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What can be said about locally compact and, in particular, compact vector
spaces over arbitrary topological fields? Using the theory of characters,
we shall classify all compact vector spaces in 1. In 2 we shall obtain an
analogue for locally compact vector spaces over discrete fields of the following
classical theorem: If E is a locally compact vector space over a complete
field K whose topology is given by a proper absolute value, then E is finite-
dimensional, (1, -", n) -- _=1 )k ek is a topological isomorphism from
K onto E, where (e, e) is any basis of E, and in particular E is metriz-
able [5, pp. 27, 29]. More precisely, we shall prove that if E is a finite-dimen-
sional, totally disconnected or connected, locally compact, metrizable vector
space over a discrete field, then E is the topological direct sum of a discrete
subspace and a finite number of subspaces each of which admits a continuous
scalar multiplication over an indiscrete locally compact field that commutes
with the given scalar multiplication. An analogous theorem for algebras is
also obtained. Our argument also yields a new elementary proof of the
known characterization of totally disconnected locally compact fields.

Since a topological vector space over a topological field remains a topological
vector space if the scalar field is retopologized with the discrete topology, a
study of locally compact vector spaces over discrete fields is essentially the
same as a study of arbitrary locally compact vector spaces that does not take
into consideration the topology of the scalar field.

If K is a discrete field, a K-vector space E equipped with a topology is a
topological K-vector space if and only if E is a topological group under addi-
tion and, for each k e K, x -- ),x is continuous at zero on E. Indeed, it is
immediate that if K is discrete, then (k, x) -- kx is continuous at (0, 0) and
k -- ,x is continuous at zero. Thus a topological vector space over a discrete
field may be viewed simply as an abelian topological group equipped with a
field of topological automorphisms that contains the identity automorphism.

1. Compact vector spaces
If E is a commutative locally compact group, we shall denote by E the

character group of E (we shall regard the circle group as R/Z and thus use
additive notation). The author is indebted to Richard A. Scoville for sug-
gesting Theorem 1.
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THEOREM l. Let E be a locally compact (left) module over a locally compact
ring K. For each u E and each ) e K, let u.X be the continuous character of E
defined by

(u.) (x) u(X)

for all x e E. With scalar multiplication so defined, E is a locally compact
right K-module. Moreover, if K has an identity element and if E is unitary,
so is E ^.

Proof. The verification that E is right K-module is immediate. For
each compact subset C of E nd each neighborhood U of zero iu R/Z, let

SW(C, U) {u u(C) U} To show that E is topological right
K-module, let C be a compact subset of E, U neighborhood of zero i R/Z.
If S is any compact neighborhood of zero in K, then SC is a compact subset
of E, and u. W(C, U) for ull S, u W(SC, U). Thus (, u) - u.k is
continuous at (0, 0). Given u E ^, u-(U) is u neighborhood of zero in E,
and hence there is compact neighborhood S of zero in K such that
SC u-(U) since C is compact; clearly u. W(C, U) if ) S, so - u.
is continuous at zero. Given e K, C is compuct subset of E, ud
u. W(C, U) for ech u W(C, U); thus u - u. is continuous at zero.

THEOREM 2. Let E, F, and G be locally compact modules over a locally com-
pact ring. K. Iff" E-F is a continuous linear transformation, then its adjoint

E f^f^ F -- (defined by (u) u o f) is also a continuous linear tran,forma-
tion. If, in addition, g’F -- G is a continuous linear transformation, then
(g f)^ f^ ^.g In particular, if f is a topological isomorphism from E onto
F, then f^ is a topological isomorphism from F onto E

The proof is immedinte.

THEOREM 3. If E is a locally compact module over a locally compact ring K,
then the canonical evaluation mapping is a topological isomorphism from the
locally compact K-module E onto the locally compact K-module E ^.

The proof is immediate, given that the e..valuation mapping is a topological
isomorphism from the locally compact group E onto the locally compact
group E [7, (24.8), p. 378].

