ON A CLASS OF DOUBLY TRANSITIVE PERMUTATION GROUPS

BY
G. Glau uberman

Let G be a finite permutation group. We say that G is a Zassenhaus group if G is doubly transitive and if no non-identity element of G leaves three or more symbols fixed. The Zassenhaus groups have been determined by Zassenhaus [7, 8], Feit [3], Suzuki [6], and Ito [5]. In this paper we present an alternate proof of Ito's result.

Theorem (Ito). Let G be a Zassenhaus group of degree $m+1$ that does not contain a regular normal subgroup. If m is a power of an odd prime p, then G has an Abelian Sylow p-subgroup.

Our proof uses the notation of Feit [3]. Let N be the subgroup of G fixing one symbol, and let Q be the subgroup of G fixing an additional symbol. Let $g=|G|$ and $q=|Q|$. Since G has no regular normal subgroup, G is not a Frobenius group, and $q>1$. Thus N acts as a Frobenius group on the symbols it moves. Let M be the regular normal subgroup of N. Thus $|M|=m$, and
$N=M Q, \quad M \cap Q=1, \quad|N|=m q, \quad g=(m+1)|N|=(m+1) m q$.
We require the following result of Frobenius and Schur [4, (3.5), page 23]:
Theorem (Frobenius-Schur). Let χ be an irreducible complex character of a finite group G. Let

$$
\nu(\chi)=(1 /|G|) \sum_{x \in G} \chi\left(x^{2}\right)
$$

Then
(i) $\nu(\chi)=0$ if χ is not real-valued;
(ii) $\nu(\chi)=1$ if χ is the character of a representation of G over the real numbers; and
(iii) $\quad \nu(\chi)=-1$ otherwise.

The following result is a slight variation on Lemma 4 of [1].
Theorem (Brauer). Let G be a finite group of even order and let M be a subgroup of G. Suppose τ is an involution of G and U is a subset of M such that no element of U is a product of two conjugates of τ. Let θ be a generalized character of M that vanishes on $M-U$, and let θ^{*} be the generalized character of G induced by θ. Then

$$
\sum\left(\theta^{*}, \chi\right)_{G} \chi(\tau)^{2} / \chi(1)=0
$$

where χ ranges over all the irreducible characters of G.
Proof. Let $x \in U$. Since x is not a product of two conjugates of τ, a well-

[^0]known formula ((21), page 580, of [2]) yields
$$
0=\sum \frac{\chi(\tau)^{2} \chi\left(x^{-1}\right)}{\chi(1)}
$$

Multiply the above equation by $\theta(x)$ and sum over all $x \epsilon U$. We obtain

$$
0=\sum \frac{\chi(\tau)^{2}\left(\theta,\left.\chi\right|_{M}\right)_{M}|M|}{\chi(1)}
$$

By the Frobenius Reciprocity Theorem, $\left(\theta,\left.\chi\right|_{M}\right)_{M}=\left(\theta^{*}, \chi\right)_{G}$. This completes the proof of Brauer's Theorem.

We may now prove Ito's Theorem. Assume G satisfies the hypothesis of the theorem. By Lemma 3.1 of [3] we have
(1) $C(y) \subset M$ for $y \in M-\{1\}$;
(2) $M \cap x M x^{-1}=1$ for $x \in G-N(M)$;
and $N(M)=M Q=N$. Now, $M Q$ is a Frobenius group, so M must be Abelian if q is even (Satz 1 of [7]). Thus we may assume that q is odd. The proof of Lemma 3.2 of [3] shows that we may assume that
(3) G is generated by the conjugates of M in G.

Let us assume (3), and assume that q is odd. By Lemma 3.4 of [3], we obtain the following:
(4) There is only one conjugate class of involutions in G; it contains mq elements. No elements of $M-\{1\}$ is a product of two involutions.

