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Let G be a finite permutation group. We say that G is a Zassenhaus group
if G is doubly transitive and if no non-identity element of G leaves three or
more symbols fixed. The Zassenhaus groups have been determined by
Zassenhaus [7, 8], Feit [3], Suzuki [6], and Ito [5]. In this paper we present
an alternate proof of Ito’s result.

THEOREM (Ito). Let G be a Zassenhaus group of degree m -k 1 that does not
contain a regular normal subgroup. If m is a power of an odd prime p, then
G has an Abelian Sylow p-subgroup.

Our proof uses the notation of Feit [3]. Let N be the subgroup of G fixing
one symbol, and let Q be the subgroup of G fixing an additional symbol. Let
g G] and q ]q I. Since G has no regular normal subgroup, G is not
Frobenius group, and q > 1. Thus N acts as a Frobenius group on the sym-
bols it moves. Let M be the regular normal subgroup of N. Thus M m,
and
N MQ, M n Q 1, INI mq, g (m / 1)INI (m + 1)mq.

We require the following result of Frobenius and Schur [4, (3.5), page 23]:

THnOnEM (Frobenius-Schur). Let x be an irreducible complex character
of a finite group G. Let

,(x) (1/I
Then

(i) ,(x) 0 if x is not real-valued;
(ii) ,(x) 1 if x is the character of a representation of G over the real

numbers; and
(iii) , (x) 1 otherwise.

The following result is a slight variation on Lemma 4 of [1].

THEOREM (Brauer). Let G be a finite group of even order and let M be a
subgroup of G. Suppose r is an involution of G and U is a subset ofM such that
no element of U is a product of two conjugates of r. Let 0 be a generalized
character of M that vanishes on M U, and let O* be the generalized character of
G induced by O. Then

(0", X)o X(r)/X(1) O,

where x ranges over all the irreducible characters of G.

Proof. Let x e U. Since x is not a product of two conjugates of r, a well-
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known formula ((21), page 580, of [2]) yields

o Z: x()x(x-)
x(i)

Multiply the above equation by O(x) and sum over all x U. We obtain

0

_
X(T)2(O’ X]M)U M]

X(1)

By the Frobenius Reciprocity Theorem, (0, x I--)M (0", X). This com-
pletes the proof of Brauer’s Theorem.
We may now prove Ito’s Theorem. Assume G satisfies the hypothesis of

the theorem. By Lemma 3.1 of [3] we have

(1) C(y) M for y eM ll}

(2) Mn xMx-1 1 for x e G N(M);

and N(M) MQ N. Now, MQ is a Frobenius group, so M must be
Abelian if q is even (Satz 1 of [7]). Thus we may assume that q is odd. The
proof of Lemma 3.2 of [3] shows that we may assume that

(3) G is generated by the conjugates of M in G.

Let us assume (3), and assume that q is odd.
obtain the following"

By Lemma 3.4 of [3], we

(4) There is only one conjugate class of involutions in G; it contains mq ele-
ments. No elements of M {1} is a product of two involutions.

We also obtain some consequences regarding the characters of M, N, and G.
Here we use the notation of [3]. Let 0, 1, be the irreducible characters of
M, and let zi i(1). Denote by * and i the characters of G and N re-
spectively induced by i. Let Let v0, vl, "’, q-1 be the irreducible char-
acters of N which contain M in their kernels. Assume that ’0 and v0 are
principal characters and that # /+(q_)/ for i 1, (q 1)/2. By
(18) and (19) of [3], the characters /1, v2, "", (q-)/ are distinct and ir-
reducible, and

* i 1 2, (q 1)/2.(5) +(-)/2 ,
Since M is nilpotent, we may assume that z 1. Let . Denote

the restriction of a character 0 of G to a subgroup H by 0 ].. By (18) and
(20) of [3] and by the Frobenius Reciprocity Theorem, we have

(6)
and

(7)

q A- 1,

(*, )
(, IM)M (1/m)(m-- 1 - M--II(X)) (1/m)m 1

fori 1, .--, (q-- 1)/2.
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Recall that G is given as a permutation group. For each x e G, let (x)
be the number of symbols fixed by x and let r (x) (x) 1. Let x0 be
the principal character of G. By (2.3), (8.3), and (9.9) of [4], F is an irre-
ducible character of G and

(8) 0 ==x0+r.

Since(x) lforallxeM- {1},

(9) (*, r) (, r 1) (1/,)(1)r(1) .
Similarly,

(10) (*, xo)o (, xo I), (, o) o.
By (5) and (8), we obtain

() (o)* (.o + + + _)*
Xo-4-r q- 2 -t -4- 2

Let 0(G) be the set of all elements of odd order in G. By considering cyclic
subgroups of G, it is easy to see that the mapping given by x -- x is a permuta-
tion of 0(G). Suppose x e G O(G). By (1), x does not centralize any
non-identity element of M. Hence x is not coniugate to an element of M,
and *(x) 0. Similarly, *(x2) 0 unless x is an involution. By (4)
and (10), we hve

(12)

qg "t- _.,x,o *(x) qg.

For every irreducible character x of G, let c(x) be the multiplicity of x in

* and define v(x) as in the Frobenius-Schur Theorem. Then * c(x)x
By (12),

(/)2*(z) (1/) 2c() 2o(x) 2 c(x),(x).