THEOREM 4. If F is a submodule of a locally compact module E over a locally
compact ring K, then the annihilator of F in E is a closed submodule of E ^.

The proof is immediate.

With obvious changes, similar statements hold for locally compact right
modules over locally compact rings.
The following theorem generalizes the well-known fact that the only com-

pact division rings are the finite fields, since any topological division ring
may be regarded as a topological vector space over itself.
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THEOREM 5. If E is a nonzero compact vector space over a topological divi-
sion ring K, then the topology of K is the discrete topology.

Proof. Let b be a nonzero vector in E, and let U be a neighborhood of zero
that does not contain b. We shall show that SE U for some neighborhood S
of zero in K. Let V be a neighborhood of zero such that V - V U. Let
S and W be neighborhoods of zero in K and E respectively such that W V
and S’W V. By compactness there exist al, ..., a, E such that
E [Jl (ai - W). Let S be a neighborhood of zero in K such that S S
andSai W for all i [1, n]. ClearlySEW-SWV- V U. If
were nonzero scalar in S, then E E U, in contradiction to the fact
that b U. Therefore S (0), and consequently K is discrete.

Let K be a division ring. Then K is a right vector space over itself. We
shall denote by K the character left K-vector space of the discrete right K-vec-
tor space K. Thus K is a compact vector space over the discrete division
ring K. For each cardinal number m, we shall denote by K^m the compact
K-vector space that is the cartesian product of m copies of K ^.

THEORE 6. Let K be a discrete division ring. If E is a compact K-vector
space, then there is a unique cardinal number m such that E is topologically iso-
morphic to the compact K-vector space K^.

Proof. The right K-vector space E is discrete, and by a familiar theorem
of linear algebra there is a unique cardinal number m such that E is iso-
morphic to the K-vector space K(), the direct sum of m copies of K. By
Theorems 2, 3, and [7, (23.22), p. 364], E is topologically isomorphic to K^.
If the compact K-vector spaces K and K are topologically isomorphic,
then so are K() and KCn) by Theorem 3 and [7, (23.21), p. 364], whence
m u by the invariance of the cardinality of a basis.

THEOREM 7.
of K is dense.

If K is a discrete division ring, every one-dimensional subspace

Proof. The assertion follows from Theorem 4 nd [7, (24.10), p. 380],
since K is isomorphic to the one-dimensional K-vector space K by Theorem 3.

THEOREM 8. If K is a discrete division ring, then there is a nonzero compact
metrizable K-vector space if and only if K is countable.

Proof. Necessity: By [7, (24.15), p. 382], if K is metrizable, then K(m)

is countable, whence K is countable, provided m > 0. Sufficiency" If K
is countable, clearly K has a denumerable ftmdamental system of neighbor-
hoods of zero.

THEOREM 9. If E is a nonzero compact vector space over a discrete division
ring K, then E is connected if and only if the characteristic of K is zero. If
E is a locally compact vector space over a topological division ring of prime
characteristic, then E is totally disconnected.
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Proof. The first assertion tollows from [7, (24.19), p. 383]. If E is a
locally compact vector space over a division ring of prime characteristic p,
then each character of E takes E into the pth roots of unity, a discrete set,
and consequently the connected component of E is (0).

2. Finite-dimensional locally compact metrizable
vector spaces

The suspicion that locally compact vector spaces over indiscrete (i.e., not
discrete) locally compact fields play a major role in the general theory of finite-
dimensional locally compact vector spaces is suggested by the following
theorem.

THEOREM 10. If E is a one-dimensional indiscrete locally compact metrizable
vector space over a discrete field K, then there is an indiscrete locally compact
topology 5 on K making K a topological field and E a topological vector space
over K; 5.