We also obtain some consequences regarding the characters of M, N, and G. Here we use the notation of [3]. Let $\zeta_{0}, \zeta_{1}, \cdots$ be the irreducible characters of M, and let $z_{i}=\zeta_{i}(1)$. Denote by ζ_{i}^{*} and $\tilde{\zeta}_{i}$ the characters of G and N respectively induced by ζ_{i}. Let Let $\eta_{0}, \eta_{1}, \cdots, \eta_{q-1}$ be the irreducible characters of N which contain M in their kernels. Assume that ζ_{0} and η_{0} are principal characters and that $\bar{\eta}_{i}=\eta_{i+(q-1) / 2}$ for $i=1, \cdots,(q-1) / 2$. By (18) and (19) of [3], the characters $\eta_{1}^{*}, \eta_{2}^{*}, \cdots, \eta_{(q-1) / 2}^{*}$ are distinct and irreducible, and

$$
\begin{equation*}
\eta_{i+(q-1) / 2}^{*}=\eta_{i}^{*}, \quad i=1,2, \cdots,(q-1) / 2 \tag{5}
\end{equation*}
$$

Since M is nilpotent, we may assume that $z_{1}=1$. Let $\zeta=\zeta_{1}$. Denote the restriction of a character θ of G to a subgroup H by $\left.\theta\right|_{H} . \quad$ By (18) and (20) of [3] and by the Frobenius Reciprocity Theorem, we have

$$
\begin{equation*}
\left\|\zeta^{*}\right\|^{2}=q+1 \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
\text { (7) } \quad & \left(\zeta^{*}, \eta_{i}\right)_{G} \tag{7}\\
& =\left(\zeta,\left.\eta_{i}\right|_{M}\right)_{M}=(1 / m)\left(m+1+\sum_{x \in M-\{1\}} \zeta(x)\right)=(1 / m) m=1 \\
\text { for } i= & 1, \cdots,(q-1) / 2
\end{align*}
$$

Recall that G is given as a permutation group. For each $x \epsilon G$, let $\varphi(x)$ be the number of symbols fixed by x and let $\Gamma(x)=\varphi(x)-1$. Let χ_{0} be the principal character of G. By (2.3), (8.3), and (9.9) of [4], Γ is an irreducible character of G and

$$
\begin{equation*}
\eta_{0}^{*}=\varphi=\chi_{0}+\Gamma . \tag{8}
\end{equation*}
$$

Since $\varphi(x)=1$ for all $x \in M-\{1\}$,

$$
\begin{equation*}
\left(\zeta^{*}, \Gamma\right)_{G}=\left(\zeta,\left.\Gamma\right|_{M}\right)_{M}=(1 / m) \zeta(1) \Gamma(1)=1 \tag{9}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left(\zeta^{*}, \chi_{0}\right)_{G}=\left(\zeta,\left.\chi_{0}\right|_{M}\right)_{M}=\left(\zeta, \zeta_{0}\right)_{M}=0 \tag{10}
\end{equation*}
$$

By (5) and (8), we obtain

$$
\begin{align*}
\zeta_{0}^{*}=\left(\tilde{\zeta}_{0}\right)^{*} & =\left(\eta_{0}+\eta_{1}+\cdots+\eta_{q-1}\right)^{*} \tag{11}\\
& =\chi_{0}+\Gamma+2 \eta_{1}^{*}+\cdots+2 \eta_{(q-1) / 2}^{*}
\end{align*}
$$

Let $O(G)$ be the set of all elements of odd order in G. By considering cyclic subgroups of G, it is easy to see that the mapping given by $x \rightarrow x^{2}$ is a permutation of $O(G)$. Suppose $x \in G-O(G)$. By (1), x does not centralize any non-identity element of M. Hence x is not conjugate to an element of M, and $\zeta^{*}(x)=0$. Similarly, $\zeta^{*}\left(x^{2}\right)=0$ unless x is an involution. By (4) and (10), we have

$$
\begin{align*}
& \sum_{x \in G} \zeta^{*}\left(x^{2}\right) \\
& \quad=q m \zeta^{*}(1)+\sum_{x \epsilon O(G)} \zeta^{*}\left(x^{2}\right)=q m q(m+1)+\sum_{x \in O(G)} \zeta^{*}(x) \tag{12}\\
& \quad=q g+\sum_{x \in G} \zeta^{*}(x)=q g .
\end{align*}
$$

For every irreducible character χ of G, let $c(\chi)$ be the multiplicity of χ in ζ^{*}, and define $\nu(\chi)$ as in the Frobenius-Schur Theorem. Then $\zeta^{*}=\sum c(\chi) \chi$.

