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RANDOM WALKS WITH OCCASIONALLY MODIFIED
TRANSITION PROBABILITIES

OLIVIER RAIMOND AND BRUNO SCHAPIRA

Abstract. We study recurrence properties and the validity of
the (weak) law of large numbers for (discrete time) processes

which, in the simplest case, are obtained from simple symmetric

random walk on Z by modifying the distribution of a step from

a fresh point. If the process is denoted as {Sn}n≥0, then the

conditional distribution of Sn+1 − Sn given the past through time

n is the distribution of a simple random walk step, provided Sn

is at a point which has been visited already at least once during

[0, n − 1]. Thus, in this case, P {Sn+1 − Sn = ±1|S�, � ≤ n} = 1/2.

We denote this distribution by P1. However, if Sn is at a point

which has not been visited before time n, then we take for the

conditional distribution of Sn+1 − Sn, given the past, some other

distribution P2. We want to decide in specific cases whether Sn

returns infinitely often to the origin and whether (1/n)Sn → 0 in

probability. Generalizations or variants of the Pi and the rules
for switching between the Pi are also considered.

1. Introduction

There have been a number of investigations of recurrence/transience of
“slightly perturbed” random walks. Roughly speaking, we are thinking of
processes (in discrete time) whose transition probabilities are “usually” equal
to a given transition probability, but “occasionally” make a step according
to a different transition probability. Arguably the most challenging of these
problems is the question of recurrence vs. transience of “once reinforced”
simple random walk on Z

d. In the vertex version of this process, the walk
moves at the �th step from a vertex x to a neighbor x + y with a probability
proportional to a weight w(�, x + y). All these weights start out with the
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value 1, but then w(�, x + y) is increased to 1 + C for a given constant C > 0
at the first time � at which the walk visits x+ y. After this change the weight
of x + y does not change, that is, w(m,x + y) = 1 + C for all m greater than
the time of the first visit to x+ y by the process. In general, little is known so
far about recurrence or transience of such processes (except on Z; see [5] for
some recent results). Other examples include excited or cookie random walks
on Z

d, introduced by Benjamini and Wilson [1], which at first visits to a site
have a bias in some fixed direction and at further visits make a simple random
walk step. These processes have now been well studied in dimension 1 (see
[4] and [11] for recent results and references therein), but much less is known
in higher dimension.

Benjamini proposed the study of random walks which are perturbed in a
somewhat different manner. We describe a slightly generalized version of his
setup. Let P1, P2, . . . , Pk, be k ≤ ∞ probability distributions on R or on Z,
with zero-mean if they have finite first moment, or symmetric. Intuitively
speaking, we now consider a process Sn = S0 +

∑n
�=1 X�, n ≥ 0, for which the

X� are chosen in two steps. First, we choose an index i(�) ∈ {1,2, . . . , k} and
then, given the past through time � − 1 and i(�), the conditional distribution
of X� is taken to be Pi(�)(·). More formally, if we set Hn = σ((S�, i(�))�≤n) ∨
σ(S0), then we have for all n ≥ 0:

(1.1) the conditional law of Xn+1 given Hn ∨ σ
(
i(n + 1)

)
is Pi(n+1).

Condition (1.1) is not enough to describe the law of (S0, (Sn, i(n))n≥1). This
law will be completely described once the way the sequence i(n) is chosen will
be given, or equivalently once the conditional law of i(n+1) given Hn will be
given. One way is to choose i(n + 1) such that it is Hn-measurable, in which
case there exists f : R ×

⋃
n≥0(R × {1, . . . , k})n → {1, . . . , k} such that i(n +

1) = f(S0, (S�, i(�))�≤n). In general, there can be added an extra randomness
in the choice of i(n + 1), in which case, the conditional law of i(n + 1) given
Hn is a law νn which is a function of (S0, (S�, i(�))�≤n). Such laws can be
described by mean of a random variable An+1 uniformly distributed on [0,1],
independent of Hn, and a function F : [0,1] × R ×

⋃
n≥0(R × {1, . . . , k})n →

{1, . . . , k}, such that νn is the conditional law of F (An+1, S0, (S�, i(�))�≤n)
given Hn. We use here the convention (R × {1, . . . , k})0 = ∅. Note also that
there exists a measurable function G : [0,1] × {1, . . . , k} → R such that if B is
a random variable uniformly distributed on [0,1], then Pi is the law of G(B, i).
This function G will be fixed later on.

A convenient way to construct processes satisfying (1.1) will be to start
from independent sequences of independent random variables uniformly dis-
tributed on [0,1], (An)n≥1 and (Bn)n≥1, an independent random variable S0,
and a measurable function F : [0,1] × R ×

⋃
n≥0(R × {1, . . . , k})n → {1, . . . , k}

(which describes how we choose the law to be used for the next jump). We
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then define (Sn, i(n)) recursively: for n ≥ 0,{
i(n + 1) = F

(
An+1, S0,

(
S�, i(�)

)
�≤n

)
,

Sn+1 − Sn = G
(
Bn+1, i(n + 1)

)
.

(1.2)

Note that all processes (S0, (Sn, i(n))n≥1) satisfying (1.1) are equal in law
to a process (S0, (Sn, i(n))n≥1) defined by (1.2) for a particular choice of
function F . The law of this process is thus given by the law μ0 of S0, the
function F and the sequence {P1, . . . , Pk }. We denote the law of this process
PF,μ0 and simply by PF,S0 when S0 is not random.

Another way to construct (Sn, i(n)) is as follows. This construction will be
used in the last section of this paper. Fix S0 in some way and let {Y (i, n),1 ≤
i ≤ k,n ≥ 1} be a family of independent random variables such that each
Y (i, n) has distribution Pi. These Y (i, n) can be chosen before any i(�) is
determined. Now define inductively

j(i, �) = 1 + number of times Pi has been used during [1, �],

and take for n ≥ 0,

Xn+1 = Sn+1 − Sn = Y
(
i(n + 1), j

(
i(n + 1), n

))
.

We chose this terminology because we think of the sequence Y (i,1), Y (i,2), . . .
as a supply of variables with distribution Pi, and every time i(�) = i we “use”
one of these variables. When we come to pick the Y variable at time n + 1
according to Pi(n+1), we use the first Y (i(n + 1), ·) which has not been used
yet. This is automatically independent of all Y ’s used by time n. We define

F0 = σ-field generated by S0,

and

Fn+1 = σ-field generated by S0, Fn, i(n + 1),
and Y

(
i(n + 1), j

(
i(n + 1), n

))
.

Once we have observed the variables which generate Fn, we first deter-
mine i(n + 1) by some rule. This rule may be randomized, but will actually
be deterministic in our examples. Then j(i(n + 1), n) is also determined by
i(n + 1) and Fn-measurable functions. Finally, we determine Y (i(n + 1), n)
and that completes the generators of Fn+1. The only conditions on the rule
for choosing i(n + 1) are that, conditionally on Fn, all the random variables
i(n+1) and {Y (i, j), j > j(i, n),1 ≤ i ≤ k}, are independent, with each Y (i, j)
with j > j(i, n) having conditional distribution Pi.

Note that if all Pi, i ≤ k, have finite first moment (and zero-mean), then
Sn automatically satisfies the strong law of large numbers, that is, Sn/n → 0
almost surely, as soon as the tails of the Pi are dominated by some fixed
distribution with finite first moment (see Lemma 1 in [9]). However, the
question of recurrence or transience of Sn is much more delicate, even when
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k = 2. In particular, in [3], Durett, Kesten and Lawler exhibit examples where
Sn is transient (see also [10] for some necessary conditions for transience).

Benjamini’s questions concerned the case when k = 2, P1 puts mass 1/2
on each of the points +1 and −1, while P2 is a symmetric distribution on Z

in the domain of normal attraction of a symmetric Cauchy law (in particular
P2 does not have finite first moment). As for the i(n), Benjamini made the
following choices: i(n + 1) = 2 if Sn is at a “fresh” point, that is, if at time
n the process is at a point which it has not visited before. If Sn is at a
position which it has visited before, take i(n + 1) = 1. Thus, his process is a
perturbation of simple random walk; it takes a special kind of step from each
fresh point but is simple random walk otherwise. His principal questions were
whether the process {Sn} is recurrent and whether it satisfies the weak law
of large numbers, that is, whether (1/n)Sn → 0 in probability.

