px

(
τa
U ∩λ−1D > 1/2

)
≤ c3Ex

[
τa
U ∩λ−1D

]
≤ c3Ex

[
τa
U

]
≤ c4δU (x)α/2 = c4δλ−1D(x)α/2.

In the last inequality, we used Lemma 2.5.
On the other hand, we have Xa

τa
U ∩λ−1D

∈ U c ∩ λ−1D on {τa
U ∩λ−1D < 1}, and

so ∣∣Xa
τa

U ∩λ−1D
− x

∣∣ ≥ 7r1, on
{
τa
U ∩λ−1D < 1

}
.

Consequently, by (2.34) for pa
λ−1D(1 − τa

U ∩λ−1D,Xa
τa

U ∩λ−1D
, x),

Ey

[
pa

λ−1D

(
1 − τa

U ∩λ−1D,Xa
τa

U ∩λ−1D
, x

)
; τa

U ∩λ−1D < 1
]

≤ Ey

[
c1δλ−1D(x)α/2Ja

(
Xa

τa
U ∩λ−1D

, x
)
; τa

U ∩λ−1D < 1
]

≤ c1

(
(7r1)−d−α + Mβ(7r1)−d−β

)
δλ−1D(x)α/2

Py

(
τa
U ∩λ−1D < 1

)
≤ c1

(
(7r1)−d−α + Mβ(7r1)−d−β

)
δλ−1D(x)α/2.

This completes the proof for (2.35) and hence the theorem. �

Theorem 2.8. Assume that M > 0 and that D is an open set that satisfies
the uniform exterior ball condition with radius r0 > 0. For every T > 0, there
exists a positive constant C18 = C18(T, r0, α, β,M) such that for every a ∈
[0,M ], t ∈ (0, T ] and x, y ∈ D,

(2.36) pa
D(t, x, y) ≤ C18

(
1 ∧ δD(x)α/2

√
t

)(
1 ∧ δD(y)α/2

√
t

)(
t−d/α ∧ tJa(x, y)

)
.

Proof. Fix T,M > 0. By Theorem 2.7, there exists a positive constant
c1 = c1(T, r0, α, β,M) such that for every t ∈ (0, T ],

(2.37) pat(α−β)/(αβ)

t−1/αD (1, x, y) ≤ c1

(
1 ∧ Jat(α−β)/(αβ)

(x, y)
)
δt−1/αD(x)α/2.
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Thus by (1.5), (1.6) and (2.37), for every t ≤ T ,

pa
D(t, x, y) = t−d/αpat(α−β)/(αβ)

t−1/αD

(
1, t−1/αx, t−1/αy

)
≤ c1t

−d/α
(
1 ∧ Jat(α−β)/(αβ)(

t−1/αx, t−1/αy
))

δt−1/αD

(
t−1/αx

)α/2

= c1

(
t−d/α ∧ tJa(x, y)

)δD(x)α/2

√
t

≤ c2p
a(t, x, y)

δD(x)α/2

√
t

.

By symmetry, the above inequality holds with the roles of x and y inter-
changed. Using the semigroup property for t ≤ T ,

pa
D(t, x, y) =

∫
D

pa
D(t/2, x, z)pa

D(t/2, z, y)dz

≤ c3
δD(x)α/2δD(y)α/2

t

∫
D

pa(t/2, x, z)pa(t/2, z, y)dz

≤ c3
δD(x)α/2δD(y)α/2

t
pa(t, x, y).

This proves the upper bound (2.36) by noting that (1 ∧ a)(1 ∧ b) = min{1, a,
b, ab} for a, b > 0. �

3. Lower bound estimate

In this section, we discuss the uniform lower bound estimate of pa
D(t, x, y).

We will first give the uniform interior lower bound estimate of pa
D(t, x, y) for

arbitrary open set D.

Lemma 3.1. For any positive constants Λ, κ and b, there exists C19 =
C19(Λ, κ, b,α,β,M) > 0 such that for every z ∈ R

d, λ ∈ (0,Λ] and a ∈ (0,M ],

inf
y∈Rd

|y−z|≤κλ1/α

Py

(
τa
B(z,2κλ1/α) > bλ

)
≥ C19.

Proof. By [13, Proposition 4.9], there exists ε = ε(Λ, κ,α,β) > 0 such that
for every λ ∈ (0,Λ],

inf
y∈Rd

Py

(
τ1
B(y,κλ1/α/2) > ελ

)
≥ 1

2
.

Suppose b > ε then by the parabolic Harnack inequality in [13, Proposi-
tion 4.12]

c1p
1
B(y,κλ1/α)(ελ, y,w) ≤ p1

B(y,κλ1/α)(bλ, y,w) for w ∈ B
(
y,κλ1/α/2

)
,

where the constant c1 = c1(Λ, κ,α,β, b) > 0 is independent of y ∈ R
d, λ ∈ (0,Λ].

Thus

Py

(
τ1
B(y,κλ1/α) > bλ

)
(3.1)

=
∫

B(y,κλ1/α)

p1
B(y,κλ1/α)(bλ, y,w)dw
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≥
∫

B(y,κλ1/α/2)

p1
B(y,κλ1/α)(bλ, y,w)dw

≥ c1

∫
B(y,κλ1/α/2)

p1
B(y,κλ1/α/2)(ελ, y,w)dw ≥ c1/2.

For the general case, since λa
αβ

α−β ∈ (0,ΛMαβ/(α−β)], by (1.5) and (3.1),

inf
y∈Rd:

|y−z|≤κλ1/α

Py

(
τa
B(z,2κλ1/α) > bλ

)
≥ P0

(
τa
B(0,κλ1/α) > bλ

)
=

∫
B(0,κλ1/α)

pa
B(0,κλ1/α)(bλ,0,w)dw

=
∫

B(0,κλ1/αaβ/(α−β))

p1
B(0,κλ1/αaβ/(α−β))

(
aαβ/(α−β)bλ,0, z

)
dz

= P0

(
τ1
B(0,κ(λaαβ/(α−β))1/α) > bλaαβ/(α−β)

)
≥ c2(Λ, κ,α,β, b,M) > 0.

