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We define a 2-sphere S in S to bt .ocally spherical at a point p of S if for each
s > 0 there is a 2-sphere S’ and a component Int S of S S’ such that
p e Int S’, diam (S’u Int S’) s, and S a S is a continuum M. A locally
spherical 2-sphere is one that is locally spherical at each of its points. It is
not known that a locally spherical 2-sphere is tamely imbedded in $3; however
several additional conditions have been imposed onM to insure the tameness of
S. For example, Burgess [3] showed that S is tame if M is a simple closed
curve, and Loveland [12] obtained the same conclusion by requiring that M
satisfy Property (., M, S). This property roughly means that S can be
side approximated missingM and implies thatM is tame [13]. It is not known
that a locally spherical 2-sphere S is tame even when M is required to be tame
[6, page 78]; however, it is suspected that Property (., M, S) is satisfied if M
is tame [8], [13]. Eaton [7], after reading the first draft of this paper, showed
that S is tame if S is locally spherical and M irreducibly separates S.
We show that S is pierced by a tame arc at a point p of S if S is locally spheri-

cal at p, and we use this result to show that a locally spherical 2-sphere is tame
provided each component of S S is an open 3-cell. The same techniques
show that S can be pierced by a tame arc at each of its points if S is locally
spanned in each component of S S (see the statement following Corollary 1
for definitions). Spheres that are locally spanned in their complementary
domains are not known to be tame [4], [12].
The "locally spherical" property is closed related to several local properties

identified in [14]; in fact we make use of several results and proofs given there
to prove slightly stronger results than those mentioned in the previous para-
graph. In Lemma 1 we show that "locally spherical" implies "locally
capped"; a 2-sphere S is locally capped in a component V of S S at a point p
of S if for each s > 0 there is a disk R on S and an open e-disk (the interior of a
disk of diameter less than s) D in V such that p Int R, BdD c S R, and
R lies on the boundary of an e-component of V D. A locally capped 2-sphere
S is one that is locally capped in each component of S S and at each point
of S. In [14] we asked if a locally capped 2-sphere S is tame, and we give an
affirmative answer here provided it is known that each component of S S
is an open 3.-cell (Theorem 4).

LEMMA 1. If a 2-sphere S in S is locally spherical at a point p S, then S is
locally capped at p.
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tame.
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Proof. Let VbeacomponentofS Sandlets > 0. There existsa
2-sphere S, a component Int S of S S’, and a disk E on S such that
p e Int E, E u S u Int S’ c N(p, e/2), and S’ n S is a continuum in E. Let
q be a point in S E, and let J be a simple closed curve such that J n S p, q}
and J intersects both components of S S. Let R be a disk on S such that
p e Int R c R Int S’; then J links both Bd R and Bd E. Without loss ia
generality we assume that J n S’ is finite and that J pierces S’ at each point of
intersection. Now we choose a component D of S’ S such that D V and
D n J consists of an odd number of points, and we note that D is an open disk
in N(p, /2). An argument similar to the proof of Lemma 1 of [14] shows that
the continuum BdD separates p from q on S; thus R lies on the boundary of an
e-component of V D.

A crumpled cube in S is the union of a 2-sphere and one of its complementary
domains, and a point p of the boundary of a crumpled cube C is called a piercing
point of C if there exists a homeomorphism h of C into S such that h(Bd C) can
be pierced by a tame arc at h(p).

THEOREM l. If the boundary S of a crumpled cube C in S is locally capped in
Int C at a point p e S, then p is a piercing point of C.

Proof. Since there exists a homeomorphism h of C into S such that
S h(Int C) is a 3-cell [10], [11] and since p is a piercing point of C if and only
if h(p) is a piercing point of h(C), we assume that S Int C is a 3-cell. We
shall establish Theorem 1 by showing that S is arcwise accessible at p by a tame
arc from S C [15].