Proof. Let b be a nonzero vector of E, and let 5 be the topology on K
making -- ),b a homeomorphism from K onto E. Then 5 is an indiscrete,
locally compact, metrizable topology. Since (x, y) - x + y and, for each
a K, x -- ax are continuous on E X E and E respectively, it is immediate
that (, t) --* + and, for each a K, -- a are continuous on K X K and
K respectively. Also as the topological group K; 5 is locally compact, it is
complete. It follows easily from a lemma of Montgomery [10, p. 880; 4,
Exercise 22a, p. 83] that (), t) - )t is continuous on K X K. Consequently
by theorem of Otobe [11, Theorem 3], generalized by Kaplansky [9, Theorems
7-9], K; 5 is a topological field. Clearly E is a topological vector space over
the topological field K; 5.

Our principal result concerning totally disconnected, finite-dimensional,
metrizable, locally compact vector spaces and algebras is the following
theorem, whose proof does not invoke known structure theorems for locally
compact fields (as is well known, by Theorem 9, if the characteristic of the
scalar field is a prime, the hypothesis of total disconnectedness is redundant).

THEOREM 11. Let E be a totally disconnected, finite-dimensional, locally com-
pact, metrizable vector space (algebra) over a discrete field K, and let

L Ix e E either x 0 or Kx is indiscrete}.

Then L is an open subspace (open ideal) of E, and L is the topological direct
sum of subspaces (ideals of E) El, E where for each i e [1, n], the locally
compact group (ring) Ei admits the structure of finite-dimensional topological
vector space (algebra) over an indiscrele locally compact field F under a scalar
multiplication satisfying a. (x) (a.x) (and also a. (xy) (a.x)y,
a.(yx) y(a.x) for all a e Fi e K, x e Ei (and y e E). Moreover, for each
i e [1, hi, every closed subspace of the K-vector space E is a subspace of the
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F-vector space Ei and F K is a dense subfield of F. IfN is any algebraic
supplement of L, then N is discrete, and E is the topological direct sum of
El, E, N. Finally

(a) if the characteristic ofK is a prime, then for each i [1, n] there is a prime
polynomial h over P, the prime subfield of K, such that F is topologically iso-
morphic to the completion of P(X), the field of rational functions over P, equipped
with the h-adic valuation;

(b) if the characteristic of K is zero, then for each i [1, n] there is a prime
number p such that F is topologically isomorphic to the field of p-adic numbers.

Proof. We shall prove the theorem under the assumption that the charac-
teristic of K is a prime, and then indicate the slight changes needed for the
case where the characteristic of K is zero.
The compact open subgroups of E form a fundamental system of neighbor-

hoods of zero [3, Corollary 1, p. 58]. If K is countable, then so is E, and
therefore E is discrete since a locally compact space is a Baire space [4, Theorem
1, p. 76]. Consequently, we may assume that K is uncountable.
We shall first show that there exist a compact open subgroup V and a scalar
transcendental over P such that kV V. Let (Wn)n>_l be a decreasing

fundamental system of neighborhoods of zero consisting of compact open
subgroups. AsP is finite, the algebraic closure of P in K is countable. As
K is uncountable, for some n >_ 1 the set $1 of all scalars ), that
satisfy k-W1

_
W is uncountable, since k-lWi is a neighborhood of

zero for each nonzero scalar . Similarly, for some r

_
n, the set

$2 of all he $1 such that kW

_
W is uncountable. Therefore

W )W W for all $2. As the belian group W/W is compact and
discrete, it is finite, and therefore there is a subgroup V containing Wr and
contained in WI such that the set S of all ), e S: such that hW V is un-
countable. Let 0 e S; then S )- is uncountable and therefore contains a
scalar k transcendental over P. Let ),0-, where e S. Then
),V ) h-V ) W, V, which is a compact open subgroup since it
contains W nd is contained in W.
Next we shall show that there is a fundamental decreasing system (V)>0

of neighborhoods of zero consisting of compact open subgroups such that
V0 V and kV V for all k _> 0. Let M be the intersection of all the
sets V where is a nonzero scalar. Clearly M is a compact subspace of E.
As K is uncountable and E metrizable, M (0) by Theorem 8. Conse-
quently, for every neighborhood U of zero there exist nonzero scalars, ..-,suchthatUVl... [V[2, Theorem1, p. 97]. Thus as
E is metrizable, there is a sequence ()> of nonzero scalars such that if
V V l V l V for each l _> 1, then (V)>_0 is a fundamental
system of neighborhoods of zero. As ’V hV V for every scalar ,
clearly kV V for all/c _> 0.