By (12),

$$
q=(1 / g) \sum_{x \epsilon G} \zeta^{*}\left(x^{2}\right)=(1 / g) \sum_{\chi} c(\chi) \sum_{x \epsilon G} \chi\left(x^{2}\right)=\sum_{\chi} c(\chi) \nu(\chi)
$$

But by (6), $q+1=\sum c(\chi)^{2}$. Hence

$$
\begin{equation*}
1=(q+1)-q=\sum c(\chi)(c(\chi)-\nu(\chi)) \tag{13}
\end{equation*}
$$

By the Frobenius-Schur Theorem, $\nu(\chi)=0,1$, or -1 for each irreducible character χ. Thus every summand in (13) is a nonnegative integer. Consequently, (13) shows that $c\left(\chi_{1}\right)=1$ and $\nu\left(\chi_{1}\right)=0$ for a unique irreducible character χ_{1} and that

$$
\begin{equation*}
c(\chi)=\nu(\chi)=1 \quad \text { or } \quad c(\chi)=0, \quad \text { if } \chi \neq \chi_{1} \tag{14}
\end{equation*}
$$

Since $\nu\left(\chi_{1}\right)=0, \chi_{1}$ is not real-valued. Therefore,

$$
\begin{equation*}
\chi_{1} \neq \chi_{0}, \Gamma, \eta_{1}^{*}, \cdots, \eta_{(q-1) / 2}^{*} \tag{15}
\end{equation*}
$$

Let S be the set of all irreducible characters χ for which $c(\chi) \neq 0$ and $\chi \neq \chi_{1}, \Gamma, \eta_{1}^{*}, \cdots, \eta_{(q-1) / 2}^{*}$. By (7), (9), (10), (14), and (15),
(16) $\zeta_{1}^{*}=\zeta^{*}=\chi_{1}+\Gamma+\eta_{1}^{*}+\cdots+\eta_{(q-1) / 2}^{*}+\sum_{\chi \in S} \chi$, and $\chi_{0} \notin S$.

Let $\mu=\zeta_{1}-\zeta_{0}$, and let μ^{*} be the generalized character of G induced by μ. By (11) and (16),

$$
\begin{equation*}
\mu^{*}=\zeta_{1}^{*}-\zeta_{0}^{*}=\chi_{1}-\chi_{0}-\eta_{1}^{*}-\cdots-\eta_{(q-1) / 2}^{*}+\sum_{\chi \epsilon G} \chi . \tag{17}
\end{equation*}
$$

Let τ be an involution in G. As N has odd order,

$$
\eta_{1}^{*}(\tau)=\cdots=\eta_{(q-1) / 2}^{*}(\tau)=0 .
$$

Since $\mu(1)=0$ and no element of $M-\{1\}$ is a product of two involutions, Brauer's Theorem and (17) yield

$$
0=-1+\chi_{1}(\tau)^{2} / \chi_{1}(1)+\sum_{\chi \epsilon S} \chi(\tau)^{2} / \chi(1)
$$

Thus

$$
\begin{equation*}
\chi_{1}(\tau)^{2} \leqq \chi_{1}(1) \tag{18}
\end{equation*}
$$

By (25.4), page 152 of [4], every irreducible character of N that does not contain M in its kernel has the form $\tilde{\xi}_{i}$ for some $i>0$; conversely, $\tilde{\xi}_{i}$ is an irreducible character of N for every $i>0$. Let n be the number of distinct characters of the form $\tilde{\zeta}_{i}$. We may assume that $\tilde{\zeta}_{1}, \cdots, \tilde{\zeta}_{n}$ are distinct. Now, $\tilde{\zeta}_{1}(1)=q \zeta_{1}(1)=q$; for some positive integer t we may assume that $\tilde{\zeta}_{1}, \cdots, \tilde{\zeta}_{t}$ have degree q and that $\tilde{\zeta}_{t+1}, \cdots, \tilde{\zeta}_{n}$ have larger degree (or that $t=n)$.

Since N has odd order, none of the characters $\tilde{\zeta}_{i}$ is real-valued. Hence t and n are even, and we may assume that $\tilde{\xi}_{2 i-1}$ and $\tilde{\zeta}_{2 i}$ are complex conjugates for $i=1,2, \cdots, n / 2$. Since

$$
\tilde{\tilde{\zeta}}_{2 i-1}=\overline{\tilde{\zeta}}_{2 i-1}=\tilde{\zeta}_{2 i} \quad \text { if } 1 \leqq i \leqq n / 2
$$

we may assume that $\zeta_{2 i}=\bar{\zeta}_{2 i-1}$ for $i=1,2, \cdots, n / 2$. Let $\chi_{2}=\bar{\chi}_{1}$. As $\nu\left(\chi_{1}\right)=0, \quad \chi_{2} \neq \chi_{1} . \quad$ By (14) and (16),

$$
\begin{equation*}
\zeta_{2}^{*}=\bar{\zeta}_{1}^{*}=\overline{\zeta_{1}^{*}}=\chi_{2}+\Gamma+\eta_{1}^{*}+\cdots+\eta_{(q-1) / 2}^{*}+\sum_{\chi \epsilon S} \chi . \tag{19}
\end{equation*}
$$

