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STOCHASTIC ALTERNATING PROJECTIONS

PERSI DIACONIS, KSHITIJ KHARE AND LAURENT SALOFF-COSTE

Abstract. We show how basic work of Don Burkholder on iter-
ated conditional expectations is intimately connected to a stan-
dard tool of scientific computing—Glauber dynamics (also known

as the Gibbs sampler). We begin with von Neumann’s alternating

projection theorem using an example of Burkholder’s. We then

review Burkholder’s theorem. Finally, we introduce Glauber dy-
namics and show how Burkholder’s theorem can be harnessed to
prove convergence. In the other direction, we show how classical

convergence rates involving the angle between subspaces can be
substantially refined in several cases.

1. Introduction

Alternating projection algorithms are basic tools of applied mathematics.
They are used for minimization in coordinate descent, to project onto convex
sets and (as seen below) as a basic tool for simulation. One mathematical
foundation for these algorithms is von Neumann’s alternating projection the-
orem.

Theorem 1 (von Neumann). Let P1, P2 be the orthogonal projections
onto closed subspaces M1, M2 of a Hilbert space H. Let PI be the orthogonal
projection onto the intersection M1 ∩ M2. If T = P2P1, then T k → PI as
k → ∞. That is, ‖T k(h) − PI(h)‖ → 0 for each h ∈ H.

We review the literature on von Neumann’s theorem, extensions to sev-
eral projections and rates of convergence in Section 2. We present there a
charming, unpublished illustration shown to us by Don Burkholder.

In the special case that H = L2(μ) for some probability measure μ and Mi

are subspaces of measurable functions with respect to two sub σ-algebras,
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Burkholder gave a definitive treatment of von Neumann’s theorem, providing
necessary and suffucient conditions on h for convergence to hold. He showed
(roughly) that convergence takes place almost surely if and only if h above is
in L log(1 + L), that is,

∫
|h| log(1 + |h|)dμ < ∞. We review this result and

some recent progress in Section 3.
In Section 4, we show that Burkholder’s theorem (and von Neumann’s

theorem) are useful in proving basic convergence results for a widely used
algorithm—Glauber dynamics. We explain the algorithm and the connection.
The rate of convergence in von Neumann’s theorem is shown to be related
to the probabilists’ ‘maximal correlation’. The Hilbert space notion of strong
convergence is shown to be fairly weak in the probabilistic setting where much
more demanding topologies are standard fare. This suggests new problems in
both the Hilbert space and measure space settings.

2. Alternating projection algorithms

We begin with a charming demonstration of the theorems on alternating
projections shown to us by Don Burkholder. Take a piece of string about two
feet long. Attach two paper clips at two arbitrary positions. Call these the
“Left” and “Right” paper clips (see Figure 1(a)).

At any stage, proceed as follows: Fold the right end of the string over to
touch the left paper clip. Holding this clip (Figure 1(b), top) (and the right
end) with the left hand fingers, slide the right clip to the right until it hits
the right end of the loop formed (Figure 1(b), bottom).

Unfold the string, fold the left end of the string over to touch the right clip
(Figure 1(c), top). Hold it there with the right hand fingers and slide the left-
most clip to the left until it hits the left end of the loop formed (Figure 1(c),
bottom).

(a) (b) (c)

Figure 1. Successive stages for Burkholder’s alternating
projection demonstration.
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(a) (b) (c)

Figure 2. Lengths during one iteration of the demonstration.

Unfold the string. These two stages constitute one pass of the algorithm.
If this is repeated a few times, the position of the clips will converge to 1

3 and
2
3 of the total length.

To make the connection with alternating projections, suppose the clips are
originally at distance x and x+y on a string of length x+y + z (Figure 2(a)).
Folding the right end over and sliding the right clip results in (Figure 2(b)).
Folding the left end over and sliding the left clip results in (Figure 2(c)).

These transformations correspond to two projections.
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Since it is doubly stochastic with [ 13 , 1
3 , 1

3 ]T as a unique stationary vector,

(P2P1)n

⎡
⎣x

y
z

⎤
⎦ →

⎡
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x+y+z
3
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3

x+y+z
3

⎤
⎦ .