Let E0 be the subspace of E generated by V (shortly we shall see that
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E0 L). Then E0 is an open subspace of E. We shall show that for each
vector a e E0 there is a sequence (e)>_ of nonzero elements of P[X], the
subring of K generated by P and X, such that ka -- 0. As E0 is generated by
V, there exist scalars m, "", pn and elements al, ..., an of V such that
a pla - pna,. In the topological K-vector space E, hV V’
for all ] >_ 0, and consequently kmV V for all >_ 0 and all m >_ 0.
Thus as V is compact, there is a strictly increasing sequence (m)k>_ of
positive integers such that the sequence (mk(al, an))>_ converges
to some point (c, cn). Hence also

)k k+so if Xm for all lc _> 1, then k(al, an) - (0, 0).
Thus a- 0 for alli[1, hi, whenceka-- (pa + + pa) --0. As k is transcendental over P, 0 for all ] _> 1.
In prticulr, Ka is indiscrete for each nonzero a e E0, so E0 L. If

a E0, then Ka ’l Eo (0), so Ka is discrete as E0 is open, and hence a L.
Therefore L E0.

Moreover, for each a e E0 L there is a nonzero element of P[X] such that
,a e V. Consequently L is the union of the sets ,-V where e P[k], 0.
Thus L is a-compact nd metrizable, and hence is separable.

Let H be the set of ll prime polynomials in P[k] (as X is transcendental
over P, we may regard P[X] as the ring of polynomials over P). We equip
the integral domain P[k] with the topology 5 that is the supremum of all the
h-adic topologies on P[k], where h e H. So equipped, P[k] is metrizable
topological ring, and the nonzero ideals of P[X] form a fundamental system
of neighborhoods of zero.
We shall show that L is a topological module over P[X]; . For each
e P[X], x -- x is continuous at zero since t e K. For each/c _> 0, XV V

for all rn >_ 0 and tV V for all nonzero e P; hence V

_
V for

t e P[X]. Thus P[X]V V, and hence (t, x) -- x is continuous at (0, 0).
Finally, given a e L and/c _> 0, there is a nonzero element , of P[X] such that
a e V as we saw above; P[X], is open in P[X] for 5, and P[X],a P[X]V V
hence - a is continuous at zero.

For each h e H, let be the completion of P[X] for the h-adie valuation.
Thus oa is the valuation ring of the completion of the field P(X) for the h-adie
valuation. Since the residue field P[X]/(h) is finite, is compact. The
completion of P[X]; 5 may be identified with the compact ring A IIh- a
indeed, P[X]" is clearly dense in A; given distinct h, ..., h e H, positive
integers lc, -.., lc, and polynomials , ..., ,m in P[X], by the Chinese
Remainder Theorem there exists e P[X] such that t ----- (mod h) for all
i e [1, m]; hence t -- (t), where t0 for all/c e H, is a topological isomor-
phism from P[X]; onto a dense subring of A. As L is locally compact and
hence complete, L admits the structure of unitary topological A-module, and
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scalar multiplication satisfies (g).x gx for all g e P[] (where, as before,
gk g for all k e H) [3, pp. 81-82].

If a A, g e K, and x e L, then a.(gz) g(a.x). Indeed, there is a se-
quence (an) inP[h] such thata=--*a. Hencean(gx) .--)a.(gx) andanx--a.x,
whence also g(a x) -- g(a.x). As g(an X) an(gX) for all n > 0, therefore,
.(x) (.x).