Suppose $3 \leqq i \leqq n$. An easy argument shows that $\zeta_{1}^{*}(x)=\tilde{\zeta}_{i}(x)$ whenever $x \in M-\{1\}$. Moreover, $\tilde{\zeta}_{1}-\tilde{\xi}_{2}$ vanishes on 1 and on $N-M$. Therefore, by (16) and (19),

$$
\begin{aligned}
\left(\chi_{1}-\chi_{2}, \zeta_{i}^{*}\right)_{G} & =\left(\zeta_{1}^{*}-\zeta_{2}^{*}, \zeta_{i}^{*}\right)_{G}=\left(\tilde{\zeta}_{1}^{*}-\tilde{\zeta}_{2}^{*}, \zeta_{i}^{*}\right)_{G} \\
& =\left(\tilde{\zeta}_{1}-\tilde{\zeta}_{2},\left.\zeta_{i}^{*}\right|_{N}\right)_{N}=\left(\tilde{\zeta}_{1}-\tilde{\zeta}_{2}, \tilde{\zeta}_{i}\right)_{N}=0
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(\chi_{1}, \zeta_{i}^{*}\right)_{G}=\left(\chi_{2}, \zeta_{i}^{*}\right)_{G} \quad \text { if } 3 \leqq i \leqq n \tag{20}
\end{equation*}
$$

Since inner products of characters are integers,

$$
\left(\chi_{2}, \zeta_{i}^{*}\right)_{G}=\overline{\left(\chi_{2}, \zeta_{i}^{*}\right)_{G}}=\left(\bar{\chi}_{2}, \overline{\left.\zeta_{i}^{*}\right)_{G}}=\left(\chi_{1}, \bar{\zeta}_{i}^{*}\right)_{G} .\right.
$$

Thus, by (20),

$$
\begin{equation*}
\left(\chi_{1}, \zeta_{2 i-1}^{*}\right)_{G}=\left(\chi_{1}, \zeta_{2 i}^{*}\right)_{G} \quad \text { if } 2 \leqq i \leqq n / 2 \tag{21}
\end{equation*}
$$

Assume that $3 \leqq i \leqq t$. Then $\tilde{\zeta}_{i}(1)=q=\tilde{\zeta}_{1}(1)$, so $z_{i}=z_{1}=1$. Our proof of (16) depends only on the assumption that $z_{1}=1$, and therefore a similar equation is valid for ζ_{i}^{*}. Hence ζ_{i}^{*} is the sum of a unique non-real irreducible character of G and several real-valued irreducible characters of G. By (20),

$$
\begin{equation*}
\left(\chi_{1}, \zeta_{i}^{*}\right)_{G}=0 \quad \text { if } 3 \leqq i \leqq t \tag{22}
\end{equation*}
$$

Consider the restriction of χ_{1} to N. By (5), (8), and (15), $\left(\chi_{1}, \lambda^{*}\right)_{G}=0$ for every irreducible character λ of N that contains M in its kernel. By the Frobenius Reciprocity Theorem, $\left(\left.\chi_{1}\right|_{N}, \lambda\right)_{N}=0$ for every such λ. Consequently, $\left.\chi_{1}\right|_{N}$ has the form $\sum \alpha_{i} \tilde{\xi}_{i}$ for some nonnegative integers $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$. By (16), (19), (21), and (22),

$$
\begin{equation*}
\left.\chi_{1}\right|_{N}=\tilde{\xi}_{1}+\sum_{t / 2<i \leqq n / 2} \alpha_{2 i}\left(\tilde{\xi}_{2 i-1}+\tilde{\zeta}_{2 i}\right) \tag{23}
\end{equation*}
$$

