ON A CONJECTURE OF MILNOR
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Introduction

Let X denote a connected space dominated by a finite CW-complex and let
7 = m(X). In his paper Finiteness conditions for CW-complexes [6], C. T. C.
Wall associates to X an element ¢(X) ¢ Ko (Z(x)), called the obstruction to
finiteness of X, whose vanishing is necessary and sufficient for X to be of the
homotopy type of a finite complex. Also Wall shows that given any finitely
presentable group = and any ¢ € Ky (Z(x)) there exists a CW- complex X dom-
inated by a finite complex and satisfying m(X) =~ 7;0(X) = o.

Any compact topological manifold is a retract of a finite complex. As such
to each connected compact manifold M is associated an element
o(M) e Ko(Z(w)) (where # = m M) which is the obstruction to finiteness of
M. Tt is a conjecture of Milnor that for a connected, closed manifold M" of
dimension 7 the relation (M) = (—1)"¢(M) holds, where bar denotes the
involution in Ky(Z(x)) arising from the involution Y m;x; — 2 mix;" of
Z(w). Thus if this conjecture is proved it will follow that not every element
in Ky(Z(x)) can be realised as the Wall obstruction of a closed manifold,
where 7 is an arbitrary finitely presentable group. Siebenmann in his thesis
[4] proves this equality with the additional assumption that M X Rcarries a
differentiable structure for some integer k. The object of this paper is to prove
this equality for all closed, orientable manifolds.

The author has learned that the formula (M) = (—1)"¢(M) for a closed
orientable manifold M of dimension n has been proved independently by
Milnor and Wall and that Milnor’s proof will appear in a forthcoming paper of
Wall entitled Poincaré complexes I to appear in the Annals of Mathematics
shortly." This proof is purely algebraic whereas the author’s proof is more geo-
metric. Also the author has learned that the result on the Wall obstruction
for sphere bundles obtained in this paper has also been obtained by S. Gersten.
But none of these has appeared in print at the time of acceptance of this paper.

The idea of the proof can briefly be explained as replacing M X R*in
Siebenmann’s proof by the total space of an orientable topological R* bundle
(i.e. a microbundle) over M carrying a differentiable structure. In the course
of his proof Siebenmann uses the fact that the Wall obstruction for M X §**
iszero when k — 1lisodd. For our proof we have to study the Wall obstruction
of a sphere bundle over a connected CW-complex X dominated by a finite
complex. We have information only in the case of S bundles when & = 2
(Theorem 3.3). For an " bundle over X we do not have any information.

Received September 22, 1967.
1 This paper of Wall’s has already appeared in vol. 86 (1967), pp. 213-245.
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1. Notations and conventions

We write f : A ~ A’ to denote that f is a homotopy equivalence of the space
A with the space 4’. Iff: (4, B) — (A’, B’) is a map of pairs of topological
spaces (i.e.tosay B C A; B’ € A’ and f(B) C B’) satisfying f: A ~ A’ and
f|B: B~ B’ then we call f a pseudo homotopy equivalence or shortly a p.h.
equivalence of (4, B) in (4’, B’). Asusual by a CW-pair (X, Y) we mean a
CW complex X together with a subcomplex ¥ of X. We denote by & (Re-
spectively €) the family of CW complexes dominated by a finite complex (re-
spectively having in each dimension a finite number of cells). By a fibre
bundle we mean a locally trivial fibre space. Thus by a sphere bundle of fibre
dimension k or shortly an S*-bundle over B we mean a locally trivial fibre
space over B with fibre S*.

Let C, C’ be chain complexes over aring A and ¢ : C'— C’ a chain map. By
“abuse of language’” we will refer to ¢ as a chain equivalence if it induces iso-
morphisms of homology modules. If ¢ : (C, D) — (C’, D’) is a chain map of
pairs of chain complexes (i.e. to say D and D’ are subcomplexes of C and C’
respectively and ¢(D) C D’) we call ¢ a chain equivalence of pairsif¢ : C— C’
and ¢ : D — D’ are chain equivalences. In this case the induced chain map
¢ : C/D — C'/D’ is also a chain equivalence.