Let h e H. The canonical injection from into A is a topological isomor-
phism from onto an ideal of A; we identify with this ideal by means of
this topological isomorphism; thus L is a (not necessarily unitary) topological
module over . Let 1 be the idempotent of A that is the identity element
of oh, and let Eh lh.L. By the preceding paragraph, Eh is a subspace of
the K-vector space L, and clearly Eh is closed. Also, Eh is a unitary module
over oh. Moreover, g.x gx for all g e P[h], x e Eh. To see this, let g
for all k.H, r 0 for all keH {h}, ,h g. By definition, g.x ().x
and (g).x gx. As x e Eh, x lh.x and therefore gx (#).x [(#) lh].X

().x .x.
We shall next show that Eh is a divisible torsion-free module over

Let x be a nonzero element of Eh, and let a be the annihilator of x in
If the ideal a were not the zero ideal, then a would be open since every
zero ideal of oh is open, and consequently a would contain a nonzero element
g of P[h] since P[h] is dense in oh and not discrete for the h-adic topology;
thus gx g.x 0, which is impossible. Consequently, a (0). Let
be a nonzero element of oh. We have just seen that a x a.x, x e Eh,
is injective, and by an earlier paragraph, a is a linear operator on the K-vec-
tor space Eh. Hence as E is finite-dimensional, a is surjective. There-
fore Eh is a divisible, torsion-free oh-module.

Let Fh be the completion of the field P() for the h-adic valuation. Thus
is the valuation ring of Fh, and in particular Fh is the quotient field of Oh.
As Eh is a divisible, torsion-free module over oh, scalar multiplication may be
extended to Fh )< Eh so that Eh is a vector space over Fh. We shall show that
Eh is a topological vector space over Fh. As 0h is open in F, (a, x) --on Fh X Eh is continuous at (0, 0) and, for each x Eh, a ---) a.x on Fh is con-
tinuous at zero. Earlier, we saw that L and hence also Eh are locally com-
pact, metrizable, and separable. For each nonzero a e oh, a is a continuous
automorphism of Eh by the preceding paragraph, and hence a is topologicM
automorphism of Eh by [4, Exercise 18, p. 82]. Thus as each element of
either belongs to oh or is the inverse of an element of oh, x - fLx is continuous
on Eh for all t Fh. Therefore Eh is a topological vector space over the
indiscrete locally compact field Fh. By [5, Theorem 3, p. 29], Eh is finite-
dimensional over Fh. It is easy to verify that tL(gx) g(B.x) for all t e

K, x.E.
Let D be a closed subspace of the K-vector space Eh, and let x e D, a e

There is a sequence (an) in P() such that an -- a, whence an x --* a.x.
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As a x e D for all n >_ 1, a.x D. Thus D is a subspace of the Fh-vector
spce Eh.
The subspace of L generated by (Eh)h is clearly the direct sum of (Eh)h

since lh lk 0 if h /c. Consequently as E is finite-dimensional, Eh (0)
for all but finitely many h e H. Let hi, ..-, h be all the elements h of H
such that Eh (0), and for each i e [1, n] let Ei E and li 1, and let
J be the complement of /hi, "’, h} in H. For each h e J, h.L.(I.L) (0), so (R) ).L (0) as the annihilator of L in A is closed,
it therefore contains IIh, , cnonically identified with an ideal of A.
Hence for each x e L,

Thus L is the direct sum of E, ’n- As the projection of L on E long
.E. is clearly the continuous mapping x -+ l.x, L is the topological
direct sum of E, E [5, Proposition 10, p. 15].

Let N be n algebraic supplement of L in E. As L is open and as
L l N (0), N is discrete and the projection of E on N along L is continuous.
Therefore E is the topological direct sum of L and N and hence also of
E, ...,E,,N.
We turn next to the dditionM statements for the case where E is a

topological algebra over K. If Kx is indiscrete and if xz O, then tx ---> txz
is a continuous bijection from Kx onto Kxz, so Kxz is indiscrete; similarly,
either zx 0 or Kzx is indiscrete. Consequently, L is an ideal of E.