This proves the lemma. �
Recall that ψa is defined in (2.18).

Proposition 3.2. Suppose that M,T > 0 and (t, x, y) ∈ (0, T ] × D × D
with δD(x) ≥ t1/α ≥ 2ψa(|x − y|)1/α. Then there exists a positive constant
C20 = C20(M,α,β,T ) such that for all a ∈ (0,M ]

(3.2) pa
D(t, x, y) ≥ C20t

−d/α.

Proof. Let t ∈ (0, T ] and x, y ∈ D with δD(x) ≥ t1/α ≥ 2ψa(|x − y|)1/α. By
the parabolic Harnack inequality in [13, Proposition 4.12] and the scaling
property, there exists c1 = c1(M,α,β,T ) > 0 such that for all a ∈ (0,M ],

pa
D(t/2, x,w) ≤ c1p

a
D(t, x, y) for w ∈ B

(
x,2t1/α/3

)
.

This together with Lemma 3.1 yields that

pa
D(t, x, y) ≥ 1

c1|B(x, t1/α/2)|

∫
B(x,t1/α/2)

pa
D(t/2, x,w)dw

≥ c2t
−d/α

∫
B(x,t1/α/2)

pa
B(x,t1/α/2)(t/2, x,w)dw

= c2t
−d/α

Px

(
τa
B(x,t1/α/2) > t/2

)
≥ c3t

−d/α,

where ci = ci(T,α,β,M) > 0 for i = 2,3. �
Lemma 3.3. Suppose that M,T > 0, D is an open subset of R

d and
(t, x, y) ∈ (0, T ] × D × D with δD(x) ∧ δD(y) ≥ t1/α and t < 2αψa(|x − y|). Then
there exists a constant C21 = C21(α,β,T,M) > 0 such that for a ∈ (0,M ]

Px

(
Xa,D

t ∈ B
(
y,2−1t1/α

))
≥ C21t

d/α+1Ja(x, y).
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Proof. For t ∈ (0, T ], it follows from Lemma 3.1 that, starting at z ∈
B(y,4−1t1/α), with probability at least c1 = c1(α,β,T,M) > 0, for any a ∈
(0,M ], the process Xa does not move more than 6−1t1/α by time t. Thus, it
suffices to show that there exists a constant c2 = c2(α,β,T,M) > 0 such that

(3.3) Px

(
Xa,D hits the ball B

(
y,4−1t1/α

)
by time t

)
≥ c2t

d/α+1Ja(x, y)

for all a ∈ (0,M ], t ∈ (0, T ] and t < 2αψa(|x − y|).
Let Bx := B(x,6−1t1/α), By := B(y,6−1t1/α) and τa

x := τa
Bx

. It follows from
Lemma 3.1 that there exists c3 = c3(α,β,T,M) > 0 such that for a ∈ (0,M ]
and t ∈ (0, T ],

(3.4) Ex

[
t ∧ τa

x

]
≥ tPx

(
τa
x ≥ t

)
≥ c3t.

By the Lévy system in (2.19),

Px

(
Xa,D hits the ball B

(
y,4−1t1/α

)
by time t

)
(3.5)

≥ Px

(
Xa

t∧τa
x

∈ B
(
y,4−1t1/α

)
and t ∧ τa

x is a jumping time
)

≥ Ex

[∫ t∧τa
x

0

∫
By

Ja
(
Xa

s , u
)
duds

]
.

Note that t < 2αψa(|x − y|) ≤ 2α|x − y|α. Hence for s < τa
x and u ∈ By ,∣∣Xa

s − u
∣∣ ≤ |x − y| +

∣∣x − Xa
s

∣∣ + |y − u| ≤ 2|x − y|.
Thus from (3.5) we get that for any a ∈ (0,M ] and t ∈ (0, T ],

Px

(
Xa,D hits the ball B

(
y,4−1t1/α

)
by time t

)
≥ Ex

[
t ∧ τa

x

]∫
By

ja
(
2|x − y|

)
du

≥ c4t|By |ja
(
2|x − y|

)
≥ c5t

d/α+1ja
(
2|x − y|

)
≥ c52−d−αtd/α+1ja

(
|x − y|

)
for some positive constants ci = ci(α,β,T,M), i = 4,5. Here in the second
inequality, (3.4) is used. �

Now we are ready to give the interior lower bound estimate of pa
D(t, x, y)

for arbitrary open set D.

Theorem 3.4. Suppose that T > 0, M > 0, D is an open subset of R
d

and (t, x, y) ∈ (0, T ] × D × D with δD(x) ∧ δD(y) ≥ t1/α. Then there exists a
constant C22 = C22(α,β,T,M) > 0 such that for any a ∈ (0,M ],

(3.6) pa
D(t, x, y) ≥ C22

(
t−d/α ∧ tJa(x, y)

)
.

Proof. In view of Proposition 3.2, it remains to show that (3.6) holds for
(t, x, y) ∈ (0, T ] × D × D with δD(x) ∧ δD(y) ≥ (t/2)1/α and t < 2ψa(|x − y|).
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By the semigroup property, Proposition 3.2 and Lemma 3.3, there exist pos-
itive constants c1 = c1(α,β,T,M) and c2 = c2(α,β,T,M) such that for any
t ∈ (0, T ] and a ∈ (0,M ]

pa
D(t, x, y) =

∫
D

pa
D(t/2, x, z)pa

D(t/2, z, y)dz(3.7)

≥
∫

B(y,2−1(t/2)1/α)

pa
D(t/2, x, z)pa

D(t/2, z, y)dz

≥ c1t
−d/α

Px

(
Xa,D

t/2 ∈ B
(
y,2−1(t/2)1/α

))
≥ c2tJ

a(x, y).