Let D1, D, Da, be a null sequence of disks and let A be an arc such that
p is an endpoint of A, A p c S C, A is locally tame modulop,
D C Bd D, andD A is a point p. Such objects exist since S is tame
from S C. Since A is locally tame modulo an endpoint, A lies on a 2-sphere.
Then it will follow that A is tme once we show the existence of arbitrarily
small 2-spheres surrounding p and intersecting A at a point [9].

Let J be a simple closed curve containing A and intersecting S in two points
p and q, let N be a neighborhood of p not containing the other endpoint of A,
let V Int C, and let G be a disk such that p e Int G G N S. Let R be
a disk in Int G such that p e Int R and let D be n open disk such that
Bd D c Int G R and R lies on the boundary of a component of V D in N.
There is an integer i such that D N and BdD Int G. Let H be a disk
such that J D Int H H c D, and let E be a disk in D such that
p e Int E. We omit the details justifying that Bd H and Bd D are homo-
topic in N (J u E). Once this is known, Dehn’s lemma [16], as adjusted by
Bing [1] for nonpiecewise linear maps, implies the existence of a 2-sphere S
such that S’ N, E S’, and A S’ p.

Remart. The hypothesis in Theorem 1 that S is locally capped ia Int C at
p can be weakened. The essential thing is to be able to shrink an arbitrarily
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small simple closed curve on S to a point in a small subset of C p. Thus p is
a piercing point of C if for each s > 0 there exists a disk R on S such that
p e Int R, diam R s, and Bd R can be shrunk to a point in an s-subset of
C p. The converse is also true [15]. In fact p is a piercing point of C if the
boundary of the above disk R can be shrunk to a point in the union of an
s-subset of C p with a neighborhood N of Bd R where A n N 0. The
following result is a consequence of this observation.

COROLLARY 1. If a 2-sphere S in S is locally spanned in a component V of
S, then each point of S is a piercing point of S t V.

A 2-sphere S is locally spanned in V if for each s > 0 and for each p e S there
exists an s-disk R on S such that p e Int R and for each a > 0 there is an s-disk
D in V such that Bd R can be shrunk to a point in N(Bd R, a) u D. Such
spheres are not known to be tame from V [4], [12].

THEOREM 2. A 2-sphere S in S is pierced by a tame arc at p if S is locally
capped at p.

Proof. From Theorem 1 we see that p is a piercing point of the closure of
each component of S S. According to 5/IcMillan [15] this implies that S is
pierced by a tame arc at p.

COROLLAIY 2. A 2-sphere S in S can be pirced by a tame arc at a point p if
S is locally spherical at p.

Remark. When the definition of locally spherical is extended to a 2-manifold
M in S in the obvious way, it follows from Theorem 5 of [2] and Corollary 2
that M can be pierced by a tame arc at p e M if M is locally spherical at p.

It was shown in [14], based on some techniques developed by Burgess [5],
that a 2-sphere S in S is locally tame modulo two points if each component of
S S is an open 3-cell and S is locally annular. A 2-sphere S is locally
annular in a component V of S S at a point p e S if for each e > 0 and for
each simple closed curve J that pierces S at p, there is an open annulus A in
V N(p, ) such that J n i 0, one component of Bd A is a simple closed
curve K in V that links J, and Bd A K c S. We give no proof for Lemma 2
because one is easily obtained.

LEMMA 2. If a 2-sphere S in S is locally capped in a component V of S S
at a point p, then S is locally annular in V at p.

THEOREM 3. If S is the boundary of a crumpled cube C in S, Int C is an open
3-cell, and S is locally capped in Int C, then S is tame from Int C.

Proof. It follows from Lemma 2 and Theorem 4 of [14] that S contains a
point p such that S is locally tame from Int C at each point of S p. Then
Theorem 3 follows from Theorem 1, [8], and [6].

THEOREM 4. If a 2-sphere S in S is locally capped and each component of
S is an open 3-cell, then S is tame.
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COaOLaY 3. If a 2-sphere S in S is locally spherical and each component of
S S is an open 3-cell, then S is tame.

Added in proof. Corollary 3 has been generalized by Eaton [7].
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