Since P[)x] is dense in A, continuity argument establishes that
a.xy (a.x)y and a.yx y(a.x) for all a e A, x L, and y e E. Consequently
i’or each h e H, E is an ideal of E, ]or if x e Eh and y E, then

lh.xy l.x)y xy, lh.yx y(l.x) yx,

whence xy, yx e Eh
Let h e H. By the preceding, a.(xy) (a.x)y for all a e oh, x, y e E.

In particular,

a. ((a-’.z) y) [a. a-l.x ]y xy,
--1so (a-.x)y a .xy for all nonzero a e h, x, y e E. Thus E is topological

Mgebr over Fh. A continuity argument now establishes that a.xy (a.x)y
and a.yx y(a.x) for all a e F, x e E, y e E, since P(k) is dense in F.
This completes the proof for the prime characteristic case.
Assume now that the characteristic of K is zero. We may also assume, of

course, that K is an extension of the field of rational numbers. Let V be
compact open subgroup of E. As before, there exists sequence ()> of
nonzero scalars such that if V V V l V, then (V)>0 is
undamental system of neighborhoods of zero. Let E0 be the subspace of E
generated by V. For each vector a e E0 there is a sequence ()k> of strictly
positive integers such that a -- 0. The proof is entirely similar to the proof
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of the corresponding statement for the prime characteristic case; we need only
replace the sequence (k"Ic)k>l by a strictly increasing sequence (m)1>_1 of
positive integers. As before, E0 L, L is separable, and L is a topological
module over the ring of integers Z (a subring of K), equipped with the topology
5 for which a fundamental system of neighborhoods of zero consists of all
nonzero ideals (thus 5 is the supremum of the family of p-adic topologies on Z
where p e H, the set of all prime numbers). The remainder of the proof is
exactly as before.

The existence of compact metrizable vector spaces over countable fields
(Theorem 8) shows that the hypothesis of finite-dimensionality cannot be
simply omitted. However, it would be interesting to know if the hypothesis of
finite-dimensionality could be replaced by the hypothesis that K be uncount-
able.
As stated, Theorem 11 does not yield Theorem 10 for the totally disconnected

case. It is easy, however, to derive the totally disconnected case of Theorem
10 from Theorem 11 and, at the same time, obtai,n the familiar characteriza-
tion of totally disconnected locally compact fields. Before doing so, we recall
that every finite-dimensional extension K of a locally compact field K0 whose
topology is given by a proper absolute value (actually, every locally compact
field admits an absolute value compatible with its topology [8, Theorem 8])
has a unique topology that makes it a topological field and induces on K0
its given topology. Of the many ways of proving this, here is one based on
elementary theorems of Banach algebras" K admits a unique topology
making it a locally compact vector space over K0 [5, Theorem 2, p. 27],
and this topology may be defined by a norm; as any multilinear transformation
defined on finite-dimensional Hausdorff topological vector spaces over K0
is continuous (cf. [5, Corollary 2, p. 28]), multiplication on K X K is con-
tinuous. Consequently, the norm of K may be chosen to make K a Banach
algebra over Ko, and a standard theorem implies that x . x- is continuous
on the set of nonzero elements of K.

THEOREM 12. Let E be a one-dimensional, disconnected, indiscrete, locally
compact, metrizable vector space over a discrete field K. There is an algebraic
isomorphism from F, where F is the p-adic number field for some prime p if
the characteristic of K is zero, and where F is the field Z( (X) of formal power
series over the prime field Z of p elements, equipped with the X-adic topology,
if the characteristic of K is a prime p, onto a subfield Ko of K such that
[K" K0] < . Moreover, E is a topological vector space over K, equipped with
the unique locally compact topology compatible with its field structure that induces
on Ko the topology malting a topological isomorphism.