In Section 2.1, we present a general method to attack this kind of prob-
lems, which allows us to answer Benjamini’s first question affirmatively (see
Example 2.7). Our principal tool is a coupling between the Sn of Benjamini’s
process and a Cauchy random walk. The latter is a random walk with i.i.d.
steps, all of which have a symmetric distribution P on Z which is in the do-
main of normal attraction of the symmetric Cauchy law. Unfortunately, so
far our method works only for very specific P , including the distribution of
the first return position to the horizontal axis of symmetric simple random
walk on Z

2. It seems that even asymptotically small changes in P cannot
be handled by this method. In Section 2.2, we present an analogous method
in a continuous setting, that is, when P is a distribution on R, and prove in
particular that if P is the usual Cauchy law (with density 1/π(1 + y2)), then
{Sn} is recurrent (see Proposition 2.15).

Our coupling technique permits also to give sufficient criteria for the process
{Sn} to be transient.

In the last section, we prove a weak law of large numbers for Benjamini’s
process.

2. Coupling method

In this section, one wants to construct the process {Sn} coupled to another
process. If such a coupling exists, then {Sn} automatically is recurrent (tran-
sience properties will also be considered). The problem now is whether the
required coupling exists. The next subsections describe the desired coupling.

2.1. Discrete case.

2.1.1. Successfull coupling. The following properties, which a Markov chain
with transition matrix Q on Z

2 may or may not have, will be useful. If (U,V )
is a Markov chain on Z

2 starting from (0,0), with transition matrix Q, let

T = T (Q) := inf
{
n > 0 : V (n) = 0

}
.
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If

T is a.s. finite,(2.1)

then the law P of UT is well defined. This P equals ϕ(Q) for some function ϕ.
The following definition may differ slightly from the definition the reader
knows. A process on Z is said to be recurrent if for any u ∈ Z the process
visits u infinitely often. We say that a law P on Z is recurrent, if the random
walk whose steps have distribution P is recurrent.

Another property is invariance under horizontal translations, that is,

Q
[
(u, v),

(
u′, v′)] = Q

[
(0, v),

(
u′ − u, v′)] for all

(
u,u′, v, v′).(2.2)

The next property is that Q can be coupled with a certain given transition
matrix Q0 on Z

2 in such a way that “paths chosen according to Q lie below
paths chosen according to Q0.” The precise meaning of this is that (2.5) below
holds. Assume that Q and Q0 are translation invariant in the sense of (2.2).
We say that Q can be successfully coupled with Q0 if there exists a transition
matrix Q̂ on Z

3 such that∑
w′

Q̂
(
(u, v,w),

(
u′, v′,w′))(2.3)

= Q0

(
(u, v),

(
u′, v′)) for all

(
u, v,w,u′, v′),∑

v′

Q̂
(
(u, v,w),

(
u′, v′,w′))(2.4)

= Q
(
(u,w),

(
u′,w′)) for all

(
u, v,w,u′,w′),

and

Q̂
(
(u, v,w),

(
u′, v′,w′)) = 0 for all

(
u, v,w,u′, v′,w′)(2.5)

such that |w| ≤ |v| + 1 and |w′ | > |v′ | + 1.

In this case, we say that Q is successfully coupled with Q0 by Q̂. Condi-
tion (2.5) implies that if (U,V,W ) is a Markov chain with transition matrix
Q̂ such that |W0| ≤ |V0| + 1, then a.s. for all n ≥ 0, |Wn| ≤ |Vn| + 1. Condi-
tion (2.3) (resp. (2.4)) implies that (U,V ) (resp. (U,W )) is a Markov chain
with transition matrix Q0 (resp. Q). Note finally, even though this will not
be needed, that (2.3) with (2.4) implies that U is a Markov chain.

Let (U,W ) be a Markov chain on Z
2 with transition matrix Q. In order to

prove recurrence properties, we shall need a kind of irreducibility condition.
Set

B :=
{
(U,W ) visits the horizonal axis at some time ≥ 1(2.6)

and does so first at the origin
}
,

and for p > 0, write C(p) = C(p,Q) for the property

Q∗
± { B } ≥ p,(2.7)
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where Q∗
+ (resp. Q∗

−) denotes the law of the Markov chain (U,W ) when it
starts at (U0,W0) = (0,1) (resp. when it starts at (U0,W0) = (0, −1)). This
property will be used to prove certain stopping times (the τi below) are finite.
We remind the reader that recurrence is defined in the lines right after (2.1).

Lemma 2.1. Let Q and Q0 be two translation invariant transition matrices
on Z

2, in the sense of (2.2), such that Q is successfully coupled with Q0.
Assume that (2.1) holds for Q0. If ϕ(Q0) is recurrent, and (2.7) holds for Q
for some p > 0, then (2.1) holds for Q and ϕ(Q) is recurrent.

Proof. Assume that Q is successfully coupled with Q0 by some Q̂. Let
(U,V,W ) be a Markov chain on Z

3 with transition matrix Q̂ starting at (0,0,0)
and denote by P the law of this Markov chain. Let u be arbitrary in Z.
Since ϕ(Q0) is recurrent, (Un, Vn) = (u,0) infinitely often P-a.s. But since
Q is successfully coupled with Q0, it must hold at every time n at which
(Un, Vn) = (u,0), that |Wn| ≤ 1. This implies that the event En := {Un =
u,Wn ∈ { −1,0,+1} } occurs infinitely often P-a.s. Let σ(1) < σ(2) . . . be the
sequence of the successive times at which Et occurs and define the σ-fields

Kt = σ
(
(Un,Wn);n ≤ t

)
, Lt = Kσ(t).

Further, define the events

Bn = {Wσ(n) = 0} =
{
(Uσ(n),Wσ(n)) = (u,0)

}
,

and

B̃n = Bn ∪ Bn+1(2.8)
= Bn ∪ {Wσ(n) = +1,Wσ(n+1) = 0}

∪ {Wσ(n) = −1,Wσ(n+1) = 0}.

We shall complete the proof by showing that

(2.9) B̃n occurs infinitely often P-a.s.

Clearly this suffices for recurrence, since⋃
n≥1

B̃n =
⋃
n≥1

Bn.

Now B̃n ∈ Ln+1. Moreover, it holds

P{B̃n | Ln} = 1{Wσ(n)=0} + P{Wσ(n+1) = 0 | Ln}1{Wσ(n)=1}

+ P{Wσ(n+1) = 0 | Ln}1{Wσ(n)=−1}

≥ 1{Wσ(n)=0} + Q∗
+{ B }1{Wσ(n)=1} + Q∗

− {B }1{Wσ(n)=−1}

(by Markov property and translation invariance)
≥ p (by (2.7)).
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Consequently, ∑
n≥1

P{B̃n | Ln} ≥
∑
n≥1

p = ∞.

The conditional Borel–Cantelli lemma (Theorem 12.15 in [14]) now implies
that (2.9) holds. �

This lemma proves recurrence of (the trace on the horizontal axis of) a
Markov chain which uses only one transition matrix Q. Benjamini’s process
is built up by concatenating excursions from Markov chains with more than
one transition matrix. We shall use arguments very similar to the preceding
lemma, but involving different transition matrices, in Theorem 2.5.

2.1.2. Coupling of a modified walk with a Markov process in Z
2. Throughout

this subsection, we let (Qi,0 ≤ i ≤ k), with k ≤ ∞, be a sequence of transition
matrices on Z

2, translation invariant in the sense of (2.2), and such that for
all i ∈ [1, k], Qi is successfully coupled with Q0 by some Q̂i. We assume that
for some p > 0 independent of i, (2.7) holds for all Qi, i ≤ k. Note that by
Lemma 2.1, if Q0 satisfies (2.1) and if ϕ(Q0) is recurrent, then the Qi for
1 ≤ i ≤ k automatically satisfy (2.1) as well. Set Pi = ϕ(Qi) for all i ≤ k, and
let F and G be the functions as defined in the Introduction. We denote by
(Sn, i(n)) the process defined by (1.2).

Let us now define the coupling between the (generalized version of) the
Benjamini process {Sn} and the Markov process with transition matrix Q0

on Z
2. In order to carry this out, we note that for all i, there exists Gi : Z

3 ×
[0,1] → Z

3, such that if R is a uniformly distributed random variable on [0,1],
then

Q̂i

(
(u, v,w),

(
u′, v′,w′)) = P

[
Gi

(
(u, v,w),R

)
=

(
u′, v′,w′)].

Here and in the sequel we write P for the measure governing the choice of
one or several uniform random variables on [0,1]. It will be clear from the
context to which random variables this applies. Let Nk := {1, . . . , k} and
define F̂ : Z × Nk × Z ×

⋃
n≥0(Z × Nk)n × [0,1] → Nk, by

(2.10) F̂
(
(w, i), u0, (u�, i�)�≤n, a

)
= i if |w| ≥ 1

and by

(2.11) F̂
(
(0, i), u0, (u�, i�)�≤n, a

)
= F

(
a,u0, (u�, i�)�≤n

)
.