Suppose $t<i \leqq n$. Since $z_{i}>1$ and M is a p-group, z_{i} is a power of p. Now, $\tilde{\zeta}_{i}(1)=q z_{i} . \quad$ By (23) we obtain

$$
\begin{aligned}
& \chi_{1}(1) \equiv \tilde{\zeta}_{1}(1) \equiv 0, \quad \bmod q \\
& \chi_{1}(1) \equiv \tilde{\zeta}_{1}(1) \equiv q \not \equiv 0, \quad \bmod p
\end{aligned}
$$

and

$$
\chi_{1}(1) \equiv \tilde{\zeta}_{1}(1)+\sum_{t / 2<i \leqq n / 2} 2 \alpha_{2 i} \tilde{\zeta}_{2 i-1}(1) \equiv \tilde{\zeta}_{1}(1) \equiv q \not \equiv 0 \quad \bmod 2
$$

Let $\chi_{1}(1)=q x$, and let $m=p^{e}$. Since $g=q m(m+1)=q p^{e}(m+1)$, x divides $m+1$.

Let τ be an involution in G. Since $\tau^{2}=1$, the eigenvalues of a matrix representing τ are 1 and -1 . Suppose 1 occurs with multiplicity a and -1 occurs with multiplicity b. Then

$$
\chi_{1}(\tau) \equiv a-b \equiv a+b \equiv \chi_{1}(1) \not \equiv 0 \quad \bmod 2
$$

Therefore, $\chi_{1}(\tau) \neq 0$. By (4), τ has $m q$ conjugates in G. Therefore, $m q \chi_{1}(\tau) / \chi_{1}(1)$ is an algebraic integer. Since $\chi_{1}(1)=q x, x$ divides $m \chi_{1}(\tau)$. As x divides $m+1, x$ divides $\chi_{1}(\tau)$. By (18), $x^{2} \leqq \chi_{1}(\tau)^{2} \leqq \chi_{1}(1)=x q$. Thus $\chi_{1}(1) \leqq q x \leqq q^{2}$. However, by (28) of [3], we obtain

$$
q^{4} \geqq \chi_{1}(1)^{2} \geqq 1+\left(\frac{1}{2}\right)(q-1)(m+1)
$$

Therefore, $q^{4}>(q / 4)(m+1)$, and

$$
\begin{equation*}
m<4 q^{3} \tag{24}
\end{equation*}
$$

Since N is a Frobenius group, q divides $m-1$. Let d be the smallest positive integer such that q divides $p^{d}-1$. By the Euclidean Algorithm, the congruence $p^{e} \equiv 1 \bmod q$, implies that divides e. Let $e=k d$. Since q is
odd and $p^{d}-1$ is even, $2 q$ divides $p^{d}-1$. By (24),

$$
4 q^{3}>m=p^{e}=p^{k d} \geqq(2 q+1)^{k} .
$$

Therefore, $k=1$ or 2 .
Suppose $k=2$. Since p is odd, $m \equiv\left(p^{d}\right)^{2} \equiv 1 \bmod 4$, so $m+1 \equiv 2 \bmod 4$. No involution in G fixes any of the permuted symbols. Therefore every involution is a product of $(m+1) / 2$ disjoint transpositions and is thus an odd permutation. Consequently, the even permutations in G form a normal subgroup of index two, contrary to our assumption that the conjugates of M generate G. Hence $k=1$, and $m=p^{d}$. Let M^{\prime} be the derived group of M. Then N / M^{\prime} is a Frobenius group, so q divides $\left|M / M^{\prime}\right|-1$ and $\left|M / M^{\prime}\right|$ is a power of p^{d}. Since $|M|=p^{d}, M^{\prime}=1$. This completes the proof of Ito's Theorem.

The author thanks the National Science Foundation and the Sloan Foundation for their support.

Bibliography

1. R. Brauer, Some applications of the theory of blocks of characters of finite groups $I I$, J. Algebra, vol. 1 (1964), pp. 307-334.
2. R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math. (2), vol. 62 (1955), pp. 565-583.
3. W. Feit, On a class of doubly transitive permutation groups, Illinois J. Math., vol. 4 (1960), pp. 170-186.
4. -, Characters of finite groups, mimeographed notes, Mathematics Department, Yale University, 1965.
5. N. Iro, On a class of doubly transitive permutation groups, Illinois J. Math., vol. 6 (1962), pp. 341-352.
6. M. Suzuki, On a class of doubly transitive groups, Ann. of Math., vol. 75 (1962), pp. 105-145.
7. H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg, vol. 11 (1934), pp. 17-40.
8. H. Zassenhaus, Über endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg., vol. 11 (1935), pp. 187-220.

University of Chicago
Chicago, Illinots
University of Warwick
Coventry, England

[^0]: Received September 1, 1967.