2. Sphere bundles and cohomology extensions

The main reference for the results stated here is Section 7, Chap. 5 of [5]
dealing with the homology of fibre bundles. The homology and cohomology
groups we use are the singular ones and when no coefficients are mentioned we
mean integer coefficients.

Let (B, E) be a fibre bundle pair over B with fibre pair (D*, 8*"), with pro-
jection pair (p, p), k being an integer =1. In otherwords (E, E) is a pair
of topological spaces with £ C E and p : E — B is a map with the property
that 3 an open covering { Uq} 4r of B and for each @ a homeomorphism

ba: Ua X (D", 87) = (p7(Ua), ' (U) n E)

of pairs such that the composition p o 6, : Ua X D' — U,is the projection onto
the first factor. The map p : E — B is the restriction of p to E. For any
z e B the pair

(Di, 857 = (p7'(2), pM(x) n E)

is the fibre pair over z. We now recall the definition of a cohomology ex-
tension.

DerinitioN 2.1. By a cohomology extension for the bundle pair (E, E)
we mean a cohomology class U ¢ H*(E, E) such that for each z ¢ B the in-
clusion (D%, 8;) C (E, E) carries U onto a generator of H" (D}, 85).
When such a cohomology extension exists the pair (E, E) is said to be an
orientable bundle pair. .

If tisa (k — 1) sphere bundle with total space E; and projection p; : E; — B,
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the mapping cylinder E; of p; with the canonical retraction p; : E — B gives
a bundle pair (E; , E;) with fibre (D¥, 8*™). The sphere bundle ¢ is said to be
orientable if the bundle pair (E; , E;) is orientable.

For the rest of this section X denotes a connected space which is of the
homotopy type of a CW complex; = denotes the fundamental group of X and
X the universal covering of X. As usual = is considered as a group of oper-
atorson X. Let @l X — X denote the covering projection.

Let now (E, E) be an orientable bundle pair over X with fiber pair
(D*, 8*) and pro:ectlon pair (p, p). Choose a cohomology extension
UeH*(E, E). Let veCS*(E, E) be a fixed cocyle representing U. (We
denote the singular chain and cochain complexes of (E, E) by CS(E, E) and
CS*(E, E) respectively.) Let p:E — X be the pull back of the bundle
p:E — X by means of the map a: X — X. Thus £ is the subspace of X X E
consisting of elements (&, e) such that a(z) = p(e). The map p:E — X
is given by p(&, ) = & The group = acts in an obvious way on E, namely
a.(%, e) = (a.%, e) forallaer and (&, e) e . The map 8:E — E given by
ﬁ(w, e) = e is clearly a bundle map covering the map a:X — X. Also it
is clear that 8: — E is the universal covering of E. Let B* = g7'(E).

Then
=p|E:E—-X

is precisely the pull back of the bundle p:E — X by «:X — X and (£, E*)
is a bundle pair over X with fibre pair (D¥, 8*7). It is clear that
V = B*(U) e H*(E, E*) is a cohomology extension for the bundle pair (&, £*)
and that 5 = 8*(v) e CS*(E, E*) is a cocycle representing V.

The operations of « carry E* into itself and hence the singular chain complex
CS(E, E*) acquires the structure of a Z(r) chain complex.

Lemma 2.2. The map ¥ n :CSn(E, EY — CSnu(E, E) carrying any
c e CS,(E, E) into the cap product ¥ n ¢ is a homomorphism of Z(w)-modules.

