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BETTI NUMBERS AND SHIFTS IN MINIMAL GRADED
FREE RESOLUTIONS

TIM RÖMER

Abstract. Let S = K[x1, . . . , xn] be a polynomial ring and R =
S/I where I ⊂ S is a graded ideal. The Multiplicity Conjecture of

Herzog, Huneke, and Srinivasan which was recently proved using

the Boij–Söderberg theory states that the multiplicity of R is

bounded above by a function of the maximal shifts in the minimal

graded free resolution of R over S as well as bounded below by

a function of the minimal shifts if R is Cohen–Macaulay. In this

paper, we study the related problem to show that the total Betti-
numbers of R are also bounded above by a function of the shifts

in the minimal graded free resolution of R as well as bounded

below by another function of the shifts if R is Cohen–Macaulay.
We also discuss the cases when these bounds are sharp.

1. Introduction

Let S = K[x1, . . . , xn] be a polynomial ring over a field K equipped with
the standard grading by setting deg(xi) = 1. We consider a standard graded
K-algebra R = S/I where I ⊂ S is a graded ideal and the minimal graded free
resolution of R:

0 →
⊕
j∈Z

S(−j)βS
p,j(R) → · · · →

⊕
j∈Z

S(−j)βS
1,j(R) → S → 0,

where βS
i,j(R) = dimK TorS

i (R,K)j are the graded Betti numbers and p =
projdim(R) is the projective dimension of R. Let βS

i (R) =
∑

j∈Z
βS

i,j(R) be
the ith total Betti number of R. Recall that R has a pure resolution if the
resolution has the following shape:

0 → S(−dp)βS
p (R) → · · · → S(−d1)βS

1 (R) → S → 0
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for some numbers d1, . . . , dp. Let e(R) denote the multiplicity of R. If R
is Cohen–Macaulay with a pure resolution, then Herzog and Kühl [11], and
Huneke and Miller [14] observed that the following formulas hold:

e(R) =
1
p!

p∏
i=1

di and βS
i (R) = (−1)i+1

∏
j �=i

dj

dj − di
for i = 1, . . . , p.

Consider for 1 ≤ i ≤ p, the numbers

Mi = max{j ∈ Z : βS
i,j(R) �= 0} and mi = min{j ∈ Z : βS

i,j(R) �= 0}.

In the last years, many people studied the Multiplicity Conjecture of Herzog,
Huneke and Srinivasan (see [12] and [14]) which states in its original form
that if R = S/I is Cohen–Macaulay, then

1
p!

p∏
i=1

mi ≤ e(R) ≤ 1
p!

p∏
i=1

Mi.

Migliore, Nagel and the author [15] extended this conjecture by the questions
that we have equality below or above if and only if R has a pure resolu-
tion. This conjecture is proved as a corollary of the Boij–Söderberg theory
which was conjectured and developed partly by Boij–Söderberg [3] and then
completely proved by Eisenbud–Schreyer [8] (see also [3] and [7]). A natural
question is whether under the Cohen–Macaulay assumption the ith total Betti
number βS

i (R) can also be bounded by using the shifts in the minimal graded
free resolution of R. A natural guess for bounds is∏

1≤j<i

mj

mi − mj
·

∏
i<j≤p

mj

mj − mi
(1)

≤ βS
i (R) ≤

∏
1≤j<i

Mj

Mi − Mj
·

∏
i<j≤p

Mj

Mj − Mi

for i = 1, . . . , p. We show that these bounds hold if R is a complete intersection
and if I is componentwise linear. Moreover, in these cases we have equality
above or below for all i if and only if R has a pure resolution. In general,
these bounds are not valid. Indeed, we give a counterexample in Example 3.1.
For Cohen–Macaulay algebras with strictly quasi-pure resolutions, that is,
mi > Mi−1 for all i, we show the bounds∏

1≤j<i

mj

Mi − mj
·

∏
i<j≤p

mj

Mj − mi
(2)

≤ βS
i (R) ≤

∏
1≤j<i

Mj

mi − Mj
·

∏
i<j≤p

Mj

mj − Mi
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for i = 1, . . . , p. Again we have equality below or above for all i if and only if
R has a pure resolution. Observe that∏