Now, combining (3.7) with Proposition 3.2, we have proved the theorem. �

In the rest of this section, we assume that D is an open set in R
d satisfying

the uniform interior ball condition with radius r0 > 0 in the following sense:
For every x ∈ D with δD(x) < r0, there is zx ∈ ∂D so that |x − zx| = δD(x)
and B(x0, r0) ⊂ D for x0 := zx + r0(x − zx)/|x − zx|. Clearly, a (uniform) C1,1

open set satisfies the uniform interior ball condition.
The goal of the remainder of this section is to prove the following lower

bound for the heat kernel pa
D(t, x, y).

Theorem 3.5. For any M > 0 and T > 0, there exists positive constant
C23 = C23(α,β,T,M, r0) such that for all a ∈ (0,M ] and (t, x, y) ∈ (0, T ] ×
D × D,

pa
D(t, x, y) ≥ C23

(
1 ∧ δD(x)α/2

√
t

)(
1 ∧ δD(y)α/2

√
t

)(
t−d/α ∧ tJa(x, y)

)
.

To prove this result, we will first prove a lower bound estimates on the
Green function of Xa,U

Ga
U (x, y) :=

∫ ∞

0

pa
U (t, x, y)dt

when U is a bounded C1,1 open set. The tool we use to establish the Green
function lower bound is a subordinate killed α-stable process in U . We intro-
duce this subordinate killed process first.

Assume that U is a bounded C1,1 open set in R
d and R1 the radius in

the uniform interior and exterior ball conditions. Then it follows from [6,
Theorem 1.1] that the killed α-stable process XU on U has a density pU (t, x, y)
satisfying the following condition: for any T > 0 there exist positive constants
c2 > c1 depending only on α,T,R1 and d such that for any (t, x, y) ∈ (0, T ] ×
U × U ,

pU (t, x, y) ≥ c1

(
1 ∧ δU (x)α/2

√
t

)(
1 ∧ δU (y)α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
,(3.8)

pU (t, x, y) ≤ c2

(
1 ∧ δU (x)α/2

√
t

)(
1 ∧ δU (y)α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
.(3.9)
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Let {T a
t : t ≥ 0} be a subordinator, independent of Xa, with Laplace exponent

φa(λ) = λ + aβλβ/α. Then the process {Za,U
t : t ≥ 0} defined by Za,U

t = XU
T a

t

is called a subordinate killed stable process in U . Since φa is a complete
Bernstein function, the subordinator T a has a decreasing potential density
ua(x). In fact ua(x) is completely monotone. (See [24], [28] for the details.)
Then it follows from [28] that the Green function Ra

U (x, y) of Za,U is given by

(3.10) Ra
U (x, y) =

∫ ∞

0

pU (t, x, y)ua(t)dt.

It follows from [29] that the Green function Ga
U of Xa,U and the Green function

Ra
U of Za,U satisfy the following relation:

(3.11) Ra
U (x, y) ≤ Ga

U (x, y), (x, y) ∈ U × U.

So we can get a lower bound on Ga
U (x, y) by establishing a lower bound on

Ra
U (x, y). The following result gives sharp two-sided estimates on Ra

U (x, y)
and the idea of the proof is similar to that of [27].

Theorem 3.6. Suppose that M > 0 and U is a bounded C1,1 open set in U .
There exist positive constants C25 > C24 depending only on (α,β, d,R1,M,
diam(U)) such that for all a ∈ (0,M ],

Ra
U (x, y) ≥ C24

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 ∧ δU (x)α/2δU (y)α/2

|x−y|α

)
|x − y|α−d when d > α,

log
(
1 + δU (x)α/2δU (y)α/2

|x−y|α

)
when d = 1 = α,(

δU (x)δU (y)
)(α−1)/2 ∧ δU (x)α/2δU (y)α/2

|x−y| when d = 1 < α,

and

Ra
U (x, y) ≤ C25

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 ∧ δU (x)α/2δU (y)α/2

|x−y|α

)
|x − y|α−d when d > α,

log
(
1 + δU (x)α/2δU (y)α/2

|x−y|α

)
when d = 1 = α,(

δU (x)δU (y)
)(α−1)/2 ∧ δU (x)α/2δU (y)α/2

|x−y| when d = 1 < α.

Proof. Since the drift coefficient of T a is 1, we know that ua(t) ≤ 1 for all
t > 0. Now the upper bound on Ra

U follows immediately from (3.10) and [6,
Corollary 1.2]. Thus we only need to prove the lower bound.

By using a scaling argument, one can easily check that

(3.12) ua(t) = u1
(
a

α
α−β t

)
, t > 0.

Let T = diam(U). Since u1(t) is a completely monotone function with
u1(0+) = 1, by (3.12),

ua(t) ≥ u1
(
M

α
α−β T

)
for every t ∈ (0, T ] and a ∈ (0,M ].(3.13)
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Using (3.13), (3.10) and [6, (4.2)], we get that∫ T

0

(
1 ∧ δU (x)α/2

√
t

)(
1 ∧ δU (y)α/2

√
t

)(
t−d/α ∧ t

|x − y|d+α

)
ua(t)dt(3.14)

≥ u1(M
α

α−β T )
|x − y|d−α

∫ ∞

|x−y|α

T

(
u

d
α −2 ∧ u−3

)
×

(
1 ∧

√
uδU (x)α/2

|x − y|α/2

)(
1 ∧

√
uδU (y)α/2

|x − y|α/2

)
du.