Proof. Let f:An — E be any singular simplex. Let fq,1,...» denote the
front k-dimensional face of f and fu,...m the rear (m — k)-dimensional face
of f. Then by the definition of the cap-product

Faf= (=050 »)fam

Now, for any a e 7 it is clear that

@fo,---m = a(fo,--0) and (@)@, ---m = @(fe, m).
Also

(afo,m) = 7(a.(fo,--0) = ¥{Bx(a.(fo,-- 1))}
Since 8(a.8) = B(&) for every & ¢ E we see that

Y{Bs(a.(fo,---x))} = ¥{Bx(fo,---m)} = F{fw, -}
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Hence
70 (af) = (=D " P5(af) 0, i) (@ef) -

= (=1 P5(f 0, ) (@G, m)}
= a.{¥ nf}
This proves Lemma 2.2.

Let H be the chain complex over Z defined by H, = Z and H; = 0 fors # k.
The tensor product CS(X) ®, H is considered as a chain complex over
Z (=) in the obvious way, namely the r-operators on CS(X) as usual and trivial
m-operators on H.

Lemma 2.3. The map v:CS(E, B*) — CS8(X) ®, H defined by
7(c) = C8(P)(¥nc) ® 1
s a Z(w)-homomorphism of chain complexes tnducing isomorphisms in homology.

Proof. Clearly p:E — X commutes with operators of . That 7 is a
Z(7)-homomorphism follows from Lemma 2.2 and the above observation.
That it is a chain map inducing isomorphisms in homology is proved in Sec. 7,
Chap. 5 of [5].

3. The Wall obstruction for sphere bundles

Lemma 3.1. Suppose K is a finite simplicial complex and p:E — K «
locally trivial fibre space with fibre a finite simplicial complex L. Then E s
dominated by a finite complez.

Proof. Clearly E is a compact metric space satisfying the second count-
ability axiom and is further local ANR. By Theorem 3.2 of [3] it is an ANR.
Any compact ANR is dominated by a finite complex.

LemMma 3.2, Let X e F and p:E — X alocally trivial fibre space with fibre
o finite simplical complex. Then E is dominated by a finite complezx.

Proof. X is dominated by a finite simplicial complex. Let

xLgSx

be maps such that g o f ~ Idx with K a finite simplicial complex. If E’ denotes
the total space of the pull back of the bundle p: E — X by means of the map
g:K — X, it is easy to show that E is dominated by E’. By Lemma 3.1 E’ is
dominated by a finite complex and hence E too is dominated by a finite
complex.

Let now X denote a connected CW complex in § and = = m(X). If
p:E — X is a sphere bundle over X of fiber dimension k — 1 = 2 then E
is connected and py:m(E) — m(X) is an isomorphism. We use this iso-



442 K. VARADARAJAN

morphism to identify = (£) with #. By Lemma 3.2, E is a space dominated
by a finite complex and hence one can talk of the obstruction o (E) to finiteness
of E which is an element of Ky(Z(7)). The main result proved in this sec-
tion is the following.

THEOREM 3.3. Let X eF and m(X) = 0, m(X) = =x. Let
o(X) e Ko(Z(7))

be the obstruction to finiteness of X. Then for any orientable sphere bundle
p:E — X of fibre dimension k — 1 = 2 we have

o(E) =0 if (k — 1) isodd
20(X) if (k — 1) is even.

Remark. This theorem can be thought of as a generalization of the product
formula for Wall obstruction to orientable sphere bundles of fibre dimen-
sion = 2.

For the rest of this section we will be considering only connected spaces and
hence the word space will mean a connected space. Before actually giving
the proof of Theorem 3.3 we state some lemmas all of which are easy con-
sequences of standard auguments but as we need them in the proof of the
theorem we prefer to state them separately and indicate their proofs.

LemMa 3.4. Let (A, B) be a pair of spaces such that A and B are separately
dominated by finite complexes. Then 3 a CW pair (P, Q) with P e (and
hence Q € @ also) and a p.h. equivalence f:(P, Q) — (A4, B).