This function F̂ determines the index i in Qi which will govern the steps
in our modified random walk over a certain random time interval, as we make
more precise now. Let (A�)�≥1 and (B�)�≥1 be two independent sequences of
i.i.d., uniformly distributed random variables on [0,1]. Let U0 be a random
variable distributed like S0, independent of (A�)�≥1 and (B�)�≥1. Let

Fn = σ
(
(A�,B�); � ≤ n

)
∨ σ(U0).
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Define Û� = (U�, V�,W�) and I� for � ≥ 1 by the following: set τ0 = 0, V0 =
W0 = 0 and for n ≥ 1

(2.12) τn+1 = inf{� > τn : W� = 0}.

In Lemma 2.3, we shall show that if ϕ(Q0) is recurrent, and the Qi satisfy
(2.7), then these stopping times are P-a.s. finite. For m ≥ 0, set (one can take
I0 = 1, or any other value, since W0 = 0, I1 will not depend on I0)

(2.13) Im+1 = F̂
(
(Wm, Im),U0, (Uτ�

, Iτ�
){τ� ≤m},Am+1

)
,

with F̂ as defined in (2.10), and

(2.14) Ûm+1 = GIm+1(Ûm,Bm+1).

Note that (Ûm, (τl){τl ≤m}, Im) is Fm-measurable. Note also that (2.10) im-
plies that Im+1 = Im when |Wm| ≥ 1. This ensures that for all m ∈ [τ� +
1, τ�+1], Im = Iτ�+1.

Lemma 2.2. The process (Un, Vn)n≥0 is a Markov chain with transition
matrix Q0.

Proof. For n ≥ 0 and (u′, v′) in Z
2,

P
{
(Un+1, Vn+1) =

(
u′, v′) | Fn

}
=

∑
w′,i

P
{
Ûn+1 =

(
u′, v′,w′) and In+1 = i | Fn

}
=

∑
w′,i

P
{
Gi(Ûn,Bn+1) =

(
u′, v′,w′) and

F̂
(
(Wn, In),U0, (Uτ�

, Iτ�
){τ� ≤n},An+1

)
= i | Fn

}
=

∑
w′,i

Q̂i

(
Ûn,

(
u′, v′,w′))

P{In+1 = i | Fn}

= Q0

(
(Un, Vn),

(
u′, v′)),

from which we deduce the Markov property. �

Lemma 2.3. Let (Um, Im) be the process defined by (2.13) and (2.14). As-
sume that all Qi, 1 ≤ i ≤ k, satisfy (2.7) and are successfully coupled with Q0.
Finally, assume that (2.1) holds for Q0 and that ϕ(Q0) is recurrent. Then P-
a.s. it holds τn < ∞ for all n ≥ 0. In particular all Qi, 1 ≤ i ≤ k, satisfy (2.1),
and we set Pi = ϕ(Qi). Moreover,

(a) For all n ≥ 0, the law of Uτn+1 − Uτn given Gn := Fτn ∨ σ(Iτn+1)
is PIτn+1 .

(b) For all n ≥ 0,

(2.15) Iτn+1 = Iτn+1 = F
(
Aτn+1,U0, (Uτ�

, Iτ�
){τ� ≤n}

)
.
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(c) For (i, u) ∈ {1, . . . , k} × Z, write Pi,u for the law of the Markov chain
on Z

2 with transition matrix Qi, starting from (u,0) and stopped at the first
time the w-coordinate returns to 0. For all n ≥ 0, given Gn, the law of the
excursion from the U -axis

(Uτn+�,Wτn+�
)0≤�≤τn+1−τn

is PIτn ,Uτn
.

Proof. The proof is by induction on n. First, take n = 0. Then τ1 < ∞ a.s.
by virtue of Lemma 2.1. Now part (a) for n = 0 is contained in part (c) for
n = 0. Part (b) for n = 0 follows from (2.10), (2.11) and (2.13). In particular,
it follows from (2.10) and from the definition of the τ ’s that Im can only
change when Wm = 0, so that Im is constant on the intervals [τn +1, τn+1] for
n = 0. Equation (2.15) follows from (2.10) and (2.13). The proof of part (c)
for n = 0 is very similar to the one of Lemma 2.2. We skip the details.

Now assume that τN < ∞ and parts (a)–(c) have been proven for n ≤ N .
Then given Gn, on the event {IτN+1 = i}, τN+1 − τN is equal in law to τ1 for
the Markov chain with transition matrix Qi started at (UτN

,0). Lemma 2.1
implies that this τ1 is finite a.s. Thus, τN+1 < ∞ P-a.s. Now statements
(a)–(c) for n = N + 1 can be proven as in the case n = 0. Again we skip the
details. �

The following lemma is almost immediate from Lemma 2.3 and the strong
Markov property. The lemma shows that a sample path of Benjamini’s process
can be built up from a sequence of excursions, by identifying the initial point
of each excursion with the endpoint of the preceding excursion. This leads
to our principal recurrence result, Theorem 2.5, which deduces recurrence of
a Benjamini process from simple and known recurrence properties of some of
the excursions.

Lemma 2.4. The processes (S0, (Sn, i(n))n≥1) defined by (1.2) and (U0,
(Uτn , Iτn)n≥1) have the same distribution.

2.1.3. Recurrence properties and examples.

Theorem 2.5. Let (Qi,0 ≤ i ≤ k) be a sequence of transition matrices on
Z

2 which are translation invariant in the sense of (2.2). Assume that for
all 1 ≤ i ≤ k,Qi is successfully coupled with Q0. Assume further that Q0

satisfies (2.1), P0 = ϕ(Q0) is recurrent and that all Qi, 1 ≤ i ≤ k, satisfy (2.7)
for some p > 0, independent of i. Then for any process (S0, (Sn, i(n))n≥1)
that satisfies (1.1) with Pi = ϕ(Qi), {Sn}n≥0 is recurrent.

Proof. Let (S0, (Sn, i(n))n≥1) be a process satisfying (1.1). Without loss of
generality, we can assume that S0 = 0. Such process can be defined by (1.2)
for some functions F and G. Let (Ûm, Im) be the process defined by (2.13)
and (2.14) with F̂ defined by (2.10) and (2.11), and with Û0 = (0,0,0). Let P
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be the measure governing the choice of the independent uniformly distributed
random variables used to define the process (Ûm, Im). We still denote by τn,
n ≥ 0, the successive return times to 0 of W , as defined in (2.12). Lemma 2.4
states that (Sn, i(n))n≥0 is equal in law to (Uτn , Iτn)n≥0.

We now prove that {Uτn } is recurrent on Z. To this end, observe that (U,V )
is a Markov chain with transition matrix given by Q0 and that P0 = ϕ(Q0)
is recurrent. This implies that for any fixed u, (U�, V�) = (u,0) for infinitely
many � with P-probability 1. Moreover, by construction, |W | ≤ |V | + 1. So

(U�,W�) ∈
{
(u,0), (u, −1), (u,1)

}
infinitely often,

still with P-probability 1. Denote by σn, n ≥ 0, the successive return times to
{(u,0), (u, −1), (u,1)} of (U,W ).

From here on, we can follow the proof of Lemma 2.1 (which is the case
k = 1). We redefine

Kt := σ
(
(Un,Wn, In);n ≤ t

)
, Lt = Kσ(t),

and we replace the condition (2.7) by (with the event B as in (2.6))

Qi,±1{ B } ≥ p,(2.16)

where Qi,1 (resp. Qi,−1) denotes the law of the Markov chain with transition
matrix Qi when it starts at (0,1) (resp. at (0, −1)). We further redefine the
events

Bn = {Wσ(n) = 0} =
{
(Uσ(n),Wσ(n)) = (u,0)

}
,

and B̃n = Bn ∪ Bn+1. The proof will be complete if we show that

B̃n occurs infinitely often P-a.s.

Now B̃n ∈ Ln+1 and on {Iσ(n) = i}, it holds

P{B̃n | Ln} = 1{Wσ(n)=0} + P{Wσ(n+1) = 0 | Ln}1{Wσ(n)=1}

+ P{Wσ(n+1) = 0 | Ln}1{Wσ(n)=−1}

≥ 1{Wσ(n)=0} + Qi,1{ B }1{Wσ(n)=1} + Qi,−1{B }1{Wσ(n)=−1},

by using that given Ln and on {Iσ(n) = i}, the law of (Uσ(n)+k,Wσ(n)+k)k

stopped at the first positive time W reaches 0, is the same as the law of the
Markov chain with transition matrix Qi starting at (u,Wσ(n)) and stopped
at the first time W reaches 0, and then by using the translation invariance
of Qi. Next, (2.16) implies

P{B̃n | Ln} ≥ p.