If one were to demonstrate this, say by making a prediction for the length
of the leftmost clip before the initial placement of the clips, it is desirable to
know how many iterations are required for convergence. The eigenvalues and
right eigenvectors of P2P1 are

1,
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⎦ ,

1
4
,
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Given x+y+z = c, the error is largest when x = c, y = z = 0. This corresponds
to both clips staring at the right end of the string. The deviation of the
leftmost clip from c

3 after n steps is 2c
3(4n) . For c = 2 feet, if we want an

error of 1
10 inch, we must take n ≥ 4. For the historical record, we note that

Burkholder demonstrated this to us by repeatedly folding a 3 × 5 index card
instead of a piece of string.

Von Neumann’s alternating projection theorem stated above has many ex-
tensions and applications. A splendid textbook account appears in [19, Chap-
ter 1], while applications are surveyed in [18]. These trace the history back to
Schwarz [34], who used the method to solve the Dirichlet problem on a region
given as a union of regions each having a simple-to-solve Dirichlet problem
(e.g., a union of disks). Von Neumann’s theorem has been widely developed
and applied. For alternating minimization procedures, see [5]. For convex
optimization using random alternating projections, see [14]. Applications to
best approximation are in [6]. Proofs of extensions of the Ergodic theorem
are in [9]. A useful survey geared towards projections into the intersections
of convex sets is in [4].

One important extension is due to Halperin [23], who shows that the con-
clusion holds as stated for n subspaces with T = P1P2 · · · Pn. An elegant proof
of this using elementary arguments is in [29]. See Kassabov [25] for crucial
refinements in the present context.

There is some classical work on the rate of convergence in von Neumann’s
theorem. If M1, M2 are closed subspaces of the Hilbert Space H, let

(1) c = sup{ 〈v1, v2〉 | vi ∈ Mi ∩ (M1 ∩ M2)⊥, ‖vi‖ ≤ 1}.

This is the cosine of the angle between M1 and M2. If Pi is the projection
into Mi and PI is the orthogonal projection into M1 ∩ M2, Aronszajn [2],
proved that

(2) ‖(P2P1)n(x) − PI(x)‖ ≤ c2n−1‖x‖ for all x ∈ H.

This result is best possible, and some extensions to more subspaces are avail-
able. See [19, p. 220] and Section 5.5 below. To compare the exact conver-
gence rate with (1), (2) above, we note that the cosine of the two subspaces
in the Burkholder’s paper clip example is c = 1

2 . Section 4.2 below contains
illustrations for the Gibbs sampler.

3. Burkholder’s theorem

Let (Ω, F , P ) be a probability space and consider the Hilbert space H =
L2(P ). Let A1, A2 be sub-σ algebras of F and M1, M2 the closed subspaces
of A1, A2 measurable functions respectively in H. For U ∈ L2(P ), it is well
known that the orthogonal projection of U onto Mi is given by the conditional
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expectation E(U | Ai). Thus let

U0 = U, U2i+1 = E(U2i| A1), U2i+2 = E(U2i+1| A2), 0 ≤ i < ∞.

Burkholder and Chow [13] proved that

(3) Un → E(U | Ā1 ∩ Ā2), almost surely.

Here Ā1, Ā2 denote the P -completions of the σ-algebra’s A1, A2, respectively.
The original motivation for studying (3) came from mathematical statistics.
In trying to construct ‘minimal sufficient subfields’ Burkholder [12] found
examples of families of probability measures admitting A1 and A2 as sufficient
subfields with A1 ∩ A2 not sufficient. This is still surprising, 50 years later.
The limiting result (3) allowed him to get his hands on E(U | A1 ∩ A2).

The convergence (3) was abstracted and refined by Burkholder [10], [11],
[13], Rota [33] with recent results in [7], [16], [17], [35]. Burkholder [11] and
Ornstein [31] show that convergence in (3) can fail if only X ∈ L1(P ). These
authors show that a necessary and sufficient condition is that

(4)
∫

|X(ω)| log
(
1 + |X(ω)|

)
P (dω) < ∞.

The equivalence (3) ⇔ (4) is called Burkholder’s theorem.
The extension to more than two σ-algebras was open for more than forty

years. Consider the case of three σ-algebras A1, A2, A3. If the iterations are
taken in order

A1, A2, A3, A2, A1, A2, A3, A2, A1, . . .

then the original arguments go through to show almost sure convergence
to E(U | Ā1 ∩ Ā2 ∩ Ā3).The straightforward extension of Halperin’s theorem,
where the iterations are taken in order

A1, A2, A3, A1, A2, A3, A1, A2, A3, . . .

resisted solution. Convergence was finally proved for U ∈ L2 by Delyon and
Delyon [17], and for U ∈ Lp by Cohen [16]. Their argument uses a fascinating
extension of spectral theory to nonnormal operators. It cries out for a more
probabilistic proof.

