PIERCING LOCAlLY SPHERICAL SPHERES WITH TAME ARCS

BY
 L. D Loveland

We define a 2 -sphere S in S^{3} to be scally spherical at a point p of S if for each $\varepsilon>0$ there is a 2 -sphere S^{\prime} and a component Int S^{\prime} of $S^{3}-S^{\prime}$ such that $p \in \operatorname{Int} S^{\prime}, \operatorname{diam}\left(S^{\prime} \mathbf{u} \operatorname{Int} S^{\prime}\right)<\varepsilon$, and $S^{\prime} \cap S$ is a continuum M. A locally spherical 2 -sphere is one that is locally spherical at each of its points. It is not known that a locally spherical 2 -sphere is tamely imbedded in S^{3}; however several additional conditions have been imposed on M to insure the tameness of S. For example, Burgess [3] showed that S is tame if M is a simple closed curve, and Loveland [12] obtained the same conclusion by requiring that M satisfy Property ($*, M, S$). This property roughly means that S can be side approximated missing M and implies that M is tame [13]. It is not known that a locally spherical 2 -sphere S is tame even when M is required to be tame [6, page 78]; however, it is suspected that Property ($*, M, S$) is satisfied if M is tame [8], [13]. ${ }^{1} \quad$ Eaton [7], after reading the first draft of this paper, showed that S is tame if S is locally spherical and M irreducibly separates S.

We show that S is pierced by a tame arc at a point p of S if S is locally spherical at p, and we use this result to show that a locally spherical 2 -sphere is tame provided each component of $S^{3}-S$ is an open 3 -cell. The same techniques show that S can be pierced by a tame arc at each of its points if S is locally spanned in each component of $S^{3}-S$ (see the statement following Corollary 1 for definitions). Spheres that are locally spanned in their complementary domains are not known to be tame [4], [12].

The "locally spherical" property is closed related to several local properties identified in [14]; in fact we make use of several results and proofs given there to prove slightly stronger results than those mentioned in the previous paragraph. In Lemma 1 we show that "locally spherical" implies "locally capped"; a 2-sphere S is locally capped in a component V of $S^{3}-S$ at a point p of S if for each $\varepsilon>0$ there is a disk R on S and an open ε-disk (the interior of a disk of diameter less than ε) D in V such that $p \in \operatorname{Int} R, \operatorname{Bd} D \subset S-R$, and R lies on the boundary of an ε-component of $V-D$. A locally capped 2 -sphere S is one that is locally capped in each component of $S^{3}-S$ and at each point of S. In [14] we asked if a locally capped 2 -sphere S is tame, and we give an affirmative answer here provided it is known that each component of $S^{3}-S$ is an open 3 -cell (Theorem 4).

Lemma 1. If a 2 -sphere S in S^{3} is locally spherical at a point $p \in S$, then S is locally capped at p.

[^0]Proof. Let V be a component of $S^{3}-S$ and let $\varepsilon>0$. There exists a 2 -sphere S^{\prime}, a component $\operatorname{Int} S^{\prime}$ of $S^{3}-S^{\prime}$, and a disk E on S such that $p \in \operatorname{Int} E, E \cup S^{\prime} \cup \operatorname{Int} S^{\prime} \subset N(p, \varepsilon / 2)$, and $S^{\prime} \cap S$ is a continuum in E. Let q be a point in $S-E$, and let J be a simple closed curve such that $J \cap S=\{p, q\}$ and J intersects both components of $S^{3}-S$. Let R be a disk on S such that $p \in \operatorname{Int} R \subset R \subset \operatorname{Int} S^{\prime}$; then J links both $\mathrm{Bd} R$ and $\mathrm{Bd} E$. Without loss in generality we assume that $J \cap S^{\prime}$ is finite and that J pierces S^{\prime} at each point of intersection. Now we choose a component D of $S^{\prime}-S$ such that $D \subset V$ and $D \cap J$ consists of an odd number of points, and we note that D is an open disk in $N(p, \varepsilon / 2)$. An argument similar to the proof of Lemma 1 of [14] shows that the continuum $\mathrm{Bd} D$ separates p from q on S; thus R lies on the boundary of an ε-component of $V-D$.