We conclude by using the conditional Borel–Cantelli lemma as in the proof of
Lemma 2.1. �
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We state now an analogous result which can give examples of transient
processes. We say that a process is transient if almost surely it comes back
a finite number of times to each site. A law is said to be transient if the
associated random walk is transient.

Theorem 2.6. Let (Qi,0 ≤ i ≤ k) be a sequence of transition matrices on
Z

2 which are translation invariant in the sense of (2.2) and satisfy (2.1).
Assume that for all 1 ≤ i ≤ k, Q0 is successfully coupled with Qi. Assume
further that P0 = ϕ(Q0) is transient. Then for any process (S0, (Sn, i(n))n≥1),
which satisfies (1.1) with Pi = ϕ(Qi), {Sn}n≥0 is transient.

The proof of this result is analogous to the proof of Theorem 2.5 and left
to the reader. Note the asymmetry. The hypothesis is that Q0 is successfully
coupled with Qi, instead of Qi with Q0.

Theorem 2.5 solves in particular the recurrence part in Benjamini’s orig-
inal question. This is explained in the following example. Here and in the
remainder of this paper “Cauchy law” will always be short for “symmetric
Cauchy law.”

Example 2.7. Let Q0 be the transition matrix of a simple random walk on
Z

2: Q0((u, v), (u′, v′)) = 1/4 if (u′, v′) ∈ {(u, v ± 1), (u ± 1, v)}. We call P0 :=
ϕ(Q0) the “discrete Cauchy law.” Observe that P0 is recurrent. Benjamini’s
process uses in an arbitrary order jumps of law P0 and jumps of law P1,
with P1(1) = P1(−1) = 1/2. Proving Benjamini’s process is recurrent using
Theorem 2.5 would require finding Q1 such that P1 = ϕ(Q1), and then to
prove that Q0 and Q1 are both successfully coupled with Q0. Such Q1 does
not exist. So instead we will define Q̃1, such that P̃1 = ϕ(Q̃1) satisfies

(2.17) P̃1{ ±1} = 1/4 and P̃1{0} = 1/2.

As far as recurrence is concerned, there is no difference between using P1

or P̃1, as we show in Lemma 2.8 below.

So let us now define Q̃1 and the two different couplings. Assume (u, v,
w) ∈ Z

3 are given. Let (U,V ) be a simple random walk on Z
2 starting from

(u, v) and define the process W by W0 = w and Wn = 0 for all n > 0. W is de-
terministic and hence independent of (U,V ). Then Û = (U,V,W ) and (U,W )
are Markov chains and Q̃1, the transition matrix of (U,W ), has entries

Q̃1

[
(u,w), (u ± 1,0)

]
= 1/4 and Q̃1

[
(u,w), (u,0)

]
= 1/2 for all u,w.

Moreover, it is straightforward that Q̃1 is successfully coupled with Q0 and
satisfies (2.7) for p = 1/2. Observe also that (2.17) holds, as claimed.

Next we define the coupling of Q0 with itself. We still let (U,V ) be a
simple random walk on Z

2 starting from (u, v). But this time W is defined
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by W0 = w and for n ≥ 0, by

(2.18) Wn+1 − Wn =

{
Vn+1 − Vn if WnVn > 0 or if Vn = 0 and Wn > 0,

−(Vn+1 − Vn) otherwise.

Then Û = (U,V,W ) and (U,W ) are Markov chains, and the transition matrix
of (U,W ) is Q0. Moreover, it is straightforward that this gives a successful
coupling of Q0 with itself, and that Q0 satisfies (2.7) for p = 1/4. Thus, the
hypotheses of Theorem 2.5 are satisfied by (P̃1, P2), where P2 = P0 = ϕ(Q0).
Therefore for all processes (S0, (Sn, i(n))n≥1) satisfying (1.1) (or equivalently,
for all processes (S0, (Sn, i(n))n≥1) defined by (1.2)), the resulting processes
S will be recurrent. The fact that Benjamini’s process is recurrent is now a
consequence of Lemma 2.8.

Remark. In Section 4, we shall use some consequences of this example
in the special case when k = 2 and the corresponding distributions Q̃1 and
Q2 = Q0 are as defined a few lines before (2.18). Let now In and (Un, Vn,Wn)
be the processes defined by (2.13) and (2.14). Recall (Un, Vn) is a simple
random walk on Z

2. First, it needs to be pointed out that in this special case,
the function G2 can be defined such that (2.18) is valid for n ∈ [τ�, τ�+1) for
some � with In+1 = Iτ�+1 = 2, and the function G1 is defined such that when
In+1 = 1, then Wn+1 = Wn = 0. We claim that

Un = Vn = 0, Vn+1 = −1 and Wn ∈ { −1,0,1}(2.19)
together imply Un = Wn = 0 or Un+1 = Wn+1 = 0.

To see this, assume that Un = Vn = 0 and Vn+1 = −1. Then Vn+1 − Vn = −1.
If Wn = 0, then Un = Wn = 0 by assumption and there is nothing to prove.
Assume then that Wn = +1. This excludes In+1 = 1, because when In+1 = 1,
then Wn = Wn+1 = 0. So In+1 = 2 and (2.18) applies. Thus,

Wn+1 − Wn = Vn+1 − Vn = −1, whence Wn+1 = Wn − 1 = 0.

Moreover, the jump from (Un, Vn) to (Un+1, Vn+1) can only be of size 1 (be-
cause (Un, Vn) is a simple random walk on Z

2). But there already is a change
of size 1 in the V -direction. Thus, we can only have Un+1 − Un = 0. This
proves our claim in case Wn = 1. The case Wn = −1 is entirely similar, since
now Wn+1 − Wn = −(Vn+1 − Vn). Thus, (2.19) holds in general.

Lemma 2.8. Let (P̃i,1 ≤ i ≤ k) be a sequence of probability distributions
on Z. Assume that for all processes (S0, (Sn, i(n))n≥1) satisfying (1.1) with
P̃i instead of Pi, the process S is recurrent. Let now I ⊂ Nk be given and let
(Pi,1 ≤ i ≤ k) be defined by Pi = P̃i if i /∈ I, and if i ∈ I, Pi{u} = P̃i{U = u |
U �= 0}, for u �= 0, with U a random variable of law P̃i.

Then for all processes (S0, (Sn, i(n))n≥1) satisfying (1.1), S is recurrent as
well.
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Proof. First note that the hypothesis on the P̃i’s means that for any choice
of F̃ : [0,1] ×

⋃
n≥0(Z × Nk)n → Nk, the process defined by (1.2) (with F̃ and

G̃ in place of F and G respectively, and G̃ associated to the P̃i’s) is recurrent.
The intuition for this lemma is clear. A walker using P̃i as distribution for

his displacement stands still with probability P̃i(0). In fact when he arrives
at a new site, he stands still a geometric number of times and then makes a
displacement with distribution Pi. The standing still has no influence on the
collection of sites visited by the walker and hence does not influence recur-
rence. Recurrence will be the same whether P̃i or Pi is used. A complication
arises because we have to deal not with sequences (Sn) but with sequences
(Sn, i(n)), and even the latter sequences are not Markovian.

Let now (S0, (Sn, i(n))n≥1) be a process satisfying (1.1). To simplify, we
take S0 = 0. As is explained in the Introduction, such a process can be con-
structed with functions F : [0,1] × Z ×

⋃
n≥0(Z × Nk)n → Nk, G : [0,1] × Nk →

Z and independent sequences (A�)�≥0 and (B�)�≥0 of i.i.d. uniformly dis-
tributed random variables on [0,1]: for n ≥ 0,

i(n + 1) = F
(
An+1, S0,

(
S�, i(�)

)
�≤n

)
and

Sn+1 − Sn = G
(
Bn+1, i(n + 1)

)
.

Here G is such that the law of G(B1, i) is Pi.
Let now F̃ : [0,1] × Z ×

⋃
n≥0(Z × Nk)n → Nk be defined by

F̃
(
a, s(0),

(
s(�), j(�)

)
�≤n

)
= j(n),(2.20)

if j(n) ∈ I and s(n) = s(n − 1), and otherwise by

F̃
(
a, s(0),

(
s(�), j(�)

)
�≤n

)
= F

(
a, s(0),

(
s(t�), j(t�)

)
�≤m

)
,(2.21)

where t0 = 0,

(2.22) t� = inf
{
r ∈ (t�−1, n] : s(r) �= s(r − 1) or j(r) /∈ I

}
for � ≥ 1,

and

(2.23) m = sup{� : t� < ∞}.