We close this section with three remarks on Burkholder’s theorem. The
first remark translates Burkholder’s folding example (Section 2) into prob-
ability language, the second remark deals with projections which cannot be
represented via conditional expectation, and the third remark deals with null
sets.

Remark 1. It is straightforward to give a probabilistic setting for the
folded string example at the start of Section 2. Let Ω = {1,2,3}, F = {All
subsets of Ω}, P ({1}) = P ({2}) = P ({3}) = 1

3 . Using the notation of the ex-
ample, let U ∈ L2(P ) with U(1) = x,U(2) = y,U(3) = z. Set

A1 = σ({1,2}, {3}), A2 = σ({1}, {2,3}).
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Then,

E(U | A1)(i) =

⎧⎪⎨
⎪⎩

x+y
2 if i = 1,

x+y
2 if i = 2,

z if i = 3.

E(U | A2)(i) =

⎧⎪⎨
⎪⎩

x if i = 1,
y+z
2 if i = 2,

y+z
2 if i = 3.

Here Ā1 ∩ Ā2 = {φ,Ω} and E(U | Ā1 ∩ Ā2)(i) = x+y+z
3 for i = 1,2,3. The suc-

cessive foldings amount precisely to iterated expectations.

Remark 2. Not all projections into closed subspaces can be realized by
computing conditional expectations. For example, consider H = L2((−π,π),
dx
2π ). The subspace M1 of functions which vanish (almost surely) on a subset of
(−π,π) is closed, but not the range of conditional expectations given a sub-σ-
algebra (the constant functions are not in M1). The subspace M2 of functions
with vanishing negative Fourier coefficients is a closed subspace containing the
constants, but not the range of conditional expectation given a sub-σ-algebra
(the projection of a positive function in M2 need not be positive). Alternating
projections into these subspaces are a key ingredient of the classical work
of Landau, Logan, Pollack and Slepian on band limited functions. See [26]
for a readable overview. An elegant necessary and sufficient condition for
a subspace of L2(P ) to be the range of a conditional expectation operator
(for some sub-σ-algebra) is given in Neveu [30, Exercise IV.3.1, p. 123]. The
subspace V must be closed, contain the constants and if f is in V , then
max(f,0) must be in V .

Example 1. For a finite space X = {1,2, . . . , n}, let θi > 0,
∑n

i=1 θi = 1.
A σ-field A on X is specified by a partition {A1,A2, . . . ,Ak },Ai �= ∅,Ai ∩ Aj =
∅,

⋃k
i=1 Ai = X . Let PA be the projection from L2(X , θ) to L2(X , A, θ). The

matrix of PA has (i, j) entry θ̄jδA(i, j), 1 ≤ i, j ≤ n, where δA(i, j) is one or
zero as i and j are in the same block Al and θ̄j = θj∑

i∈Al
θi

. It follows that

the number of subspaces of L2(X , θ) which are the range of a conditional
expectation operator is the Bell number B(n) (that is, the number of set
partitions on {1,2, . . . , n}). There are a continuum of other subspaces.

Remark 3. The projection on the right side of (3) is onto the Ā1 ∩ Ā2

measurable functions. Without the completions, convergence may fail. We
find the following examples instructive.

Example 2. Let (Ω, F ) be the Borel unit square, with Ai as in Example 2,
with P the uniform probability on the diagonal Δ. Take Ai = σ(Xi) with
Xi(ω) = ωi for ω = (ω1, ω2). Then A1 ∩ A2 = {φ,Ω}, and Ā1 ∩ Ā2 = F . Here
U2i+1(ω1, ω2) = U(ω1, ω1) and U2i+2(ω1, ω2) = U(ω2, ω2). The iterations do
not converge.

Example 3. Let Ω be the Borel unit square. Let P be the uniform distri-
bution supported on the upper left and lower right quarter squares. Now P



STOCHASTIC ALTERNATING PROJECTIONS 969

has a density f(x, y) with respect to Lebesgue measure on Ω, but Ā1 ∩ Ā2 con-
tains the 4 quarter squares. Thus, the iterations do not converge to constant
functions.