A crumpled cube in S^{3} is the union of a 2 -sphere and one of its complementary domains, and a point p of the boundary of a crumpled cube C is called a piercing point of C if there exists a homeomorphism h of C into S^{3} such that $h(\mathrm{Bd} C)$ can be pierced by a tame arc at $h(p)$.

Theorem 1. If the boundary S of a crumpled cube C in S^{3} is locally capped in Int C at a point $p \in S$, then p is a piercing point of C.

Proof. Since there exists a homeomorphism h of C into S^{3} such that $S^{3}-h(\operatorname{Int} C)$ is a 3-cell [10], [11] and since p is a piercing point of C if and only if $h(p)$ is a piercing point of $h(C)$, we assume that $S^{3}-\operatorname{Int} C$ is a 3 -cell. We shall establish Theorem 1 by showing that S is arcwise accessible at p by a tame arc from $S^{3}-C$ [15].

Let $D_{1}, D_{2}, D_{3}, \cdots$ be a null sequence of disks and let A be an arc such that p is an endpoint of $A, A-p \subset S^{3}-C, A$ is locally tame modulo p, $D_{i} \cap C=\mathrm{Bd} D_{i}$, and $D_{i} \cap A$ is a point p_{i}. Such objects exist since S is tame from $S^{3}-C$. Since A is locally tame modulo an endpoint, A lies on a 2 -sphere. Then it will follow that A is tame once we show the existence of arbitrarily small 2 -spheres surrounding p and intersecting A at a point [9].

Let J be a simple closed curve containing A and intersecting S in two points p and q, let N be a neighborhood of p not containing the other endpoint of A, let $V=\operatorname{Int} C$, and let G be a disk such that $p \in \operatorname{Int} G \subset G \subset N \cap S$. Let R be a disk in $\operatorname{Int} G$ such that $p \in \operatorname{Int} R$ and let D be an open disk such that $\operatorname{Bd} D \subset \operatorname{Int} G-R$ and R lies on the boundary of a component of $V-D$ in N. There is an integer i such that $D_{i} \subset N$ and $\operatorname{Bd} D_{i} \subset \operatorname{Int} G$. Let H be a disk such that $J \cap D \subset \operatorname{Int} H \subset H \subset D$, and let E be a disk in D_{i} such that $p_{i} \epsilon \operatorname{Int} E$. We omit the details justifying that $\mathrm{Bd} H$ and $\mathrm{Bd} D_{i}$ are homotopic in $N-(J \cup E)$. Once this is known, Dehn's lemma [16], as adjusted by Bing [1] for nonpiecewise linear maps, implies the existence of a 2 -sphere S^{\prime} such that $S^{\prime} \subset N, E \subset S^{\prime}$, and $A \cap S^{\prime}=p_{i}$.

Remark. The hypothesis in Theorem 1 that S is locally capped in $\operatorname{Int} C$ at p can be weakened. The essential thing is to be able to shrink an arbitrarily
small simple closed curve on S to a point in a small subset of $C-p$. Thus p is a piercing point of C if for each $\varepsilon>0$ there exists a disk R on S such that $p \epsilon \operatorname{Int} R, \operatorname{diam} R<\varepsilon$, and $\mathrm{Bd} R$ can be shrunk to a point in an ε-subset of $C-p$. The converse is also true [15]. In fact p is a piercing point of C if the boundary of the above disk R can be shrunk to a point in the union of an ε-subset of $C-p$ with a neighborhood N of $\operatorname{Bd} R$ where $A \cap N=\emptyset$. The following result is a consequence of this observation.

Corollary 1. If a 2-sphere S in S^{3} is locally spanned in a component V of $S^{3}-S$, then each point of S is a piercing point of $S \cup V$.

A 2-sphere S is locally spanned in V if for each $\varepsilon>0$ and for each $p \in S$ there exists an ε-disk R on S such that $p \in \operatorname{Int} R$ and for each $\alpha>0$ there is an ε-disk D in V such that $\mathrm{Bd} R$ can be shrunk to a point in $N(\mathrm{Bd} R, \alpha)$ u D. Such spheres are not known to be tame from V [4], [12].

Theorem 2. A 2-sphere S in S^{3} is pierced by a tame arc at p if S is locally capped at p.

Proof. From Theorem 1 we see that p is a piercing point of the closure of each component of $S^{3}-S$. According to McMillan [15] this implies that S is pierced by a tame arc at p.