Now we can follow the proof of [6, Corollary 1.2] to get the desired lower
bound. In fact, when d > α, the desired lower bound follows from (3.14) and
[6, (4.3) and (4.7)]. Let

u0 :=
δU (x)α/2δU (y)α/2

|x − y|α .

When d = α = 1, by (3.14) and [6, (4.3) and (4.9)],

Ra
U (x, y) ≥ u1

(
M

α
α−β T

)∫ T

0

pU (t, x, y)dt

≥ c1

(
1 ∧ δU (x)α/2

|x − y|α/2

)(
1 ∧ δU (y)α/2

|x − y|α/2

)
+ c1 log(u0 ∨ 1) + c1u0

(
(1/u0) ∧ 1 − |x − y|α

T

)
≥ c2(1 ∧ u0) + c2 log(u0 ∨ 1) + c2u0

(
(1/u0) ∧ 1 − |x − y|α

T

)
≥ c3(1 ∧ u0) + c3 log(u0 ∨ 1) ≥ c4 log

(
1 +

δU (x)α/2δU (y)α/2

|x − y|α
)

.

Lastly, in the case d = 1 < α < 2. By (3.14), [6, (4.3) and (4.7)] and the first
display in part (iii) of the proof of [6, Corollary1.2], we have

Ra
U (x, y) ≥ u1

(
M

α
α−β T

)∫ ∞

T

pU (t, x, y)dt

≥ c5
1

|x − y|1−α

(
(1 ∧ u0) +

(
(u0 ∨ 1)1−(1/α) − 1

)
+ c6u0

(
(u0 ∨ 1)−1/α −

(
|x − y|α

T

)1/α))
≥ c7

1
|x − y|1−α

(
u0 ∧ u

1−(1/α)
0

)
= c7

((
δU (x)δU (y)

)(α−1)/2 ∧ δU (x)α/2δU (y)α/2

|x − y|

)
. �
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By integrating the lower bound in Theorem 3.6 with respect to y and
applying (3.11), we obtain the following lower bound on Ex[τa

U ].

Corollary 3.7. Suppose that M > 0 and U is a bounded C1,1 open set in
R

d. Then there exists a constant C26 = C26(α,β, d,M,R1,diam(U)) > 0 such
that for every a ∈ (0,M ] and x ∈ U ,

Ex

[
τa
U

]
≥ C26δU (x)α/2.

By integrating (1.5) with respect to t and y, we have that for every open
set U , λ > 0 and x ∈ U ,

Ex

[
τa
U

]
=

∫
U

Ga
U (x, z)dz = λα

∫
λ−1U

Gaλ(α−β)/β

λ−1U

(
λ−1x, y

)
dy(3.15)

= λα
Eλ−1x

[
τaλ(α−β)/β(

λ−1U
)]

.

Lemma 3.8. Suppose that M > 0, κ ∈ (0,1) and that (t, x) ∈ (0, (r0/16)α] ×
D with δD(x) ≤ 3t1/α < r0/4. Let zx ∈ ∂D be such that |zx − x| = δD(x)
and define n(zx) := (x − zx)/|x − zx|. Put x1 = zx + 3t1/αn(zx) and B =
B(x1,3t1/α). Suppose that x0 is a point on the line segment connecting zx and
zx +6t1/αn(zx) such that B(x0,1.5κt1/α) ⊂ B \ {x}. Then for any b > 0, there
exists a constant C27 = C27(κ,α,β, r0, b,M) > 0 such that for all a ∈ (0,M ]

(3.16) Px

(
Xa,D

bt ∈ B
(
x0, κt1/α

))
≥ C27t

−1/2δD(x)α/2.

Proof. Let 0 < κ1 ≤ κ and assume first that 2−4κ1t
1/α < δD(x) ≤ 3t1/α.

Repeating the proof of Lemma 3.3, we get that, in this case, there exists a
constant c1 = c1(α,β,κ1,M, r0, b) > 0 such that for all a ∈ (0,M ]

Px

(
Xa,D

bt ∈ B
(
x0, κ1t

1/α
))

≥ c1t
d/α+1Ja(x,x0)

≥ c1A(d, −α)td/α+1|x − x0| −d−α

for all t ≤ (r0/16)α. Using the fact that |x − x0| ∈ [2κt1/α,6t1/α] we get that
for all a ∈ (0,M ],

(3.17) Px

(
Xa,D

bt ∈ B
(
x0, κ1t

1/α
))

≥ c2 > 0

for some constant c2 = c2(α,β,κ1,M, r0, b). By taking κ1 = κ, this shows that
(3.16) holds for all b > 0 in the case when 2−4κ1t

1/α < δD(x) ≤ 3t1/α.
So it suffices to consider the case that δD(x) ≤ 2−4κt1/α. We now show

that there is some b0 > 1 so that (3.16) holds for every b ≥ b0 and δD(x) ≤
2−4κt1/α. For simplicity, we assume without loss of generality that x0 = 0 and
let B̂ := B(0, κt1/α). Let x2 = zx +(κ/4)n(zx)t1/α and B2 := B(x2,4−1κt1/α).
Observe that since B(0,2κt1/α) ⊂ B \ {x},

(3.18) κ/2t1/α ≤ |y − z| ≤ 6t1/α for y ∈ B2 and z ∈ B
(
0, κt1/α

)
.
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By the strong Markov property of Xa at the first exit time τa
B2

from B2 and
Lemma 3.1,

Px

(
Xa

bt ∈ B
(
0, κt1/α

))
(3.19)

≥ Px

(
τa
B2

< bt,Xa
τa

B2
∈ B

(
0,2−1κt1/α

)
and∣∣Xa

s − Xa
τB2

∣∣ < 2−1κt1/α for s ∈
[
τa
B2

, τa
B2

+ bt1/α
])

≥ c3Px

(
τa
B2

< bt and Xa
τa

B2
∈ B

(
0,2−1κt1/α

))
.