A crucial step in connecting the Burkholder–Chow result (3) and other
results below to the Gibbs sampler is understanding when Ā1 ∩ Ā2 = A1 ∩ A2.
After all, if Ω = Ω1 × Ω2 is a product space and Ai is the σ-algebra generated
by the projection on the ith coordinate, A1 ∩ A2 is the trivial σ-algebra and (3)
then says Un converges to E(U) if Ā1 ∩ Ā2 = A1 ∩ A2. An elegant necessary
and sufficient condition has been developed in response to questions raised
by an early version of the present paper by Patrizia Berti, Luca Pratelli and
Pietro Rigo [7], [8]. Here is one version of their result.

Theorem 2 (Berti, Pratelli, Rigo). Let (Ω, F , P ) be a probability space
and A1, A2 ⊆ F sub σ-fields. Let N = {F ∈ F : P (F ) ∈ {0,1}}, Ḡ = σ(G ∪ N )
for any subclass G ⊆ F . In order that Ā1 ∩ Ā2 = A1 ∩ A2 it is necessary and
sufficient that

A1 ∈ A1, A2 ∈ A2 and P (A1 ∩ A2) = P (Ac
1 ∩ Ac

2) = 0

implies P (A1 � B) = 0 or P (A2 � B) = 0 for some B ∈ A1 ∩ A2.

They give many useful corollaries, some of which are down to earth and
useful for the Gibbs sampling application. See Section 4.

4. Glauber dynamics

Glauber dynamics, also known as the Gibbs sampler or the Heat–Bath algo-
rithm, is an important tool of scientific computing. It gives a way of sampling
from an intractable high dimensional probability density (perhaps known up
to a normalizing constant) by a sequence of one-dimensional updates. We will
not attempt to review the extensive literature on the Gibbs Sampler here. See
[15] for a gentle introduction, [27] for a textbook treatment and [24], [32] for
the literature on rates of convergence. A more detailed review is in [20, Sec-
tion 2] and [21]. For background on Markov chains and Monte Carlo methods
see [3], [24], [28].

In the present paper, we focus on two-component Gibbs Samplers. Thus,
let f(x, y) be a probability density with respect to the σ-finite measure μ × ν
on X × Y . This has marginal densities

m1(x) =
∫

f(x, y)ν(dy), m2(y) =
∫

f(x, y)μ(dx).

For simplicity, suppose 0 < m1(x),m2(y) < ∞ for all x, y. Then, the condi-
tional densities

f(x|y) =
f(x, y)
m2(y)

, f(y|x) =
f(x, y)
m1(x)
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are well defined. The Gibbs Sampler is a Markov chain which may be de-
scribed by

• From (x, y) choose y′ from f(y′ |x) and then x′ from f(x′ |y′).

This gives a kernel (w.r.t. μ × ν):

k(x, y;x′, y′) = f(y′ |x)f(x′ |y′).

Let kn(x, y;x′, y′) =
∫

kn−1(x, y;w,z)k(w,z;x′, y′)μ(dw)ν(dz), with Kn the
associated operator on L2(f). There is an obvious extension to higher di-
mensional problems. We stick to the two dimensional case for most of this
section.

Here is a concrete example used throughout this section. Let

X = {0,1,2,3, . . .}, Y = (0, ∞),

μ(dx) = Counting measure, and ν(dy) = Lebesgue measure. Set

f(x, y) =
e−2yyx

x!
.

This example is natural in a Bayesian Statistics setting where

f(x|y) =
e−yyx

x!

is the Poisson distribution with parameter y. If e−y is taken as the prior
density of y, the joint density is f(x, y). The conditional density

f(y|x) =
2x+1e−yyx

x!

is the Γ
(
x + 1, 1

2

)
density.