Corollary 2. A 2-sphere S in S^{3} can be pirced by a tame arc at a point p if S is locally spherical at p.

Remark. When the definition of locally spherical is extended to a 2 -manifold M in S^{3} in the obvious way, it follows from Theorem 5 of [2] and Corollary 2 that M can be pierced by a tame arc at $p \in M$ if M is locally spherical at p.

It was shown in [14], based on some techniques developed by Burgess [5], that a 2 -sphere S in S^{3} is locally tame modulo two points if each component of $S^{3}-S$ is an open 3 -cell and S is locally annular. A 2 -sphere S is locally annular in a component V of $S^{3}-S$ at a point $p \in S$ if for each $\varepsilon>0$ and for each simple closed curve J that pierces S at p, there is an open annulus A in $V \cap N(p, \varepsilon)$ such that $J \cap \bar{A}=\emptyset$, one component of $\mathrm{Bd} A$ is a simple closed curve K in V that links J, and $\mathrm{Bd} A-K \subset S$. We give no proof for Lemma 2 because one is easily obtained.

Lemma 2. If a 2 -sphere S in S^{3} is locally capped in a component V of $S^{3}-S$ at a point p, then S is locally annular in V at p.

Theorem 3. If S is the boundary of a crumpled cube C in S^{3}, Int C is an open 3 -cell, and S is locally capped in Int C, then S is tame from Int C.

Proof. It follows from Lemma 2 and Theorem 4 of [14] that S contains a point p such that S is locally tame from $\operatorname{Int} C$ at each point of $S-p$. Then Theorem 3 follows from Theorem 1, [8], and [6].

Theorem 4. If a 2-sphere S in S^{3} is locally capped and each component of $S^{3}-S$ is an open 3 -cell, then S is tame.

Corollary 3. If a 2 -sphere S in S^{3} is locally spherical and each component of $S^{3}-S$ is an open 3 -cell, then S is tame.

Added in proof. Corollary 3 has been generalized by Eaton [7].

References

1. R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math., vol. 65 (1957), pp. 456-483.
2. -_, A surface is tame if its complement is a 1-ULC, Trans. Amer. Math. Soc., vol. 101 (1961), pp. 294-305.
3. C. E. Burgess, Characterizations of tame surfaces in E^{3}, Trans. Amer. Math. Soc., vol. 114 (1965), pp. 80-97.
4. -, Surfaces in E^{3}, Ann. of Math. Studies, no. 60, Princeton, 1966, pp. 73-80.
5. —_, Criteria for a 2-sphere in S^{3} to be tame modulo two points, Michigan Math. J., vol. 14 (1967), pp. 321-330.
6. P. H. Doyle and J. G. Hocking, Some results on tame disks and spheres in E^{3}, Proc. Amer. Math. Soc., vol. 11 (1960), pp. 832-836.
7. William Eaton, On locally spherical spheres, Notices Amer. Math. Soc., vol. 14 (1967), p. 917 (to appear in Canad. J. Math.).
8. David S. Gillman, Side approximation, missing an arc, Amer. J. Math., vol. 85 (1963), pp. 459-476.
9. O. G. Harrold, Jr., H. C. Griffith and E. E. Posey, A characterization of tame curves in three-space, Trans. Amer. Math. Soc., vol. 79 (1955), pp. 12-35.
10. N. Hosax, The sum of a real cube and a crumpled cube is S^{3}, Notices Amer. Math. Soc., vol. 10 (1963), p. 668.
11. L. L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc., vol. 118 (1965), pp. 534-549.
12. L. D. Loveland, Tame surfaces and tame subsets of spheres in E^{3}, Trans. Amer. Math. Soc., vol. 123 (1966), pp. 355-368.
13. -, Tame subsets of spheres in E^{3}, Pacific J. Math., vol. 19 (1966), pp. 489-517.
14. -, Conditions implying that a 2-sphere is almost tame, Trans. Amer. Math. Soc., vol. 131 (1968), pp. 170-181.
15. D. R. McMillan, Jr., Some topological properties of piercing points, Pacific J. Math., vol. 22 (1967), pp. 313-322.
16. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math., vol. 66 (1957), pp. 1-26.

Utah State University
Logan, Utah

[^0]: Received August 10, 1967.
 ${ }^{1} J$. W. Cannon has recently confirmed the suspicion that $(*, M, S)$ follows when M is tame.