But by (6),q-- 1 c(x)2. Hence

(13)

By the Frobenius-Schur Theorem, v(x) 0, 1, or -1 for each irreducible
character x. Thus every summand in (13) is a nonnegative integer. Con-
sequently, (13) shows that c(1) 1 and V(Xl) 0 for a unique irreducible
character xl and that

(1.4) c(x) v(x) 1 or c(x) O, if x # x1.

Since p(Xl) O, X1 iS not real-valued.

(15) Xl z x0, r, 71,

Therefore,

’ (q--l)/2
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Let S be the set of all irreducible characters x for which c(x) 0 and
xl, F, 1, "", V(q-1)/2. By (7), (9), (10), (14), and (15),

Let t ’ ’0, and let g* be the generalized character of G induced by .
By (11) and (16),

(17) , X Xo- , V(q-)/ + xoX.
Let r be an involution in G. As N has odd order,

Since u(1) 0 and no element of M {1} is a product of two involutions,
Brauer’s Theorem and (17) yield

0 -1 q-x(r)=/x(1) - x,x(r)/x(1).
Thus

(lS) x,(r) =< X(1).
By (25.4), page 152 of [4], every irreducible character of N hat does not

contain M in its kernel has he form for some i > 0; conversely, is an
irreducible character of N for every i > 0. Let n be the number of distinct
characters of the form . We may assume that , -.., are distinct.
Now, (1) q’(1) q; for some positive integer we may assume that
1, .-., have degree q and that +,, -.-, have larger degree (or hat
t=n).

Since N has odd order, none of the characters is real-valued. Hence
and n are even, and we may assume that

_
and are complex conjugates

for i 1, 2, ..., n/2. Since--- ’i- i ifl <-_ i <= n/2,
we may assume that’ 2_fori 1, 2, ...,n/2. Letx . As
(xl) 0, x # x. By (14) and (16),

(19) ’* ’ : q- F q- r/ q- q- rl(q-)/ q- x,s.
Suppose 3 =< i =< n. An easy argument shows that ’(x) (x) whenever
x e M {1}. Moreover, , ,. vanishes on 1 and on N M. Therefore,
by (16) and (19),

(x, x,., ’:) (: ’:, ), (: =,’* ,)*

Hence

(20) (x,,) (x=,) if3 i n.

Since inner products of characters gre integers,

(x, )o (x, ) (,) (x,, ).
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Thus, by (20),

(21) (xl, ’.-1)o (Xl,/’.*)o if 2 <- i <- n/2.

Assumetht3 __< i =< t. ThenCe(I) q l(1),soz zl 1. Our
proof of (16) depends only on the ssumption that z 1, and therefore a
similar equation is vlid for . Hence is the sum of a unique non-real
irreducible character of G nd severM rel-vlued irreducible characters of G.
By (20),

(22) (x,)o 0 if3 -< i -< t.

Consider the restriction of x to N. By (5), (8), nd (15), (xi, k*) a 0
for every irreducible character X of N that contains M in its kernel. By the
Frobenius Reciprocity Theorem, (Xl I, X) 0 for every such X. Con-
sequently, x [ hs the form a for some nonnegtive integers
a, a2, ..., an. By (16), (19), (21), and (22),

(23) x IN 1 + Zt/2,i<=n/2 0/2i(2i-1 + 2i).

Supposet i__< n. Sincez > 1 ndMisp-group, zisupowerofp.
Now, .(1) qzi. By (23) we obtain

xl(1) - 1(1) 0, mod q,

x(1) --= x(1) q O, mod p,

Let xl(1.) qx, and letm pC. Since g qm(m q- 1) qp(m q- 1),
x divides m q- 1.

Let r be an involution in G. Since r 1, the eigenvalues of a matrix
representing r are 1 and -1. Suppose 1 occurs with multiplicity a and -1
occurs with multiplicity b. Then

xl(r) ---- a- b aq- b--- x(1) 0 mod2.

Therefore, x(r) 0. By (4), r has mq conjugates in G. Therefore,
mqx(r)/x (1) is an algebraic integer. Since xl (1) qx, x divides mx(r).
As x divides m + 1, x divides xl (r). By (18), x <= x(r) <= x(1) xq.
Thus x(1) =< qx <= q. However, by (28) of [3], we obtain

q4_> Xl(1)2 _._-> 1 q- (1/2)(q- 1)(m q- 1).

Therefore, qa > (q/4) (m q- 1), and

(24) m < 4 q.
Since N is u Frobenius group, q divides m 1. Let d be the smallest posi-

tive integer such that q divides p 1. By the Euclidean Algorithm, the
congruence pe 1 rood q, implies that d divides e. Let e lcd. Since q is
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odd and pd 1 is even, 2 q divides pd 1. By (24),

4q > rn pe pk____ (2qq- 1) k.

Therefore, k 1 or 2.
Suppose/ 2. Since p is odd, rn --- (p) I mod 4, so rn q- 1 2 mod 4.

No involution in G fixes any of the permuted symbols. Therefore every
involution is a product of (m q- 1)/2 disjoint transpositions and is thus
odd permutation. Consequently, the even permutations in G form a normal
subgroup of index two, contrary to our ssumption that the coniugates of M
generate G. Hence/c 1, and rn p. Let M’ be the derived group of M.
Then N/M’ is a Frobenius group, so q divides ]M/M’] 1 and
is a power of pa. Since [M[ pa, 1 This completes the proof of
Ito’s Theorem.
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