Note that (2.20)–(2.23) are merely the definitions of the non-random func-
tions t�,m and F̃ at a generic point (a, s(0), (s(�), j(�))�≤n) of their domains.
Note also that, by convention, t� = ∞ if the set in the right hand side of (2.22)
is empty. In particular, this is the case for � > n.

Let G̃ : [0,1] × Nk → Z be such that the law of G̃(B1, i) is P̃i. Define the
random quantities S̃0 and (S̃n, ĩ(n)) by S̃0 = 0 and for n ≥ 0,

ĩ(n + 1) = F̃
(
An+1, S̃0,

(
S̃�, ĩ(�)

)
�≤n

)
,(2.24)
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and

S̃n+1 − S̃n = G̃
(
Bn+1, ĩ(n + 1)

)
.(2.25)

Equation (2.20) implies that

ĩ(n + 1) = ĩ(n) if ĩ(n) ∈ I and S̃n = S̃n−1.(2.26)

Let ρ0 = 0 and ρ� = inf{r > ρ�−1 : S̃r �= S̃r−1 or ĩ(r) /∈ I } for � ≥ 1. Note that
ρn is essentially the value of tn at the random place (S̃�, ĩ(�))�≤n. By definition

S̃r = S̃ρ�
for all r ∈ [ρ�, ρ�+1),(2.27)

and

S̃ρ�+1 �= S̃ρ�
if ĩ(ρ� + 1) ∈ I.(2.28)

Moreover, (2.26) implies (by induction on r) that ĩ(r) = ĩ(ρ� + 1) for all r ∈
(ρ�, ρ�+1], and

ĩ(ρ�+1) = ĩ(ρ� + 1) = F̃
(
Aρ�+1, S̃0,

(
S̃r, ĩ(r)

)
r≤ρ�

)
(2.29)

= F
(
Aρ�+1, S̃0,

(
S̃ρr , ĩ(ρr)

)
r≤�

)
,

where the last equality follows from (2.21). Now, for any i ∈ Nk and u ∈ Z, if
Fn = σ((A�,B�)�≤n),

P
{
S̃ρ�+1 − S̃ρ�

= u | ĩ(ρ� + 1) = i, Fρ�

}
= Pi(u).(2.30)

Indeed when i ∈ I and u �= 0, the left-hand side is equal to∑
K≥1

P
{{

G̃(Bρ�+K , i) = u
}

∩ {ρ�+1 − ρ� = K} | ĩ(ρ� + 1) = i, Fρ�

}
,

which is equal to ∑
K≥1

P̃i(0)K−1P̃i(u) = Pi(u).

If i ∈ I and u = 0, both sides of (2.30) equal 0 by (2.28) and the definition
of I. When i(ρ� +1) = i and i /∈ I, then ρ�+1 = ρ� +1 and (2.30) follows from
the fact that P̃i = Pi.

Finally, we claim that (2.29) and (2.30) show that (S̃ρ�
, ĩ(ρ�)) has the same

law as (S�, i(�)): indeed we shall show by induction on � that for any sequence
j(1), . . . , j(�) ∈ Nk, u1, . . . , u� ∈ Z,

(2.31) P
{
S̃ρ�+1 − S̃ρ�

= u�+1, ĩ(ρ�+1) = j(� + 1), . . . , S̃ρ1 = u1, ĩ(ρ1) = j(1)
}
,

is equal to

(2.32) P
{
S�+1 − S� = u�+1, i(� + 1) = j(� + 1), . . . , S1 = u1, i(1) = j(1)

}
.

But (2.31) is equal to

Pj(�+1)(u�+1)P
{̃
i(ρ�+1) = j(� + 1), . . . , S̃ρ1 = u1, ĩ(ρ1) = j(1)

}
,
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by (2.30). By using (2.29), we see that the second factor in this last expression
is equal to

P
{
F

(
Aρ�+1, s0,

(
sr, j(r)

)
r≤�

)
= j(� + 1)

}
× P

{
S̃ρ�

− S̃ρ�−1 = u�, ĩ(ρ�) = j(�), . . . , S̃ρ1 = u1, ĩ(ρ1) = j(1)
}
,

where for all r, sr := u1 + · · · + ur. Then an induction procedure shows that
(2.31) is equal to (2.32), as claimed.

Moreover, by assumption S̃ is recurrent and (2.27) implies that (S̃ρ�
, � ≥ 0)

is also recurrent. This proves the lemma. �
We finish with this last class of examples.

Example 2.9. Take for Q0 the transition matrix of a Markov chain (U,V )
such that U and V are both Markovian and independent of each other, and
such that P0 = ϕ(Q0) is recurrent. Assume that for all i ∈ [1, k], Qi is the
transition matrix of a Markov chain (U,Wi) such that U and Wi are both
Markovian and independent of each other (the chain U being the same for
Q0 and for Qi). Assume that all Qi’s are translation invariant (note that this
hypothesis only concerns the Markov chain U ). Suppose also that for all i
it is possible to couple the chains V and Wi such that (V,Wi) is Markovian
and such that if |Wi(0)| ≤ |V (0)| + 1 then for all n ≥ 0, |Wi(n)| ≤ |V (n)| + 1.
Let now U be a chain independent of this Markov process (V,Wi). Then
(U,V ) and (U,Wi) are both Markovian respectively with transition matrices
Q0 and Qi. This coupling of (U,V ) and (U,Wi) shows that Qi is successfully
coupled with Q0. Assume also that the Qi’s, i ≤ k, satisfy (2.7) for some
positive p, uniformly in i. Then the hypotheses of Theorem 2.5 are satisfied.

This can be applied to the following: let (An) and (Bn) be two independent
sequences of i.i.d. random variables uniformly distributed on [0,1]. Let p ∈
[0,1/2) and let U(n) =

∑n
i=1(1{Ai ≥p} − 1{Ai<1−p}). Let V be the simple

random walk on Z defined by V (0) = v0 and

V (n) − V (n − 1) = 1{Bn<1/2} − 1{Bn ≥1/2}.

Let (pi(w) : i ≥ 1 and w ≥ 0) be such that pi(w) ∈ [0,1/2] for all w ∈ Z. Define
Wi by Wi(0) = 0 and on the event {Wi(n − 1) = w},

Wi(n) − w = [1{Bn<pi(w)} − 1{Bn ≥pi(w)}]1{w≥1}

+ [1{Bn ≥pi(w)} − 1{Bn<pi(w)}]1{w≤ −1}

+ [1{Bn<1/2−pi(0)} − 1{Bn ≥1/2+pi(0)}]1{w=0}.

Then one immediately checks that |Wi(n)| ≤ |V (n)| + 1 for all n ≥ 0, and the
resulting transition matrices Qi are successfully coupled with Q0. Moreover,
Condition (2.16) is satisfied for all Qi’s with (1 − 2p)/2 instead of p. Thus,
for any such choice of (pi(w)), we can apply Theorem 2.5 and find in this
way many examples of recurrent processes. However, given the (pi(w))’s, it
is usually not easy to describe explicitly the associated laws Pi.
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2.2. Continuous case. We present now an analogous coupling method (in
the spirit of Example 2.9) when the laws Pi are defined on R, because in this
case, by using stochastic calculus, we can give more explicit examples of Pi’s,
which can be used to construct recurrent processes {Sn} (see Proposition 2.15
below).

Let B(1) and B(2) be two independent Brownian motions started at 0.
Let (U0, V0,W0) be a random variable in R × R

+ × R
+, independent of B =

(B(1),B(2)). For all t > 0, set Ut = U0 + B
(1)
t . Let (σ0, b0) : [0,+∞) → R

2 be
some Lipschitz functions and v0 ≥ 0 some constant. Then (see Exercice 2.14
p. 385 in [13]) the stochastic differential equation

(2.33) Vt = V0 +
∫ t

0

σ0(Vs)dB(2)
s +

∫ t

0

b0(Vs)ds + Lt,

with L the local time in 0 of V , admits a unique solution which is measurable
with respect to the filtration generated by B(2).

Consider next (σ, b) : (0,+∞) → R
2 some locally Lipschitz functions and

the stochastic differential equation

(2.34) Wt = W0 +
∫ t

0

σ(Ws)dB(2)
s +

∫ t

0

b(Ws)ds, t < T ∧ e,

where

e = inf{t ≥ 0 : Wt = +∞} and T = inf{t ≥ 0 : Wt = 0}.