1≤j<i

mj

Mi − mj
·

∏
i<j≤p

mj

Mj − mi
≤

∏
1≤j<i

mj

mi − mj
·

∏
i<j≤p

mj

mj − mi
,

because Mi − mj ≥ mi − mj > 0 for 1 ≤ j < i and Mj − mi ≥ mj − mi > 0
for i < j ≤ p respectively. Thus, the weaker lower bounds in (2) hold also
for all cases where the lower bounds in (1) are valid. But the numbers∏

1≤j<i
Mj

mi −Mj
·
∏

i<j≤p
Mj

mj −Mi
may be negative and thus are not candidates

for upper bounds in general. Note that the Cohen–Macaulay assumption for
the lower bound (2) is essential. We construct a non-Cohen–Macaulay ideal
as a counterexample in Example 4.2. We have that∏

1≤j<i

Mj

Mi − Mj
·

∏
i<j≤p

Mj

Mj − Mi
≤ 1

(i − 1)! · (p − i)!

∏
j �=i

Mj

because in the Cohen–Macaulay case we have Mi − Mj ≥ i − j for 1 ≤ j < i
and Mj − Mi ≥ j − i for i < j ≤ p respectively. Hence, one might still ask if
the upper bound

βS
i (R) ≤ 1

(i − 1)! · (p − i)!

∏
j �=i

Mj(3)

is valid for i = 1, . . . , p. In addition to the cases that the bounds in (1) hold if R
is a complete intersection and if I is componentwise linear, the bounds in (2)
hold if R has a strictly quasi-pure resolution, using the Boij–Söderberg theory
we show that the lower bounds in (2) and the upper bounds in (3) hold if S/I
is Cohen–Macaulay. Moreover, we discuss the case where we have equality
everywhere. See also [16] for related results. Some remarks on possible upper
bounds for non Cohen–Macaulay algebras are included in this paper.

We are grateful to Prof. J. Herzog for inspiring discussions on the subject
of this paper.

2. Complete intersections

One of the first examples of Cohen–Macaulay algebras are complete in-
tersection. For this, we consider a complete intersection R = S/I where
I = (f1, . . . , fp) is a graded ideal generated by a regular sequence f1, . . . , fp.
Let deg(fi) = di for i = 1, . . . , p. Without loss of generality, we assume that
d1 ≥ · · · ≥ dp. The Koszul complex gives rise to a minimal graded free resolu-
tion of R and thus we get that

βi(R) =
(

p

i

)
,

Mi = d1 + · · · + di,

mi = dp + · · · + dp−i+1
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for i = 1, . . . , p. Note that R has a pure resolution if and only if d1 = · · · = dp.
The ideal I has a linear resolution if and only if d1 = · · · = dp = 1. Using these
facts we prove the following theorem.

Theorem 2.1. Let R = S/I be a complete intersection as described above.
Then:
(i) We have for i = 1, . . . , p that

βS
i (R) ≤

∏
1≤j<i

Mj

Mi − Mj
·

∏
i<j≤p

Mj

Mj − Mi
≤ 1

(i − 1)! · (p − i)!

∏
j �=i

Mj .

The first upper bound is reached for all i if and only if R has a pure
resolution. Every upper bound is reached for all i if and only if I has a
linear resolution.

(ii) We have for i = 1, . . . , p that

βS
i (R) ≥

∏
1≤j<i

mj

mi − mj
·

∏
i<j≤p

mj

mj − mi

≥
∏

1≤j<i

mj

Mi − mj
·

∏
i<j≤p

mj

Mj − mi
.

Every lower bound is reached for all i if and only if R has a pure resolu-
tion.

Proof. (i): To prove the upper bound, we compute for p ≥ j > i that

Mj

Mj − Mi
=

d1 + · · · + dj

di+1 + · · · + dj
=

d1 + · · · + di

di+1 + · · · + dj
+ 1

≥ i · di

(j − i) · di+1
+ 1 ≥ i

j − i
+ 1 =

j

j − i

and for 1 ≤ j < i that

Mj

Mi − Mj
=

d1 + · · · + dj

dj+1 + · · · + di
≥ j · dj

(i − j) · dj+1
≥ j

(i − j)
.