The successive steps in Glauber dynamics amount to iterated projections
in the Hilbert space L2(f). This allows the theorems of von Neumann and
Burkholder (and their extensions) to be brought in. The connection with
von Neumann’s theorem has been used by Amit [1] to give rates of conver-
gence for special cases. These ideas are extended below. In Section 4.1, we
make a more explicit connection between projections and the steps of Glauber
dynamics. Section 4.2 pulls together some (known) results linking angles be-
tween subspaces, maximal correlation and spectral gaps. Section 4.3 makes
explicit the strengths and weaknesses of the rate from von Neumann’s theo-
rem. Section 4.4 explains how Burkholder’s theorem coupled with a result of
Berti–Pratelli–Rigo [7] translates into a natural ergodic theorem when spe-
cialized to Glauber dynamics.
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4.1. Gibbs sampling as alternating projections. We now show that the
Gibbs sampler can be regarded as an alternating projection algorithm. This
connection was first exploited by Amit [1]. He used an extension of Halperin’s
bound to get rates of convergence in a weak L2 distance for Gaussian variables
and then used the comparison approach of [22] to treat perturbations. As
explained below, these techniques give bounds that can be “off” by orders of
magnitude, in natural problems that are far from Gaussian.

Let (X , μ(dx)), (Y , ν(dy)) be σ-finite measure spaces. Let f(x, y) be a prob-
ability density with respect to μ × ν. This determines a Hilbert space L2(f).
If X(x, y) = x,Y (x, y) = y are the coordinate projections and A1 = σ(Y ), A2 =
σ(X) the associated σ-algebras, let the marginals be

mX(x) =
∫

f(x, y)ν(dy), mY (y) =
∫

f(x, y)μ(dx).

Let

M1 = L2(σ(Y ), f) =̃L2(mY ), M2 = L2(σ(X), f) =̃L2(mX).

These are closed subspaces of L2(f) and the orthogonal projections onto
M1, M2 are realized by the conditional expectations E(· | A1),E(· | A2) respec-
tively. See [30, Proposition IV.3.1, p. 122].

Consider the Gibbs Sampling Markov chain introduced at the beginning of
this section. This has transition density

(5) k(x, y;x′, y′) = f(x′ |y′)f(y′ |x).

We provide one of our main results.

Theorem 3. Let K be the operator on L2(f) associated to the Gibbs
sampling kernel (5). Let P1, P2 be orthogonal projections onto the subspaces
M1, M2 defined above. Then,

K = P2P1 and so Kn = (P2P1)n for n = 0,1,2, . . . .

Proof. Using (5), for U ∈ L2(f),

K(U)(x, y) =
∫

X

∫
Y

U(x′, y′)f(y′ |x)f(x′ |y′)ν(dy′)μ(dx′),

and,

P2P1(U)(x, y) = E[P1(U)|X = x]
= E[E[U |σ(Y )]|X = x]

=
∫

Y

{∫
X

U(x′, y′)f(x′ |y′)μ(dx′)
}

f(y′ |x)ν(dy′)

=
∫

Y

∫
X

U(x′, y′)f(x′ |y′)f(y′ |x)μ(dx′)ν(dy′)

=
∫

X

∫
Y

U(x′, y′)f(y′ |x)f(x′ |y′)ν(dy′)μ(dx′).
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This proves the result for n = 1. The result for general n now follows by
induction. �

The argument can be generalized to higher dimensions. Let (Xi, μi(dxi)),
be σ-finite measure spaces for i = 1,2, . . . , k. Let f(x1, x2, . . . , xk) be a proba-
bility density with respect to

∏k
i=1 μi. In what follows, we will write

∏k
i=1 dxi

for the σ-finite dominating measure
∏k

i=1 μi(dxi). Let Xi(x1, x2, . . . , xk) =
xi, i = 1,2, . . . , k, be the coordinate projections. Define the σ-algebras

Aj = σ(X1,X2, . . . ,Xj−1,Xj+1, . . . ,Xk), 1 ≤ j ≤ k,

and the corresponding Hilbert spaces

Mj = L2(Aj , f), 1 ≤ j ≤ k.

The orthogonal projection Pj onto Mj is realized by the conditional expec-
tation E(· | Aj),1 ≤ j ≤ k. Consider the Gibbs sampling algorithm with tran-
sition density

(6) k(x1, x2, . . . , xk;x′
1, x

′
2, . . . , x

′
k) =

k∏
i=1

f(x′
i|x1, x2, . . . , xi−1, x

′
i+1, . . . , x

′
k).

Theorem 4. Let K be the operator on L2(f) associated to the Gibbs sam-
pling chain (6). Then,

K = PkPk−1 · · · P1 and so Kn = (PkPk−1 · · · P1)n for all 0 ≤ n < ∞.