It follows from the Lévy system of Xa, (3.18), (3.15) and Corollary 3.7 that

Px

(
Xa

τa
B2

∈ B
(
0,2−1κt1/α

))
(3.20)

=
∫

B2

Ga
B2

(x, y)
(∫

B(0,2−1κt1/α)

Ja(y, z)dz

)
dy

≥
∫

B2

Ga
B2

(x, y)
(∫

B(0,2−1κt1/α)

A(d, −α)
|y − z|d+α

dz

)
dy

≥ c4

t
Ex

[
τa
B2

]
= c4Ex/t1/α

[
τat(α−β)/αβ

B(x2/t1/α,4−1κ)

]
≥ c5

(
δD(x)
t1/α

)α/2

for some positive constants c4, c5 depending only on α,β, r0, κ and M . Note
that, by (1.5)∫

B(x2,4−1κt1/α)

pa
B(x2,4−1κt1/α)(bt, x, z)dz

=
∫

B(t−1/αx2,4−1κ)

pat(α−β)/αβ

B(t−1/αx2,4−1κ)

(
b, t−1/αx,w

)
dw.

Since at(α−β)/αβ ≤ MT
(α−β)/αβ
0 , by applying Theorem 2.8 to the right-hand

side of the above display, we get

Px

(
τa
B2

≥ bt
)

= lim
s↑t

Px

(
τa
B2

> bs
)

(3.21)

=
∫

B2

pa
B2

(bt, x, z)dz

≤ b−d/α

∫
B(t−1/αx2,4−1κ)

δB(t−1/αx2,4−1κ)(t−1/αx)α/2

√
b

dw

≤ c6b
−d/α−1/2δt−1/αD

(
t−1/αx

)α/2

= c6b
−d/α−1/2

(
δD(x)
t1/α

)α/2
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for some positive constant c6 depending only on α,β, r0, κ and M . Define

b0 :=
(

2c6

c5

) 2α
2d+α

.

We have by (3.19)–(3.21) that for b ≥ b0,

Px

(
Xa

bt ∈ B̂
)

≥ c3

(
Px

(
Xa

τa
B2

∈ B
(
0,2−1κt1/α

))
− Px

(
τa
B2

≥ bt
))

(3.22)

≥ c3(c5/2)
(

δD(x)
t1/α

)α/2

.

(3.17) and (3.22) show that (3.16) holds for every b ≥ b0 and for every x ∈ D
with δD(x) ≤ 3t1/α.

Now we deal with the case 0 < b < b0 and δD(x) ≤ 2−4κt1/α. If δD(x) ≤
3(bt/b0)1/α, we have from (3.16) for the case of b = b0 that

Px

(
Xa

bt ∈ B
(
x0, κt1/α

))
≥ Px

(
Xa

b0(bt/b0)
∈ B

(
x0, κ(bt/b0)1/α

))
≥ c7

(
δD(x)

(bt/b0)1/α

)α/2

= c8

(
δD(x)
t1/α

)α/2

.

If 3(bt/b0)1/α < δD(x) ≤ 2−4κt1/α (in this case κ > 3 · 24(b/b0)1/α), we get
(3.16) from (3.17) by taking κ1 = (b/b0)1/α. The proof of the lemma is now
complete. �

Proof of Theorem 3.5. Let T0 := ( r0
16 )α and consider the case t ≤ T0 first.

Let zx, zy ∈ ∂D be such that |zx − x| = δD(x), |zy − y| = δD(y) and define
n(zx) := (x − zx)/|x − zx| and n(zy) := (y − zy)/|y − zy |. Since D satisfies
the uniform interior ball condition with radius r0 and 0 < t ≤ T0, we can
choose ξt

x as follows; if δD(x) ≤ 3t1/α, let ξt
x = zx + (9/2)t1/αn(zx) (so that

B(ξt
x, (3/2)t1/α) ⊂ B(zx +3t1/αn(zx),3t1/α) \ {x} and δD(z) ≥ 3t1/α for every

z ∈ B(ξt
x, (3/2)t1/α)). If δD(x) > 3t1/α, choose ξt

x ∈ B(x, δD(x)) such that
B(ξt

x, (3/2)t1/α) ⊂ B(x, δD(x)) \ {x} (so that and δD(z) ≥ t1/α for every z ∈
B(ξt

x,2−1t1/α)). We also define ξt
y the same way.

If δD(x) ≤ 3t1/α, by Lemma 3.8 (with b = 3−1, κ = 2−1),

Px

(
Xa,D

t/3 ∈ B
(
ξt
x,2−1t1/α

))
≥ c0

δD(x)α/2

√
t

.

If δD(x) > 3t1/α, by Theorem 3.4,

Px

(
Xa,D

t/3 ∈ B
(
ξt
x,2−1t1/α

))
=

∫
B(ξt

x,2−1t1/α)

pa
D(t/3, x, u)du

≥ c1t
−d/α

∣∣B(
ξt
x,2−1t1/α

)∣∣ ≥ c2.
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Thus,

Px

(
Xa,D

t/3 ∈ B
(
ξt
x,2−1t1/α

))
≥ c3

(
δD(x)α/2

√
t

∧ 1
)

.(3.23)

Similarly,

Py

(
Xa,D

t/3 ∈ B
(
ξt
y,2−1t1/α

))
≥ c3

(
δD(y)α/2

√
t

∧ 1
)

.(3.24)

Note that by the semigroup property, Theorem 3.4 and (3.23)–(3.24),

pa
D(t, x, y)(3.25)

≥
∫

B(ξt
y,2−1t1/α)

∫
B(ξt

x,2−1t1/α)

pa
D(t/3, x, u)

× pa
D(t/3, u, v)pa

D(t/3, v, y)dudv

≥ c4

∫
B(ξt

y,2−1t1/α)

∫
B(ξt

x,2−1t1/α)

pa
D(t/3, x, u)

(
tJa(u, v) ∧ t−d/α

)
× pa

D(1/3, v, y)dudv

≥ c5

(
inf

(u,v)∈B(ξt
x,2−1t1/α)×B(ξt

y,2−1t1/α)

(
tJa(u, v) ∧ t−d/α

))
×

(
δD(x)α/2

√
t

∧ 1
)(

δD(y)α/2

√
t

∧ 1
)

.