Observe that we have equality for all integers i, j if and only if d1 = · · · = dp.
Thus,

βS
i (R) =

(
p
i

)

=
i − 1

1
· i − 2

2
· · · 1

i − 1
· p

p − i
· p − 1
p − 1 − i

· · · i + 1
1

≤ Mi−1

Mi − Mi−1
· Mi−2

Mi − Mi−2
· · · M1

Mi − M1
· Mp

Mp − Mi

· Mp−1

Mp−1 − Mi
· · · Mi+1

Mi+1 − Mi
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=
∏

1≤j<i

Mj

Mi − Mj
·

∏
i<j≤p

Mj

Mj − Mi

≤ 1
(i − 1)! · (p − i)!

∏
j �=i

Mj ,

where the last inequality was observed in Section 1. Moreover, we have that
βS

i (R) =
∏

1≤j<i
Mj

Mi −Mj
·
∏

i<j≤p
Mj

Mj −Mi
for all 1 ≤ i ≤ p if and only if R has

a pure resolution. It is also easy to see that βS
i (R) = 1

(i−1)!·(p−i)!

∏
j �=i Mj for

all 1 ≤ i ≤ p if and only if I has a linear resolution.
(ii): Similarly, it follows from

mj

mj − mi
=

dp + · · · + dp−j+1

dp−i + · · · + dp−j+1
=

dp + · · · + dp−i+1

dp−i + · · · + dp−j+1
+ 1

≤ i · dp−i+1

(j − i) · dp−i
+ 1 ≤ i

(j − i)
+ 1 =

j

(j − i)

for p ≥ j > i and

mj

mi − mj
=

dp + · · · + dp−j+1

dp−j + · · · + dp−i+1
≤ j · dp−j+1

(i − j) · dp−j
≤ j

(i − j)

for 1 ≤ j < i that

βS
i (R) =

(
p
i

)

≥
∏

1≤j<i

mj

mi − mj
·

∏
i<j≤p

mj

mj − mi

≥
∏

1≤j<i

mj

Mi − mj
·

∏
i<j≤p

mj

Mj − mi
.

The last inequality was observed in Section 1. Again we have equations ev-
erywhere for all 1 ≤ i ≤ p if and only if R has a pure resolution.

This concludes the proof. �

Remark 2.2. Instead of this direct approach one can also use the Boij–
Söderberg theory (see [3], [4], [7] and [8]). See Section 5 for details where
we obtain beside other things again the lower bounds in (2) and the upper
bounds in (3) using this approach.

3. Ideals with strictly quasi-pure resolutions

Motivated by the results of Section 2 one could hope that the bounds in
(1) are always valid. This is not the case as the following example shows.

Example 3.1. We consider the following situation. Let S = K[x1, . . . , x6]
be a polynomial ring in 6 variables and consider the graded ideal I = (x1x2,
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x1x3, x2x4 − x5x6, x3x4). Using for example CoCoA [5], one checks that S/I is
Cohen–Macaulay of dimension 3 and it has the minimal graded free resolution:

0 → S2(−5) → S2(−3) ⊕ S3(−4) → S4(−2) → S → 0

which is not pure. We have

M1 = m1 = 2, M2 = 4, m2 = 3, M3 = m3 = 5.

But
M2

M2 − M1
· M3

M3 − M1
=

4
2

· 5
3

=
20
6

< 4 = βS
1 (R)

and hence the upper bound of (1) is not valid. Moreover,

m2

m2 − m1
· m3

m3 − m1
=

3
1

· 5
3

= 5 > 4 = βS
1 (R).

Thus also the lower bound of (1) is false in general. But the resolution is
strictly quasi-pure since mi > Mi−1 for all 1 ≤ i ≤ 3. Note that the bounds in
(2) hold. Indeed, for example, for βS

1 (R) we have

M2

m2 − M1
· M3

m3 − M1
=

4
1

· 5
3

=
20
3

> 4 = βS
1 (R)

and
m2

M2 − m1
· m3

M3 − m1
=

3
2

· 5
3

=
15
6

< 4 = βS
1 (R).