Proof. Let x = (x1, x2, . . . , xn) and x′ = (x′
1, x

′
2, . . . , x

′
n). Using (6), for U ∈

L2(f), we have,

K(U)(x)

=
∫

X1

∫
X2

· · ·
∫

Xk

U(x′)
k∏

i=1

f(x′
i|x1, x2, . . . , xi−1, x

′
i+1, . . . , x

′
k)

k∏
i=1

dx′
i.

Define U0 = U and

Uki+j = E
(
Uki+(j−1)| Aj

)
, j = 1,2, . . . , k, i = 0,1,2, . . . .

Then,

PkPk−1 · · · P1(U)(x1, x2, . . . , xk)
= Uk(x1, x2, . . . , xk−1)
= E[Uk−1| Ak](x1, x2, . . . , xk−1)

=
∫

Xk

Uk−1(x1, x2, x3, . . . , xk−2, x
′
k)f(x′

k |x1, x2, . . . , xk−1)dx′
k

=
∫

Xk

∫
Xk−1

Uk−2(x1, . . . , xk−2, x
′
k−1, x

′
k)f(x′

k−1|x1, . . . , xk−2, x
′
k)

× f(x′
k |x1, x2, . . . , xk−1)dx′

k−1 dx′
k.
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The last statement uses Uk−1 = E[Uk−2| Ak−1]. Continuing like this we get,

PkPk−1 · · · P1(U)

=
∫

Xk

∫
Xk−1

· · ·
∫

X1

U(x′)
k∏

i=1

f(x′
i|x1, x2, . . . , xi−1, x

′
i+1, . . . , x

′
k)

k∏
i=1

dx′
i.

This proves the result for n = 1. The result for general n now follows by
induction. �

4.2. Angles between subspaces, maximal correlation and spectral
gaps. The results of this section are known, or part of the folklore. We use
them below and present them in a unified fashion for the readers convenience.
With notation as in Section 4.1, the bound in Aronszajn’s estimate of the
convergence of (P2P1)n to PI involves the cosine of angle between M1 and
M2:

c = sup{〈v1, v2〉 | vi ∈ Mi ∩ (M1 ∩ M2)⊥, ‖vi‖ ≤ 1, i = 1,2}.

Recall that in the setup of Section 4.1, Pi = E(· | Ai), i = 1,2. The maximal
correlation between A1 and A2 is defined by

γ(A1, A2) = sup{E(X1X2) | Xi ∈ Mi,E(Xi) = 0,E(X2
i ) ≤ 1, i = 1,2}.

Finally, consider the operator Q = P1P2P1 : L2(σ(X), f) → L2(σ(X), f). This
is a self-adjoint contraction. Let β1 be the second largest eigenvalue of Q; β1

may be taken as the maximum of the support of the spectral measure of
I − Q, if eigenvalues do not exist. The classical minimax characterization of
eigenvalues shows that

β1 = sup{ 〈Qg, g〉 | g ∈ M1,E(g) = 0,E(g2) = 1}.

Theorem 5. Under the assumption Ā1 ∩ Ā2 = {φ,Ω}, with notation as
above,

c = γ(A1, A2) =
√

β1.

Proof. Note that if Ā1 ∩ Ā2 = {φ,Ω}, then M1 ∩ M2 consists of constant
functions. Hence, (M1 ∩ M2)⊥ consists of mean zero functions. Since Pi =
E(· | Ai) it follows that γ(A1, A2) = c.

By definition of the orthogonal projection P1, for any h ∈ H, we have

(7) 〈P1h,h〉1/2 = ‖P1h‖ = max{ 〈g,h〉} | g ∈ M1, ‖g‖ ≤ 1}.

Indeed, for any g ∈ M1, h − P1h is orthogonal to g and thus 〈g,h〉 = 〈g,P1h〉.
It follows that

max{ 〈g,h〉} | g ∈ M1, ‖g‖ ≤ 1} = ‖P1h‖.

The first equality in (7) follows from the fact that P1 is self-adjoint and is a
projection. For any v2 ∈ M2 ∩ (M1 ∩ M2)⊥, we have

sup{〈v1, v2〉 | v1 ∈ M1 ∩ (M1 ∩ M2)⊥, ‖v1‖ ≤ 1} = 〈P1v2, v2〉1/2
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and it follows that

(8) c = sup{〈P1v2, v2〉1/2 | v2 ∈ M2 ∩ (M1 ∩ M2)⊥, ‖v2‖ ≤ 1}.