It is known (see for instance Exercise 2.10 p. 383 in [13]) that if σ and b are
locally Lipschitz, then equation (2.34) admits a unique solution W which is
measurable with respect to the filtration generated by B(2). When (U0,W0) =
(0,1) and when (σ, b) is such that

T < e almost surely,(2.35)

we denote by P the law of UT . Then, like in the discrete case, we have
P = ϕ(σ, b) for some function ϕ. In the following, all (σ, b) will be assumed to
be locally Lipschitz and such that (2.35) is satisfied. Moreover, for w > 0 we
will denote by P

(σ,b)
w the law of (Wt)t≤T when W0 = w.

We say that (σ, b) : (0, ∞) → R
2 is successfully coupled with (σ0, b0) if for

any solutions V and W , respectively of (2.33) and (2.34), with W0 ≤ V0+1, we
have Wt ≤ Vt +1 for all t < T . Note that, by using a comparison theorem (see
[7] Theorem 1.1 p. 437), if for all v > 0, σ(v +1) = σ0(v) and b(v +1) ≤ b0(v),
then (σ, b) is successfully coupled with (σ0, b0).

Let ((σi, bi),0 ≤ i ≤ k), k ≤ ∞, be a sequence of locally Lipschitz functions
on (0, ∞)2 such that for all i ∈ Nk, (σi, bi) is successfully coupled with (σ0, b0).
For i ∈ Nk, set Pi = ϕ(σi, bi).

Let F : [0,1] × R ×
⋃

n≥0(R × Nk)n → Nk be given. This function F de-
termines the index i in (σi, bi) which will govern the steps in our modified
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random walk over a certain random time interval, as we make more precise
now.

Let (An)n≥1 be a sequence of independent random variables uniformly
distributed on [0,1]. Assume that this sequence is independent of B. Let V
be the solution of (2.33), with V0 = 0. Let (U0, I0) be a random variable in
R × Nk, independent of A and B. Define (τn)n≥0 an increasing sequence of
random times, and the processes (W ∗

t )t<τ∞ and (It)t<τ∞ , with

(2.36) τ∞ := lim
n→∞

τn,

by the following: first τ0 = 0. Assume then that (τ1, . . . , τn) and (It,
W ∗

t )0≤t≤τn are defined and measurable with respect to the σ-field

σ
(
(Us,Bs)s≤τn

)
∨ σ(A1, . . . ,An).

Assume moreover that It = Iτ�+1 for t ∈ (τ�, τ�+1] and � ≤ n − 1, and that
W ∗

τ�
= 0 for all 1 ≤ � ≤ n. For � ≤ n, set i(�) = Iτ�

and S� = Uτ�
. Then we

define i(n + 1) by

i(n + 1) = F
(
An+1, S0,

(
S�, i(�)

)
�≤n

)
,

and Wn as the solution of

Wn
t = 1 +

∫ t

0

σi(n+1)

(
Wn

s

)
dBτn

s +
∫ t

0

bi(n+1)

(
Wn

s

)
ds, t ≤ T (n),

where T (n) is the first time when Wn reaches 0, and where Bτn
s = B

(2)
τn+s −

B
(2)
τn . The process Wn is well defined since Bτn is independent of i(n + 1).

Let
τn+1 := τn + T (n).

Then set

W ∗
t = Wn

t−τn
and It = i(n + 1) for t ∈ (τn, τn+1].

This defines the sequence τn for all n and (W ∗
t , It) for t < τ∞.

Let now Ft = σ((Us,Bs, Is)s≤t∧τ∞ ). Then, (τn)n≥0 is a sequence of Ft-
stopping times and like in the discrete setting, we have

Lemma 2.10. For all n ≥ 0, the conditional law of Uτn+1 − Uτn given Gn :=
Fτn ∨ σ(i(n + 1)) is Pi(n+1).

Proof. Given Gn, the law of (Wn
t = W ∗

τn+t)0≤t≤τn+1−τn is P
(σi(n+1),bi(n+1))
1

and (Un
t = Uτn+t − Uτn)t≥0 is a Brownian motion independent of

(Wn
t )0≤t≤τn+1−τn . The lemma follows, since by definition ϕ(σi(n+1), bi(n+1)) =

Pi(n+1). �

This lemma implies that the sequence (Sn, i(n))n≥0 has the same law as
the process defined in the Introduction by (1.2) (with (S0, i(0)) = (U0, I0)).
Moreover, we have the following result.
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Proposition 2.11. Assume that there exists positive constants 0 < α <
1 < β, σ+ and b+ such that

0 ≤ σi(x) ≤ σ+ and
∣∣bi(x)

∣∣ ≤ b+(2.37)
for all x ∈ (α,β)and all 1 ≤ i ≤ k.

Then τ∞, as defined in (2.36), is a.s. infinite for any choice of (i(n), n ≥ 0).

Proof. We start with a lemma. For z ∈ R, let Tz := inf{t : W ∗
t = z}. In

particular, T = T0.

Lemma 2.12. Let (σ, b) be locally Lipschitz and 0 < α < 1 < β some con-
stants. Then for all r ≥ 1, there exists a constant C > 0 depending only on r,
α, β and σmax := supx∈[α,β] |σ(x)|, such that

P
(σ,b)
1 {T < ε} ≤ Cεr for all ε <

(
(1 − α) ∧ (β − 1)

)
/(2bmax),

where bmax := supx∈[α,β] |b(x)|.
Proof. First we have

P
(σ,b)
1 {T < ε} ≤ P

(σ,b)
1 {Tα < ε} ≤ P

(σ,b)
1 {Tα ∧ Tβ < ε}.

Next set, for all t < T ,

H(t) :=
∫ t

0

σ(Ws)dB(2)
s +

∫ t

0

b(Ws)ds.

We have

P
(σ,b)
1 {Tα ∧ Tβ < ε} ≤ P

{
sup
t≤ε

∣∣H(t ∧ Tα ∧ Tβ)
∣∣ ≥ (1 − α) ∧ (β − 1)

}
.

If ε < ((1 − α) ∧ (β − 1))/(2bmax), this last term is bounded by

P

{
sup
t≤ε

∣∣∣∣∫ t∧Tα ∧Tβ

0

σ(Ws)dB(2)
s

∣∣∣∣ ≥ (1 − α) ∧ (β − 1)
2

}
,

which by Doob’s inequality (Theorem (1.7) p.54 in [13]) is bounded by Cεr

for some constant C > 0, which depends only on r, σmax, α and β. This
concludes the proof of the lemma. �

Taking r = 2 in this lemma, we have that for n > ((1 − α) ∧ (β − 1))−12b+

P
{
τn+1 − τn < n−1 | Gn

}
≤ Cn−2.

Proposition 2.11 follows now from the conditional Borel–Cantelli lemma (The-
orem 12.15 in [14]) by a standard argument. �

Let us give now p = (pε)ε>0 such that pε ∈ (0,1) for all ε > 0. Let (σ, b)
be locally Lipschitz and let W be the solution of (2.34), with W0 = w0. Re-
member that T = inf{t > 0 : Wt = 0}. We write C ′(p) = C ′(p,σ, b)) for the
property

(2.38) P
{
UT ∈ [−ε, ε]

}
> pε for all ε > 0 and all w0 ∈ (0,1],
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where U is a Brownian motion starting from 0 independent of W .
We say that a process on R is recurrent, if for all ε > 0 and all x ∈ R, it

returns a.s. infinitely often to [x − ε, x + ε]. Similarly a law P is recurrent
if the associated random walk is recurrent. The analogue of Theorem 2.5 is
then the following theorem.

Theorem 2.13. Let p = (pε)ε>0 be given. Let (σ0, b0) be a Lipschitz func-
tion and ((σi, bi),1 ≤ i ≤ k) be a sequence of locally Lipschitz functions. As-
sume (2.35) holds for i ∈ {0} ∪ Nk. Set Pi = ϕ(σi, bi). Assume that there
exists 0 < α < 1 < β and positive constants σ+ and b+ such that (2.37) holds.
Assume moreover that P0 = ϕ(σ0, b0) is a recurrent law on R and that for
each i ∈ Nk, (σi, bi) is successfully coupled with (σ0, b0) and satisfies (2.38).
Then for any (S0, (Sn, i(n))n≥1) which satisfies (1.1), the process {Sn}n≥0 is
recurrent.

We state now an analogue of Theorem 2.6 which can give examples of
transient processes. We say that a process on R is transient, if for all a < b, it
returns a.s. a finite number of times in [a, b]. Similarly, a law P is transient
if the associated random walk is transient.