Since |u − v| ≤ t1/α + |x − y|, by considering the cases |x − y| ≥ t1/α and
|x − y| < t1/α separately, we have

inf
(u,v)∈B(ξt

x,2−1t1/α)×B(ξt
y,2−1t1/α)

(
tJa(u, v) ∧ t−d/α

)
(3.26)

≥ c6

(
tJa(x, y) ∧ t−d/α

)
.

Thus combining (3.25) and (3.26), we conclude that for t ∈ (0, T0],

pa
D(t, x, y) ≥ c7

(
δD(x)α/2

√
t

∧ 1
)(

δD(y)α/2

√
t

∧ 1
)

(3.27)

×
(
tJa(x, y) ∧ t−d/α

)
.

Now we assume T = 2T0. Recall that T0 = (r0/16)α. For (t, x, y) ∈
(T0,2T0] × D × D, let x0, y0 ∈ D be such that max{|x − x0|, |y − y0| } < r0

and min{δD(x0), δD(y0)} ≥ r0/2. Note that, since for any M > 0, there exists
c8 = c8(M) > 0 such that

(3.28) ja(r) ≤ c8j
a(2r) for all r > 0 and a ∈ (0,M ],

if |x − y| ≥ 4r0, then 1
2 |x − y| ≤ |x − y| − 2r0 ≤ |x0 − y0| ≤ |x − y| + 2r0 ≤

3
2 |x − y|, and so c−1

9 Ja(x0, y0) ≤ Ja(x, y) ≤ c9J
a(x0, y0) for some constant
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c9 = c9(M) > 1. Thus by considering the cases |x − y| ≥ 4r0 and |x − y| < 4r0

separately, we have

(3.29) (t/2)−d/α ∧ tJa(x0, y0)
2

≥ c10

(
t−d/α ∧

(
tJa(x, y)

))
.

Similarly, there is a positive constant c11 such that

(t/3)−d/α ∧ tJa(x, z)
3

≥ c11

((
t/(12)

)−d/α ∧ tJa(x0, z)
12

)
, z ∈ D,

(3.30)
(t/3)−d/α ∧ tJa(w,y)

3
≥ c11

((
t/(12)

)−d/α ∧ tJa(w,y0)
12

)
, w ∈ D.

By (3.30) and (3.27), we have

pa
D(t, x, y) =

∫
D×D

pa
D(t/3, x, z)pa

D(t/3, z,w)pa
D(t/3,w, y)dz dw

≥ c12

(
1 ∧ δD(x)α/2√

t/3

)(
1 ∧ δD(y)α/2√

t/3

)
×

∫
D×D

(
(t/3)−d/α ∧ tJa(x, z)

3

)(
1 ∧ δD(z)α/2√

t/3

)
× pa

D(t/3, z,w)
(

(t/3)−d/α ∧ tJa(w,y)
3

)(
1 ∧ δD(w)α/2√

t/3

)
dz dw

≥ c13

(
1 ∧ δD(x)α/2

√
t

)(
1 ∧ δD(y)α/2

√
t

)
×

∫
D×D

((
t

12

)−d/α

∧ tJa(x0, z)
12

)(
1 ∧ δD(z)α/2√

t/3

)

× pa
D(t/3, z,w)

((
t

12

)−d/α

∧ tJa(w,y0)
12

)
×

(
1 ∧ δD(w)α/2√

t/3

)
dz dw

for some positive constants ci, i = 12,13. Let D1 := {z ∈ D : δD(z) > r0/4}.
Clearly, x0, y0 ∈ D1 and

(3.31) min
{
δD1(x0), δD1(y0)

}
≥ r0/4 = 4(T0)1/α ≥ 4(t/2)1/α.

By (1.6) and (3.29), we have∫
D×D

((
t

12

)−d/α

∧ tJa(x0, z)
12

)(
1 ∧ δD(z)α/2√

t/3

)

× pa
D(t/3, z,w)

((
t

12

)−d/α

∧ tJa(w,y0)
12

)(
1 ∧ δD(w)α/2√

t/3

)
dz dw
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≥ c14

∫
D1×D1

((
t

12

)−d/α

∧ tJa(x0, z)
12

)
× pa

D(t/3, z,w)
((

t

12

)−d/α

∧ tJa(w,y0)
12

)
dz dw

≥ c15

∫
D1×D1

pa
(
t/(12), x0, z

)
pa

D1
(t/3, z,w)pa

(
t/(12),w, y0

)
dz dw

≥ c8

∫
D1×D1

pa
D1

(
t/(12), x0, z

)
pa

D1
(t/3, z,w)pa

D1

(
t/(12),w, y0

)
dz dw

= c15p
a
D1

(t/2, x0, y0) ≥ c16

(
(t/2)−d/α ∧ tJa(x0, y0)

2

)
≥ c17

(
t−d/α ∧

(
tJa(x, y)

))
for some positive constants ci, i = 14, . . . ,17. Here the interior estimate The-
orem 3.4 is used in the second to the last inequality in view of (3.31). By
repeating the argument above, we have proved Theorem 3.5. �

Proof of Theorem 1.1. Theorems 2.8 and 3.5 give Theorem 1.1(i).
For the proof of Theorem 1.1(ii), we use ideas used in [10]. For reader’s

convenience, we give the full details of the proof and specify the dependency
of the constants carefully.