This can also be understood as saying that the norm of P1 as an operator
from M2 ∩ (M1 ∩ M2)⊥ to M1 is bounded by c. By symmetry, c is also a
bound on the norm of P2 acting from M1 ∩ (M1 ∩ M2)⊥ to M2.

In the Gibbs sampling setup, the operator Q = P2P1P2 : L2(σ(X), f) →
L2(σ(X), f) is evidently self-adjoint and corresponds to the marginal x-chain
of the Gibbs sampling markov chain. Its norm

‖Q‖0 = ‖Q‖L2
0(σ(X),f)→L2

0(σ(X),f)

on
L2

0(σ(X), f) = {g ∈ L2(σ(X), f) | E(g) = 0}
can be computed (by self-adjointness) as

‖Q‖0 = sup{ | 〈Qu,u〉| | u ∈ L2
0(σ(X), f);E(u2) ≤ 1}.

Observe further that since P2 is self-adjoint, for u ∈ M2,

〈Qu,u〉 = 〈P2P1P2u,u〉 = 〈P1u,u〉.
Hence, using (8), we have established that

(9) ‖Q‖0 = c2.

Note that by the definition of β1, we get,

β1 = sup{ 〈Qg, g〉 | g ∈ L2(σ(X), f),E(g) = 0,E(g2) = 1}
= sup{ 〈P1g, g〉 | g ∈ L2(σ(X), f),E(g) = 0,E(g2) = 1}
= c2.

Hence, the result is proved. �
4.3. Convergence theorems. With notation as above, suppose for the
moment that f(x, y) > 0 for all x, y. Then, for all U ∈ L2(f), with Ū =∫

X × Y U(x, y)f(x, y)μ(dx)ν(dy), von Neumann’s theorem shows that

(10)
∫ (

KnU(x, y) − Ū
)2

f(x, y)μ(dx)ν(dy) → 0 as n → ∞.

The examples in the remark at the end of Section 3 show that some conditions
on f are needed to ensure convergence. This is the subject of careful study
by Berti–Pratelli–Rigo. Their results show that it is sufficient to assume that
the support of f is open and connected (assuming that X and Y are second
countable topological spaces). They have much more general results and we
will merely assume their conclusion

σ(X) ∩ σ(Y ) = {φ,Ω} up to P null sets.

It is natural to supplement the weak notion of convergence in (10) by con-
vergence of Kn((x, y), ·) to f in total variation distance for all (x, y). Here is



STOCHASTIC ALTERNATING PROJECTIONS 975

what elementary manipulations from Aronszajn’s bound give. We first treat
the countable case.

Theorem 6. Consider the Gibbs sampling chain as described in the begin-
ning of Section 4. Let Ω = X × Y be countable. Assume σ(X) ∩ σ(Y ) is trivial
and let c be as in Theorem 5. Then for any ω = (x, y) ∈ Ω, and all n ≥ 1,

‖Kn
(x,y) − f ‖TV ≤ f(x, y)− 1

2

2
c2n−1,

where Kn
(x,y) = Knδ(x,y).

Proof. Consider the self-adjoint operator Q = P2P1P2 acting on L2
0(σ(X),

f). By (9), ‖Q‖0 = c2. Note that

(P1P2)n = P1Q
n−1,

and c bounds the norm of P1 from L2
0(σ(X), f) to L2

0(σ(Y ), f). Hence, it
follows that

‖(P1P2)n‖L2
0(f)→L2

0(f) ≤ c2n−1.

We observe initially that (P1P2)n = (Kn)∗, and then for ω = (x, y), using
g = f(ω)−1

δω − 1 we get,

‖(P1P2)ng‖2 ≤ ‖g‖2c
2n−1

⇒
( ∑

ω′ ∈Ω

((Kn)∗g(ω′))2f(ω′)
) 1

2

≤
( ∑

ω′ ∈Ω

g(ω′)2f(ω′)
) 1

2

c2n−1

⇒
( ∑

ω′ ∈Ω

(
(Kn)∗(ω′, ω)

f(ω)
− 1

)2

f(ω′)
) 1

2

≤ f(ω)− 1
2 c2n−1

⇒
( ∑

ω′ ∈Ω

(
Kn(ω,ω′)

f(ω′)
− 1

)2

f(ω′)
) 1

2

≤ f(ω)− 1
2 c2n−1

⇒
∑
ω′ ∈Ω

|Kn(ω,ω′) − f(ω)| ≤ f(x, y)− 1
2 c2n−1

⇒ ‖Kn
(x,y) − f ‖TV ≤ f(x, y)− 1

2

2
c2n−1.