Theorem 2.14. Let (σ0, b0) be a Lipschitz function and ((σi, bi),1 ≤ i ≤ k)
be a sequence of locally Lipschitz functions. Assume (2.35) holds for i ∈
{0} ∪ Nk. Set Pi = ϕ(σi, bi). Assume that there exists 0 < α < 1 < β and
positive constants σ+ and b+ such that (2.37) holds. Assume moreover that
P0 = ϕ(σ0, b0) is a transient law on R and that for each i ∈ Nk, (σ0, b0) is
successfully coupled with (σi, bi). Then for any (S0, (Sn, i(n))n≥1) which sat-
isfies (1.1), the process {Sn}n≥0 is transient.

The proof of these theorems are similar to the discrete case and left to the
reader.

As an example of laws which are successfully coupled we give the following
result.

Proposition 2.15. Let P0 be the Cauchy law on R. Set (σ0, b0) = (1,0).
Then (σ0, b0) satisfies (2.35), is successfully coupled with itself, and P0 =
ϕ(σ0, b0). Moreover for any α ∈ [1,2], there exists (σα, bα) locally Lipschitz
satisfying (2.35), successfully coupled with (σ0, b0) and such that ϕ(σα, bα) is
in the domain of normal attraction of a symmetric stable law with index α.

Proof. The fact that (σ0, b0) satisfies (2.35) and is successfully coupled
with itself is immediate (in the coupling we have Vt = V0 + B

(2)
t + Lt and

Wt = W0+B
(2)
t for t < T ). So let us concentrate on the second claim. The case

α = 1 is given for instance by P0 itself. Now we prove the result for α = 2. Take
(σ, b) = (0, −1) to be constants. Then Wt = W0 − t for all t ≤ T = W0. Set
P = ϕ(σ, b) = ϕ(0, −1), (2.35) being obviously satisfied. Let U be a standard
Brownian motion on R. Observe that when W0 = 1, then W reaches 0 at time
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T = 1. Thus P is the law of U at time 1 which is the standard Gaussian and it
is immediate that (σ, b) = (0, −1) is successfully coupled with (σ0, b0) = (1,0).
This gives the result for α = 2. It remains to prove the claim for α ∈ (1,2).
For ν ∈ (−1, −1/2), let W (ν) be a Bessel process of index ν starting from 1,
that is, W (ν) is the solution of the SDE:

W
(ν)
t = 1 + B

(2)
t + (ν + 1/2)

∫ t

0

1

W
(ν)
s

ds for all t < T,

where B(2) is a Brownian motion and T is as always the first time when W
reaches 0. It is known (see [13]) that T is a.s. finite when ν ∈ (−1, −1/2).
Set σ(ν) = 1 and b(ν)(w) = (ν + 1/2)/w. Then, for ν ∈ (−1, −1/2), (σ(ν), b(ν))
satisfies (2.35). Set P (ν) = ϕ(σ(ν), b(ν)). We claim that if ν ∈ (−1, −1/2), then
(σ(ν), b(ν)) can be successfully coupled with (σ0, b0) and P (ν) is in the domain
of attraction of a stable law with index −2ν. The first part is immediate:
since ν + 1/2 ≤ 0, it follows from a comparison theorem (see [7] Theorem 1.1
p. 437). For the second part, first observe that

E
{
eiuUT

}
= E

{
e− u2

2 T
}

for all u ∈ R.

So the characteristic function of P (ν) is related to the Laplace transform of T .
For Bessel processes this last function can be expressed in terms of modified
Bessel functions: if φν is the Laplace transform of T , the hitting time of 0 for
a Bessel process of index ν < −1/2 starting from 1, then (see [8] Theorem 3.1):

φν(s) =
2ν+1

Γ(−ν)
Kν(

√
2s)

(2s)ν/2
for all s > 0,

where Γ is the usual Gamma function and Kν is a modified Bessel function (to
see this from [8], take a = 1 and let b tend to 0 in Formula (3.7), and use the
asymptotic when x → 0 of Kν(x) given just above Theorem 3.1). Moreover
(see [12] Formula (5.7.1) and (5.7.2)), we have

Kν(s) =
π

2
I−ν(s) − Iν(s)

sinνπ
for all s > 0,

where

Iν(s) =
∞∑

k=0

(s/2)ν+2k

k!Γ(k + ν + 1)
for all s > 0.

This shows (use also basic identities of the Gamma function given in For-
mula (1.2.1) and (1.2.2) in [12]) that for u close to 0,

E
{
eiuUT

}
= 1 − cu−2ν + o

(
u−2ν

)
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for some constant c > 0, which proves our claim. �

3. A weak law of large numbers

The next result answers the second part of Benjamini’s original ques-
tion:

Theorem 3.1. Let (Sn, n ≥ 0) be the process on Z starting from 0, which
at a first visit to a site makes a discrete symmetric Cauchy jump and at other
visits makes a ±1 Bernoulli jump. Then

(3.1)
1
n

sup
t≤n

| St | → 0 in probability.

Proof. We shall first prove (3.1) with St replaced by the auxiliary process
S̃t which makes a discrete symmetric Cauchy jump at a first visit to a site
and at other visits makes a jump with distribution P̃1, where

P̃1{±1} = 1/4, P̃1{0} = 1/2 and P̃1{u} = 0 for u /∈ {−1,0,+1}.

Quantities referring to the walk {S̃n} will all be decorated with a tilde, but
will otherwise be defined in the same way as their analogues without a tilde.
We further remind the reader that P1 is the distribution on Z which puts
mass 1/2 on ±1 and that P2 is the discrete Cauchy distribution.

Let R̃n be the range at time n, that is,

(3.2) R̃n = cardinality of {S̃0, S̃1, . . . , S̃n−1}.

This means that during the time interval [0, n], S̃� took exactly R̃n Cauchy
jumps and n − R̃n steps with distribution P̃1. Let us now use the construction
of the {S̃�} which is the analogue of the one given for {S�} in the Introduction.
More precisely, let (Ỹ (1, �))�≥1 and (Ỹ (2, �))�≥1 be independent sequences of
independent random variables respectively, of law P̃1 and P2, then (S̃n)n≥1 is
such that S̃0 = 0 and for n ≥ 1,

S̃n =
n−R̃n∑
�=1

Ỹ (1, �) +
R̃n∑
�=1

Y (2, �)

with R̃n defined by (3.2).
Consequently, for any ε > 0 it holds that on the event {R̃n ≤ εn},

sup
t≤n

|S̃t| ≤ sup
s≤n

∣∣∣∣∣
s∑

�=1

Ỹ (1, �)

∣∣∣∣∣ + sup
r≤εn

∣∣∣∣∣
r∑

�=1

Y (2, �)

∣∣∣∣∣.



1234 O. RAIMOND AND B. SCHAPIRA

By maximal inequalities (see [2], Theorem 22.5), we therefore have for any
ε ≤ 1, α > 0,

P

{
sup
t≤n

|S̃t| ≥ 8αn
}

≤ P{R̃n > εn} + 4max
t≤n

P

{∣∣∣∣∣
t∑

�=1

Ỹ (1, �)

∣∣∣∣∣ ≥ αn

}
(3.3)

+ 4max
t≤εn

P

{∣∣∣∣∣
t∑

�=1

Y (2, �)

∣∣∣∣∣ ≥ αn

}
.

Now, as is well known (e.g., by Chebyshev’s inequality), for each fixed α > 0,

(3.4) max
t≤n

P

{∣∣∣∣∣
t∑

�=1

Ỹ (1, �)

∣∣∣∣∣ ≥ αn

}
→ 0 as n → ∞.

Also, for fixed α > 0, ε > 0, t ≤ εn,

(3.5) P

{∣∣∣∣∣
t∑

�=1

Y (2, �)

∣∣∣∣∣ ≥ αn

}
≤ P

{∣∣∣∣∣
t∑

�=1

Y (2, �)

∣∣∣∣∣ ≥ α

ε
t

}
,

and

(3.6) lim
t→∞

P

{∣∣∣∣∣
t∑

�=1

Y (2, �)

∣∣∣∣∣ ≥ α

ε
t

}
= f

(
α

ε

)
for some function f(·). Moreover, f(α/ε) can be made as small as desired by
taking α/ε large. In fact,

1
m

m∑
�=1

Y (2, �) converges in distribution to a Cauchy variable,

as m → ∞ (see [6], Theorem 17.7). It is immediate from (3.3)–(3.6) that

(3.7)
1
n

R̃n → 0 in probability

is a sufficient condition for (3.1) with St replaced by S̃t.
We now turn to a proof of (3.7). Since 0 ≤ R̃n/n ≤ 1, (3.7) is equivalent to

1
n

E[R̃n] =
1
n

n−1∑
t=0

P{At,n−t} → 0,

where

At,� =
{
S̃t is not revisited during [t + 1, t + � − 1]

}
= {S̃t �= S̃t+s for 1 ≤ s ≤ � − 1}.