Proof. We first note that if h is a prime polynomial over Z and if Fa is
the completion of Z,(X) for the h-adic valuation, then there is a topological
isomorphism from Z((X)) onto a subfield L of F such that [Fa’L] < o.
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Indeed, the substitution isomorphism S defined by h from Z(X) onto Z(h)
is clearly a topological isomorphism from Z(X), equipped with the X-adic
valuation, onto the subfield Z(h) of Z(X), equipped with the h-adic valua-
tion; hence S may be extended to a topological isomorphism from Z((X))
onto the closure L of Z(h) in Fh. Thus by [5, Theorem 3, p. 29], Fh is
topologically isomorphic to a finite-dimensional extension of Z((X)).
As E is one-dimensional, E is totally disconnected since the connected

component of zero in a topological vector space is a subspace. By the preceding
paragraph and Theorem 11, E admits the structure of finite-dimensional
topological vector space over F, described in the statement of the theorem,
under a scalar multiplication satisfying .(x) (.x) for all e F, e K,

e K, x e E. Let e be a nonzero vector of E, and for each e F let k be the
unique scalar of K such that .e e. It is immediate that 4" -- kis an isomorphism from F onto a subfield K0 of K and that a.x k x for all

e F, x e E. Clearly [K:K0] [E:F] < oo. Thus E is a finite-dimensional
topological vector space over K0, equipped with the topology making a
topological isomorphism. We equip K with the unique locally compact
topology compatible with its field structure that induces on K0 the topology
just assigned. As noted earlier, any multilinear transformation defined on
finite-dimensional Hausdorff topological vector spaces over K0 is continuous,
and therefore E is a topological vector space over K.

The only theorems used in the proofs of Theorems 11 and 12 that might
not be considered entirely standard are Theorem 8 and an open mapping
theorem concerning -compact, metrizable, locally compact groups. The
proof of the latter theorem is an application of the Baire Category Theorem,
however, and in the one-dimensional case the appeal to Theorem 8 may be
eliminated. By an elementary argument, every locally compact field is
metrizable [12, Lemma 1, p. 171]. Therefore we obtain as a corollary of
Theorem 12 a new, elementary proof of the classical structure theorems
for totally disconnected locally compact fields [6, 12, Theorem 22, p. 170]"
an indiscrete locally compact field of prime characteristic p is topologically
isomorphic to a finite extension of Z((X)), equipped with the X-adic topol-
ogy; an indiscrete, totally disconnected, locally compact field of characteristic
zero is topologically isomorphic to a finite extension of the p-adic number
field for some prime p.
An analogue of Theorem 11 for the connected case exists, but the proof

given here, though easy, is not elementary.

THEOREM 13. If E is a nonzero, connected, locally compact, metrizable vector
space (algebra) over a discrete field K that is uncountable, then the characteristic
of K is zero, and E admits the structure of finite-dimensional topological vector
space (algebra) over the topologicalfield R of real numbers under a scalar multipli-
cation .(tx) t(a.x) for all a 1, t K, x E.
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Proof. By the Pontryagin-van Kampen theorem [7, (9.14), p. 95], E,
regarded as an additive topological group, is the topological direct sum of a
topological group F that is topologically isomorphic to R and a compact
group C. If the closed topological group (gc)- generated by an element c
of E is compact, then c e C. Indeed, if u is the (continuous) projection of E
on F along C, then u((Zc)-) is a compact subgroup of F and hence is the zero
subgroup, since no nonzero subgroup of R is compact, so (Zc)- C. Con-
sequently, if c e C, then )c e C for all h e K, since (g (},c))- (hZc)- (gc)-,
a compact group. Thus C is a compact vector space over K. By Theorem
8, C (0), so E F. As K has characteristic zero (Theorem 9), we may
assume that K R is dense in R; a continuity argument then establishes the
desired identities.

Thus Pontryagin’s structure theorem for connected locally compact fields
may be deduced from the Pontryagin-van Kampen theorem on connected
abelian locally compact groups, Theorem 8, and Frobenius’s theorem on
finite-dimensional division algebras over R.
The author does not know if the connected component of zero of a finite-

dimensional, locally compact, metrizable vector space necessarily admits a
topological supplement.
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