Hence, the result is proved. �

For general state space Ω, these bounds on total variation are not applicable
because it may be that P (ω) = 0 for all ω. However, in many examples the
operators Pi, i = 1,2, will have the property that

P2P1δω = ψω

is in L2(f), for any fixed ω. Here P2P1δω is obtained as the limit of P2P1φn

where φn is a sequence of (nonnegative) functions in L2(f) such that φn → δω
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(in total variation). In such cases, with ω = (x, y), one obtains

(11)
∥∥Kn

(x,y) − f
∥∥

TV
≤ ‖ψx,y ‖1/2

2 c2n−3.

From the definition,

ψx,y(x′, y′) =
∫

k(x′, y′;x′ ′, y′ ′)δ(x,y)(x′ ′, y′ ′)μ(dx′ ′)ν(dy′ ′)

= k(x′, y′;x, y)
= f(y|x′)f(x|y),

and

‖ψx,y ‖2
2 = f(x, y)2

∫
X

∣∣∣∣ f(x′ |y)
mX(x′)

∣∣∣∣
2

mX(x′)dμ(x′).

Whenever ‖ψx,y ‖2
2 < ∞, the bound (11) is a useful bound. We further note

that ‖ψx,y ‖2
2 < ∞ for most of the examples considered in [20]. It is important

to note that all of these bounds just use the second eigenvalue β1. For a
Markov chain M with stationary distribution π, a typical bound based on the
second largest eigenvalue β of the operator corresponding to K̂ is given by

(12) ‖Mn
ω − π‖TV ≤ π(ω)− 1

2

2
βn.

Here is an example showing that just using the second eigenvalue can give
results which are off. Consider the Poisson–Exponential example introduced
at the beginning of this section. In [20], [21] it is shown that for any starting
values (x, y), the following bound holds.

‖Kn
x,y − f ‖TV ≤ 2−(c+1) for n = log2(x + 1) + c, c > 0.

This is a sharp form of the informal statement “order log2 x steps suffice for
convergence.” The reference also shows this is sharp in various senses.

It is further shown that the convergence of the bivariate chain is controlled
sharply by the marginal x-chain. The self-adjoint operator corresponding
to the marginal x-chain Q has second largest eigenvalue 1

2 . The stationary
distribution is given by mX(x) = (1

2 )x+1. Hence, the bound (12) becomes,

‖Qn
x − mX ‖TV ≤

(( 1
2 )x+1)− 1

2

2

(
1
2

)n

= 2
x−1
2 −n.

The last inequality implies that the marginal x-chain (and by the results in
[20], the bivariate chain) is close to the stationary distribution after order x−1

2
steps. A careful use of Theorem 6 would also lead to the same conclusion.
This bound is “off” compared to the correct answer log2(x).

4.4. Applications of Burkholder’s theorem. With notation as above,
the most naive application of Burkholder’s theorem to the Gibbs sampler gives
the following result. Suppose that σ(X) ∩ σ(Y ) = {φ,Ω}. Then, for all U such
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that
∫

X × Y |U(x, y)| log(1 + |U(x, y)|f(x, y)dμ(x)dν(y) < ∞,

(13) KnU(x, y) →
∫

X × Y
U(x, y)f(x, y)dμ(x)dν(y).

This clearly refines (10) of Section 4.3. Further, using our results from Sec-
tion 4.1, and Burkholder’s theorem, Berti–Pratelli–Rigo [7] give the following
result.

Theorem 7. Let (Xi, Yi)0≤i<∞ be successive states of the Gibbs sampler
with (X0, Y0) ∼ f . For U ∈ L1(f), let

mn(U) =
1
n

n−1∑
i=0

U(Xi, Yi).

Then

mn(U) →
∫

X × Y
U(x, y)f(x, y)dμ(x)dν(y) for all U ∈ L1(f),

if and only if σ(X) ∩ σ(Y ) is trivial.
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