Proof. Let 2:B — A denote the inclusion. Since A, B are dominated by
finite complexes 3 elements Y, Z in € and homotopy equivalences ¢:Y — B;
v:Z —A. Let0:4A — Z be a homotopy inverse to . Let g:Y — Z be any
cellular map such that g ~ 01p: Y — Z. Let M, be the mapping cylinder of g.
Then clearly M, e@. Ifv:M,— Z is the canonical retraction (which is also a
homotopy equivalence) we have voj = ¢ where j: ¥V — M, is the obvious
inclusion. Now yopoj = Yog ~ Polfip ~ 1. Since j is a cofibration I
amap h:M,— A withh ~yovandhoj =¢. NowP = M,,Q = Y and
f = h clearly satisfy the requirements of the lemma.

For any CW complex X we denote the cellular chain complex of X by C(X).
If f: X — Y is a cellular map there is an obvious induced map f«: C(X) — C(Y).
If X is the universal covering of X and = = m(X) then the operations of
x on X make C(X) a free Z(r)-chain complex. Also if f: X — ¥ is a cellular
homotopy equivalence one can choose a cellular “lift” 7: X — ¥ of f and the
induced map f: C(X) — C(Y) is a chain equivalence of Z(r)-chain complexes,
when we agree to identify = (Y) with = by means of the inverse of the iso-
morphism fx:m(X) &~ m(Y).

LemMA 3.5. Let X be a countable CW complex and X the universal covering
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of X and let # = m(X). There exists a Z(w)-chain equivalence
u:C8(X) — C(X).

Proof. Since X is countable it is of the homotopy type of a locally finite
simplicial complex K [7]. We can choose cellular homotopy equivalences
¥:K — X; $:X — K which are inverses of one another in homotopy. The
universal covering X is also a locally finite simplicial complex and 1 (K)
operates without fixed points on K. By a result of S. Eilenberg [1] 3 a Z(x)-
chain map y:CS(K) — C(K) inducing isomorphisms in homology. Now

p = PxovoC8(p)

where ¥4 : C(K) — C(X) is gotten from §: K — X clearly satisfies the re-
quirements of Lemma 3.5.

Let (X, Y) be a CW pair with tx:m(Y) — m(X) an isomorphism, where
1:Y — X is the inclusion map. Let a:X — X be the projection from the
universal covering X of X. Then ¥ = o7'(Y) is the univeral covering of Y.
The operations of 7 = m(X) on X carry ¥ into itself and (C(X), C(¥)) and
(C8(X), CS(Y)) become Z(«) chain complex pairs.

LemMA 3.6. There exists a Z(w) chain equivalence
£\ (C(X), C(Y)) = (C8(X), CS(P).

Proof. Using J. H. C. Whitehead’s geometric realization of the singular
complex with the triangulation described on page 103 of [8] it is not difficult
to show that A a simplicial pair (K, L) and a p.h. equivalence
g:(K,L) — (X, Y). Using the fact that :Y — X is a cofibration it is easy
to get a map f:(X, ¥Y) — (K, L) such that g o f ~ Idx and
gof|Y ~1Idy:Y — Y. Alsofcan be chosen to be cellular. Let 8:K — K
be the projection from the universal covering K of K. Then since the in-
clusion of L in K induces an isomorphism of fundamental groups it follows
that 87(L) = L is the universal covering of L. If f:X — K is a cellular
“lift” of f in the sense that 8o f = fo a then f(¥) < Landf: (X, ¥) — (K, L)
is a p.h. equivalence. Similarly if § is a “lift” of g (i.e. to say ac§ = goB)
then §(L) ¢ ¥ and §: (K, L) — (X, Y) is a p.h. equivalence. Let

7:(C(K), C(L)) — (CS(K), CS(L))

be the natural inclusion of the simplicial chain complex pair into the singular
chain complex pair then N = CS(§) o j o f« satisfies the requirements of the
Lemma.