In particular, since At,� is decreasing in �, a sufficient condition for the WLLN
for S̃n is that

(3.8) lim
�→∞

P{At,�} = 0 uniformly in t.
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Recurrence essentially is property (3.8), without the uniformity requirement.
To prove (3.8) with the uniformity, we use the coupling defined in the remark
below Example 2.7, as we now explain. Let Q0 be the transition probability
matrix of a simple random walk on Z

2. Denote this walk by {(Un, Vn)}n≥0

and let its starting point be (0,0). We proved in Example 2.7 that Q0 is
successfully coupled with itself. We shall use a part of that result here. We
also need to know that there exists another process {(Un,Wn)}n≥0 which
also starts at (0,0) and takes values in Z

2 and in addition a coupled process
{(Un, Vn,Wn)}n≥0 such that

the law of the imbedded process of
{
(Un,Wn)

}
in the U -axis is the

same as the law of Benjamini’s process {S̃n},

and

(3.9) | Wn | ≤ | Vn | +1.

We remind the reader that the imbedded process here is {Uτn }n≥0, where
τ0 = 0 and for � ≥ 1

τ(�) = inf
{
t > τ(� − 1) : Wt = 0

}
.

In the remainder of this proof, we shall often write Γ(φ) instead of Γφ for
certain Γ and φ, in order to avoid double subscripts. Now fix some t ∈
{0,1, . . . , n − 1}. For time running from 0 to t we let U t

0,U
t
1, . . . ,U

t
t be

a copy of {S̃�}0≤�≤t. No coupling of this process with another process is
needed. However, we shall further need an independent copy of the vari-
ables {(Un, Vn,Wn)}n≥0 with its corresponding sequence of times τ� at which
the walk {(Un,Wn)} visits the U -axis. The successive positions of Ben-
jamini’s walk determined by the triple {(Un, Vn,Wn)}n≥0 itself would be
U(τ0),U(τ1), . . . . However, we want to shift those positions to come right
after the previous points {U t

� }. This requires one important change. In the
coupling construction by itself, at a time τ at which Wτ = 0, assume that the
Benjamini walk arrived in some point, u say, on the U -axis. In order to choose
the next step for the walk one must now decide whether the visit to u at τ is
the first visit by the walk to u or not. In the construction of Example 2.7, it
would be a first visit if and only if U(τm) �= u for 0 ≤ τm < τ . Here, we have
to modify this. We think of the walk as first traversing U t

0,U
t
1, . . . ,U

t
t , and

then to start from time t on to use the coupling construction. The visit at
time τ to u will therefore be counted as the first visit if and only if

U(τm) �= u − U t
t for 0 ≤ τm < τ and U t

s �= u for 0 ≤ s ≤ τ.

After this change, the path

U t
0, U t

1, . . . , U t
t = U t

t + U(τ0),
U t

t + U(τ1), U t
t + U(τ2), . . .
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is a typical path of a Benjamini walk, but with a modified rule for determining
whether a point is fresh or old. To be more precise, let Θ = Θ(t) = {U t

0 =
0,U t

1, . . . ,U
t
t } be the set of points visited by the Benjamini walk during [0, t].

Now first fix Θ(t). Then At,� occurs if and only if none of the next � − 1
positions of a Benjamini walk equals U t

t . However, for this second stage the
points of Θ are regarded as old points, even if they have not been visited
before. Thus we use a modified Benjamini walk in which the walk takes a
simple symmetric walk step when it is at an old point or a point from Θ, and
a discrete Cauchy distribution when the walk is at a fresh point outside Θ.
We shall call this the Θ-modified walk. The original Benjamini walk is the
special case of this when Θ = ∅. When the dependence on Θ is important
we shall indicate this by a superscript Θ. In particular, the law of the walk
which we just described (in which we regard the points of Θ as old points) is
written as P

Θ. Choosing or modifying Θ merely modifies the rule by which
the index i, or equivalently the function F in (2.10) and (2.15) is chosen.
However, Lemma 2.3 remains valid for the Θ-modified process. In particular,
we can express the conditional law of S̃t+s − S̃t given Ft, by means of P

Θ(t).
This gives

P{At,�} = E
{
P{S̃t+q �= S̃t for all 1 ≤ q ≤ � − 1| Ft}

}
= E

{
P

Θ(t){S̃q �= 0 for all 1 ≤ q ≤ � − 1}
}

≤ sup
Θ

P
Θ{S̃q �= 0 for all 1 ≤ q ≤ � − 1}.

We now complete the proof of (3.8). We find it useful for this purpose to
introduce the events

Aq := {Uq = Vq = 0} ∩ {Vq+1 = −1}.

Since {(Uq, Vq)}q≥0 is a simple random walk it is well known that this walk
is recurrent, so that with probability 1, the event {Uq = Vq = 0} occurs for
infinitely many q. By a straightforward application of a conditional version
of the Borel–Cantelli lemma (cf. Theorem 12.15 in [14]), it then follows that,
again with probability 1, Aq occurs infinitely often. For every q with Vq = 0,
we have Wq ∈ {−1,0,1}, by virtue of (3.9). The remark following Example 2.7
now shows that if Aq occurs for some q, then also

Bq :=
{
U(q) = W (q) = 0

}
∪

{
U(q + 1) = W (q + 1) = 0

}
occurs for the same q. Note that the event

{ Bq fails for all 1 ≤ q ≤ � − 1}
coincides with the event

�⋂
q=1

{
U(q) �= 0 or W (q) �= 0

}
.
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Note now that (since τ� ≥ � and since W (q) = 0 implies q = τr for some r)
the event

⋂�
q=1{U(q) �= 0 or W (q) �= 0} occurs when the event {S̃t = U(τt) �=

0 for all 1 ≤ t ≤ �}. Thus, we have

P
Θ{S̃q �= 0 for 1 ≤ q ≤ �} ≤ P

Θ{ Bq fails for all 1 ≤ q ≤ � − 1}
≤ P{ Aq fails for all 1 ≤ q ≤ � − 1}

(use contrapositives for the last inequality). But the right-hand side here is
independent of t and Θ, since it involves only the simple random walk (Un, Vn).
In addition this right-hand side tends to 0 as � → ∞, since we already proved
that with probability 1 infinitely many Aq occur. This last estimate is uniform
in t,Θ, as desired.

This finally proves (3.8) and the WLLN, that is, (3.1) with St replaced
by S̃t. However, this proof is for the {X̃n}-process which takes a step with
distribution P̃1 whenever the walk is at an old point. We shall now show
that this implies the WLLN for the process {Sn}, that is, (3.1) itself. Indeed,
in the notation of the proof of Lemma 2.8, the processes {Sn, i(n)}n≥1 and
{S̃ρn , ĩ(ρn)}n≥1 have the same law. In particular,(

1
t

sup
�≤t

| S� |, i(n)
)

and
(

1
t

sup
�≤t

| S̃ρ�
|, ĩ(ρn)

)
(3.10)

have the same law. As explained in the proof of Lemma 2.8, we may even
assume that all these variables are defined on the same probability space of
sequences {A�}�≥0, {B�}�≥0 provided with the measure which makes all these
variables i.i.d. uniform on [0,1]. We denote this probability measure by P. It
follows from from the definition of the sequence ρ� that for q ≥ 1

P
{
ρ�+1 − ρ� ≥ q | σ(ρ1, ρ2, . . . , ρ�)

}
≤ 2−(q−1).

In turn, this implies that for some constant C ∈ (0, ∞),

limsup
t→∞

sup
�≤t

ρ�

t
= limsup

t→∞

ρt

t

= limsup
t→∞

∑t
�=1[ρ� − ρ�−1]

t
≤ C with probability 1.

It follows that

P

{
sup
�≤t

| S̃ρ�
|> εt

}
≤ P

{
max
�≤t

ρ� > (C + 1)t
}

+ P

{
sup

�≤(C+1)t

| S̃� |> εt
}

.

The last term on the right here tends to 0 as t → ∞ and ε > 0 fixed, by virtue
of (3.1) with St replaced by S̃t. Since also the first term on the right here
tends to 0 as t → ∞, we conclude from (3.10) that (1/t) sup�≤t | S� | → 0 in
probability, as desired. �
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