Let D be a bounded C1,1 open set in R
d with characteristics (R0,Λ0).

Clearly, there is a ball B = B(x0, r0) ⊂ D where r0 depends only on R0

and Λ0. For each a ≥ 0, the semigroup of Xa,D is Hilbert–Schmidt as, by
Theorem 1.1(i)∫

D×D

pa
D(t, x, y)2 dxdy =

∫
D

pa
D(2t, x, x)dx ≤ C1(2t)−d/α|D| < ∞,

and hence is compact. For a ≥ 0, let {λa,D
k : k = 1,2, . . .} be the eigenvalues

of −(Δα/2 + aβΔβ/2)|D, arranged in increasing order and repeated according
to multiplicity, and {φa,D

k : k = 1,2, . . . } be the corresponding eigenfunctions
normalized to have unit L2-norm on D. Note that {φa,D

k : k = 1,2, . . . } forms
an orthonormal basis of L2(D;dx). It is well known that λa,D

1 is strictly
positive and simple, and that φa,D

1 can be chosen to be strictly positive on D.
We also let {λa,B

k : k = 1,2, . . . } be the eigenvalues of −(Δα/2 +aβΔβ/2)|B ,
arranged in increasing order and repeated according to multiplicity. From the
domain monotonicity of the first eigenvalue, it is easy to see that λa,B

1 ≥ λa,D
1 .

Thus, using [15, Theorem 3.4], we have that

(3.32) λa,D
1 ≤ λa,B

1 ≤
(
λB

1

)α/2 + Mβ/2
(
λB

1

)β/2 =: c1 for every a ∈ (0,M ],
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where λB
1 the first eigenvalue of −Δ|B . Moreover, by the Cauchy–Schwarz

inequality,

(3.33)
∫

D

(
1 ∧ δD(x)α/2

)
φa,D

1 (x)dx ≤
(∫

D

(
1 ∧ δD(x)α

)
dx

)1/2

=: c2.

Recall that pa
D(t, x, y) admits the following eigenfunction expansion

pa
D(t, x, y) =

∞∑
k=1

e−tλa,D
k φa,D

k (x)φa,D
k (y) for t > 0 and x, y ∈ D.

This implies that∫
D×D

(
1 ∧ δD(x)α/2

)
pa

D(t, x, y)
(
1 ∧ δD(y)α/2

)
dxdy(3.34)

=
∞∑

k=1

e−tλa,D
k

(∫
D

(
1 ∧ δD(x)α/2

)
φa,D

k (x)dx

)2

.

Consequently, using the fact that {φa,D
k : k = 1,2, . . . } forms an orthonormal

basis of L2(D;dx), we have∫
D×D

(
1 ∧ δD(x)α/2

)
pa

D(t, x, y)
(
1 ∧ δD(y)α/2

)
dxdy(3.35)

≤ e−tλa,D
1

∫
D

(
1 ∧ δD(x)α

)
dx

for all a > 0 and t > 0. On the other hand, since

φa,D
1 (x) = eλa,D

1

∫
D

pa
D(1, x, y)φa,D

1 (y)dy,

by the upper bound estimate in Theorem 1.1(i) and (3.33) that for every
a ∈ (0,M ] and x ∈ D,

φa,D
1 (x) ≤ eλa,D

1 C1

(
1 ∧ δD(x)α/2

)∫
D

(
1 ∧ δD(y)α/2

)
φa,D

1 (y)dy

≤ eλa,D
1 c2C1

(
1 ∧ δD(x)α/2

)
.

Hence, ∫
D

(
1 ∧ δD(x)α/2

)
φa,D

1 (x)dx ≥ e−λa,D
1 (c2C1)−1

∫
D

φa,D
1 (x)2 dx

= e−λa,D
1 (c2C1)−1.

It now follows from (3.34) that for every a ∈ (0,M ] and t > 0∫
D×D

(
1 ∧ δD(x)α/2

)
pa

D(t, x, y)
(
1 ∧ δD(y)α/2

)
dxdy(3.36)

≥ e−tλa,D
1

(∫
D

(
1 ∧ δD(x)α/2

)
φa,D

1 (x)dx

)2

≥ e−(t+2)λa,D
1 (c2C1)−2.
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It suffices to prove Theorem 1.1(ii) for T ≥ 3. For t ≥ T and x, y ∈ D,
observe that

(3.37) pa
D(t, x, y) =

∫
D×D

pa
D(1, x, z)pa

D(t − 2, z,w)pa
D(1,w, y)dz dw.

Since D is bounded, we have by the upper bound estimate in Theorem 1.1(i),
(3.32) and (3.35) that for every a ∈ (0,M ], t ≥ T and x, y ∈ D,

pa
D(t, x, y)

≤ C2
1

(
1 ∧ δD(x)α/2

)(
1 ∧ δD(y)α/2

)
×

∫
D×D

(
1 ∧ δD(z)α/2

)
pa

D(t − 2, z,w)
(
1 ∧ δD(w)α/2

)
dz dw

≤ C2
1

(
1 ∧ δD(x)α/2

)(
1 ∧ δD(y)α/2

)
e−(t−2)λa,D

1

∫
D

1 ∧ δD(x)α dx

≤ c3δD(x)α/2δD(y)α/2etλa,D
1 .

We also have by the lower bound estimate in Theorem 1.1(i) and (3.36) that
for every a ∈ (0,M ], t ≥ T and x, y ∈ D,

pa
D(t, x, y) ≥ C−2

1

(
1 ∨ diam(D)

)−2d−2α(
1 ∧ δD(x)α/2

)(
1 ∧ δD(y)α/2

)
×

∫
D×D

(
1 ∧ δD(z)α/2

)
pa

D(t − 2, z,w)
(
1 ∧ δD(w)α/2

)
dz dw

≥ c4δD(x)α/2δD(y)α/2e−tλa,D
1 .