Lemma 3.7. Consider the same sttuation as explained in the paragraph
preceding Lemma 3.6. In addition assume that both X and Y are elements in
@ ng. Then the Z(w)-chain complex C(X)/C(¥Y) satisfies condition Gy of
Gersten [2] for some integer N.
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Proof. That C(X)/C(Y) is a free Z(w)-chain complex of finite type is
clear. (Finite type means each C,(X)/C,(Y) is a finitely generated Z(x)-
module.) Also since X and Y are separately dominated by finite complexes
we can find an integer L > 2 having the following properties:

(1) H(X,Y;®) = 0 for all local coefficient systems & over X and j > L
(2) Hi(X,¥;Z) =0forallj > L.

Denoting the complex C(X)/C(¥) by C we have B, = 3(Cru) a Z(w)-
module and it determines a local coefficient system ® over X. Let
9:Cry — Cy, be factored into

ConS B0,

with j the inclusion and ¢ the canonical map. H*(X, Y; ®) is the homology
of the complex of w-homomorphisms of C into By and thus ¢ determines an
(L + 1) cochain. Sincecod = 0itis a cocyle. Since H*™(X, ¥; ®) = 0,
¢ has to be a coboundary and hence ¢ = so 9 for some s:Cy, — By. Thus
¢ = sojoc and since ¢ is an epimorphism we have sj = Idz,. This shows
that By is a direct summand of C, and is hence projective. Now condition
(2) yields Zpy1 = Bry = 0(Crye) where Zp1y = Ker 9:Cpyy — Cr. Thus
Cry1/Bra =~ B is Z(w)-projective. Also it is finitely generated being a
direct summand of C, .

This shows that C satisfies condition G1.1 of Gersten. The above proof is
actually a reproduction of Wall’s proof in [6].

Proof of Theorem 3.3. Without loss of generality X can be assumed to be
an elementin @ nF. Infactd a Y e @ and a homotopy equivalence g: Y >~ Y.
It is now clear that ¥ ¢ € nF and that the total space 9*(E) of the pull back
bundle has the same homotopy type as E and it suffices to prove the theorem
for ¥ instead of X. We therefore assume X eC ng. If E is the mapping
cylinder of p:E — X and p:E — X the canonical retraction then (E, E)isa
bundle pair with (D, §*™) as the fibre pair and further it is orientable. By
Lemma 3.2 both E and E are dominated by finite complexes. Since

Dx- rn(E) g 7r,,(X)

is an isomorphism for all » it follows that p: E — X is a homotopy equivalence
and hence ¢(E) = o(X), (i.e. when we identify = (E) with = by means of the
isomorphism px). By Lemma 3.4 3 a CW pair (P, Q) with P, Q€ and a
p.h. equivalence f: (P, Q) — (E, E). Since ¥ — 1 = 2 by assumption, we
have m(E) —~ m(E) under the map induced by the inclusion. Hence the
inclusion Q@ C P induces an isomorphism m(P) =~ m1(Q). Applying Lemma
3.6 we get a chain equivalence

A (C(P), €(@)) — (CS(P), CS(Q))
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of Z(w)-chain complexes. It follows that
C8(f)eN: (C(P), C(Q)) — (CS(E), CS(E"))

is a chain equivalence of Z(r)-chain complexes, where & and E' have the
same meanings as in Section 2. Denoting the induced map

C(P)/C(Q) — CS(E)/CS(E') = CS(E, E)
by ¢ we see that
e:C(P)/C(Q) — CS(E, E)
is a Z(=) chain equivalence.
By Lemma 2.3, 7 : CS(E, E') — C8(X) ®, His a Z(x) chain equivalence.

Applying Lemma 3.5 and noting that = operators on H are trivial we see
that

p®Idg:C8(X) ® H— C(X) ®z H

is a Z(w)-chain equivalence. If we choose the usual triangulation for
(D¥, 8 (i.e. as (&% A™*) with A* the k-dim simplex) the complex H is
the same as C(D*, §*). Another description for C(X) ®z H is that it is
the % fold suspension »_* C(X) of C(X) as defined in [2].