This completes the proof of the theorem. �

Proof of Corollary 1.2. The lower bound estimate in (1.7) follows from
(3.11) and Theorem 3.6.

Since the function ψa(|x − y|) is bounded above and below by a positive
constant if D is bounded, by integrating the two-sided heat kernel estimates
in Theorem 1.1 with respect to t, the proof of the upper bound estimate in
(1.7) is identical to that of [6, Corollary 1.2] so we omit the details here. �

Theorem 3.9 (Uniform boundary Harnack principle). Suppose M,R ∈
(0, ∞), D is an open set in R

d, z ∈ ∂D, r ∈ (0,R) and that B(A,κr) ⊂ D ∩
B(z, r). There exists C28 = C28(d,α,β,κ,M,R) > 1 such that for every a ∈
(0,M ], and all functions u, v ≥ 0 on R

d, positive regular harmonic for Xa in
D ∩ B(z,2r) and vanishing on Dc ∩ B(z,2r), we have

C−1
28

u(A)
v(A)

≤ u(x)
v(x)

≤ C28
u(A)
v(A)

, x ∈ D ∩ B(z, r).

Proof. Applying [6, Corollary 1.2] and our Corollary 1.2 to (2.20), we have
that for every R,M > 0, there exists c = c(α,β,R,M) > 0 such that, for every
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a ∈ (0,M ] and 0 < r ≤ R

(3.38) c−1GB(x0,r)(x, y) ≤ Ga
B(x0,r)(x, y) ≤ cGB(x0,r)(x, y) ∀x, y ∈ B(x0, r).

Using (3.38), we can get uniform estimates on the Poisson kernel

Ka
B(x0,r)(x, z) :=

∫
B(x0,r)

Ga
B(x0,r)(x, y)Ja(y, z)dy

of B(x0, r) with respect to Xa for r ∈ (0,R]. In particular, for r < |z −
x0| < 2R, Ka

B(x0,r)(x, z) is comparable to KB(x0,r)(x, z), the Poisson kernel
of B(x0, r) with respect to X for r ∈ (0,R]. Then using the uniform estimates
on Ka

B(x0,r)(x, z) and (3.38) we can easily see that [30, Lemma 3.3] can be
proved in the same way. Using the uniform estimates on the Poisson kernel of
B(x0, r), (3.28) and (3.38) we can adapt the argument in [1], [22], [30] to get
our uniform boundary Harnack principle. In [9], such ideas are used and the
uniform boundary Harnack principle is established for the relativistic stable
processes. Since the details of the proof is almost identical to those in [9], we
omit the details. �

Proof of Theorem 1.3. First, we observe that the Harnack inequality holds
for the process X1 by [24]. That is, there exists a constant c1 = c1(α,β,M) > 0
such that for any r ∈ (0,Mβ/(α−β)], x0 ∈ R

d and any function v ≥ 0 harmonic
in B(x0, r) with respect to X , we have

(3.39) v(x) ≤ c1v(y) for all x, y ∈ B(x0, r/2).

Note that for any a ∈ (0,M ], Xa has the same distribution as {λX1
λ−αt, t ≥ 0},

where λ = aβ/(β−α) ≥ Mβ/(β−α). Consequently, if u is harmonic in B(x0, r)
with respect to Xa, where r ∈ (0,1], then v(x) := u(λx) is harmonic in
B(λ−1x0, λ

−1r) with respect to X and λ−1r ≤ Mβ/(β−α). So by (3.39)

u(λx) = v(x) ≤ c1v(y) = c1u(λy) for all x, y ∈ B
(
λ−1x0, λ

−1r/2
)
.

That is,

(3.40) u(x) ≤ c1u(y) for all x, y ∈ B(x0, r/2).

In other words, the uniform Harnack inequality holds (for every r ≤ 1) for the
family of processes {Xa, a ∈ (0,M ]}.

Since D is a C1,1 open set, there exists r0 ≤ R0 such that the following
holds: for every Q ∈ ∂D and r ≤ r0 there is a ball B = B(zr

Q, r) of radius r

such that B ⊂ D and ∂B ∩ ∂D = {Q}. In addition, it follows [26, Lemma 2.2]
that, for each Q ∈ ∂D, we can choose a constant c2 = c2(d,Λ) ∈ (0,1/8] and
a bounded C1,1 open set UQ with uniform characteristics (R∗,Λ∗) depending
on (R0,Λ) such that B(Q,c2r0) ∩ D ⊂ UQ ⊂ B(Q,r0) ∩ D and

(3.41) δD(y) = δUQ
(y) for every y ∈ B(Q,c2r0) ∩ D.
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Assume a ∈ [0,M ], r ∈ (0, c2r0], Q ∈ ∂D and u is nonnegative function in R
d

harmonic in D ∩ B(Q,r) with respect to Xa and vanishes continuously on Dc ∩
B(Q,r). Let zQ := zc2r0

Q . By the boundary Harnack principle (Theorem 3.9),
there exists a constant c3 = c3(α,β, a,R0,Λ,M) such that

u(x)
u(y)

≤ c3

Ga
UQ

(x, zQ)

Ga
UQ

(x, zQ)
for every x, y ∈ B(Q,r/8) ∩ D.

Now applying Corollary 1.2 to Ga
UQ

(x, zQ) and Ga
UQ

(x, zQ), then using (3.41),
we conclude that

(3.42)
u(x)
u(y)

≤ c4

δ
α/2
UQ

(x)

δ
α/2
UQ

(y)
= c4

δ
α/2
D (x)

δ
α/2
D (y)

for every x, y ∈ B(Q,c2r) ∩ D

for some c4 = c4(α,β, a,R0,Λ,M) > 0.
Now Theorem 1.3 follows from the uniform Harnack inequality in (3.40),

(3.42) and a standard chain argument. �
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