We now recall the definition of the Wall obstruction for a free chain complex
C of finite type over Z(w) satisfying condition G for some integer N. It is
defined to be the element (—1)"[Cx/Bx] in Ko(Z(x)). It is shown in [2]
that if C satisfies Gy it also satisfies Gy for any ¢ = 0 and that

(—=1)™Cyyi| Bugd = (—1)"[Cx| Ba]

so that the Wall obstruction is a well defined element say k(C) e Ko(Z(w)).
With this definition the Wall obstruction of Y_* C is the same as (—1)*k(C).

Since P and @ are in € and are also dominated by finite complexes the
chain complexes C(P) and C(§) are free Z(=) chain complexes of finite type
satisfying condition Gy for some N. Also by Lemma 3.7, C(P)/C(J) = C
(say) has the same property. Now

(b ® Idg)oro0e:C— EkC(X)
is a chain equivalence and hence by a result of Gersten [2] we have
k(C) = k(ZFC(X)) = (—1)*K(C(X)) = (—1)'(X).

Since f: P~ E and p : E ~ X we have k(C(P)) = ¢(P) = o(E) = o(X).
Now, the exact sequence

0—-C(Q@ —CP)—C—0
yields

(i) k(C(P)) = k(C(@)) + k(C).
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Alsosincef|Q : Q >~ E wehave k(C(Q)) = ¢(Q) = ¢(E). Thus the equality
(i) yields ¢(X) = o(E) + (—1)"s(X) or what is the same as
c(E) =0 if & is even
2q(X) if kis odd
This completes the proof of Theorem 3.3.

4. The main theorem

The main theorem as already stated in the introduction is the following.

TureoreM 4.1. If M" is a closed, connected, orientable topological manifold
of dimension n then e(M) = (—1)"e(M).

Proof. M™ can be imbedded in R™* for some large % so as to have a normal
microbundle. Since M is orientable the normal microbundle has to be
orientable. By taking the imbedding M" < R™"* < R X R into R*"**
one gets a normal orientable disk bundle in R™**, If E is the total space of
this disc bundle then F is a compact topological manifold with boundary,
and if the boundary is denoted by E then the pair (E, E) is an orientable
bundle over M with fibre pair (D*™, §*). Now Int E being an open subset of
R"** i5 an open differentiable manifold and whenever k 4 1 = 2 this manifold
Int E has one end. Moreover it is clear that this end say ¢ is tame and that
the fundamental group m1(e) at the end ¢ is isomorphic to = = (M) whenever
k = 2. Let o(¢) be Siebenmann’s obstruction [4] to closing the manifold
Int E at the end e. Now E admits of a topological collar in £ and hence
E X R carries a differentiable structure. Since E is compact the manifold
E X R has two ends say 4 and e_ and there is a duality formula o(ey) =
(—1)""5(z_) relating the obstructions for closing E at the ends e, and e_
respectively [4]. However it is clear that one of the ends say e, is the same
as the end ¢ of Int E and that the obstructions o (&) and o(ey) are equal.
Also it is not difficult to see that ¢(F) = o(e). In addition one has

o(B) = o(ey) +o(e-) = a(es) 4+ (=10 (er)
= (oe4) + (=1)"To(es)

(Corollary 11.3 of [4]). Also 3 a CW complex X ¢F n € and a homotopy
equivalence f: X ~ M. It is easily seen that the total space *(E) of the
inverse image of the bundle p | E : E — M (where p : E — M is the projec-
tion of the bundle E) is of the same homotopy type as E. By Theorem 3.3
the obstruction for f*(¥) vanishes if & is odd and hence ¢(E) = 0 when k is
odd. We can without loss of generality choose ¥ odd. Then we have

o(er) = (=)™ Paler)

ie. to say o(BE) = (=1)"¢(E). But ¢(E) = o(M) and hence we have
o(M) = (—=1)"e(M).
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