We recall the following well-known result which is due to Peskine and Szpiro
[17].

Lemma 3.2. Let I ⊂ S be a graded ideal such that R = S/I is Cohen–
Macaulay and let p = projdim(R). Then:
(i)

∑p
i=1(−1)i

∑
j βS

ij(R) =
∑p

i=1(−1)iβS
i (R) = −1.

(ii)
∑p

i=1(−1)i
∑

j jk · βS
ij(R) = 0 for 1 ≤ k ≤ p − 1.

Proof. We have
∑p

i=1(−1)i
∑

j βS
ij(R) =

∑p
i=1(−1)iβS

i (R) = −βS
0 (R) =

−1. For a proof of the other equalities, see, for example, [12, Lemma 1.1]. �

We see that the graded Betti numbers satisfy a certain system of equations
which sometimes is nowadays also called the Herzog–Kühl equations. Note
that if R has a pure resolution, then using this system, Cramer’s rule and
the Vandermonde determinant it is not difficult to prove the formulas of the
multiplicity and the total Betti-numbers in [11] and [14]. Recall from [12]
that R has a quasi-pure resolution if mi ≥ Mi−1 for all i. Unfortunately, we
cannot prove in general the bounds in (2) for the total Betti-numbers in this
case. We say that R has a strictly quasi-pure resolution if mi > Mi−1 for all i.
In this case, we show that the bounds in (2) are valid. The idea of the proof
is similar to the one of [12, Theorem 1.2].
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Theorem 3.3. Let I ⊂ S be a graded ideal such that R = S/I is Cohen–
Macaulay which has a strictly quasi-pure resolution and let p = projdim(R).
Then:
(i) We have for i = 1, . . . , p that

βS
i (R) ≤

∏
1≤j<i

Mj

mi − Mj

∏
i<j≤p

Mj

mj − Mi
≤ 1

(i − 1)! · (p − i)!

∏
j �=i

Mj .

The first upper bound is reached for all i if and only if R has a pure
resolution. Every upper bound is reached for all i if and only if I has a
linear resolution.

(ii) We have for i = 1, . . . , p that

βS
i (R) ≥

∏
1≤j<i

mj

Mi − mj
·

∏
i<j≤p

mj

Mj − mi
.

Every lower bound is reached for all i if and only if R has a pure resolu-
tion.

Proof. We consider the (p × p)-square matrix

A =

⎛
⎜⎜⎜⎝

∑
j βS

1j(R)
∑

j βS
2j(R) · · ·

∑
j βS

pj(R)∑
j j · βS

1j(R)
∑

j j · βS
2j(R) · · ·

∑
j j · βS

pj(R)
...

...
...

...∑
j jp−1 · βS

1j(R)
∑

j jp−1 · βS
2j(R) · · ·

∑
j jp−1 · βS

pj(R)

⎞
⎟⎟⎟⎠ .

We compute the determinant of A as

det(A) =
∑
j1

· · ·
∑
jp

V (j1, . . . , jp) ·
∏

1≤l≤p

βS
ljl

(R)

with the Vandermonde determinants

V (j1, . . . , jp) = det

⎛
⎜⎜⎜⎝

1 1 · · · 1
j1 j2 · · · jp

...
...

...
...

jp−1
1 jp−1

2 · · · jp−1
p

⎞
⎟⎟⎟⎠ .

Since R has a strictly quasi-pure resolution we have that ji > jk for all integers
i, k such that i > k, βS

iji
(R) �= 0 and βS

kjk
(R) �= 0. Thus, all the involved

Vandermonde determinants are always positive.
We may compute det(A) also in a different way. Fix i ∈ {1, . . . , p}. By

replacing the ith column of A by the alternating sum of all columns of A, we
obtain a matrix A′ such that det(A) = det(A′). It follows from Lemma 3.2,
that the ith column of A′ is the transpose of the vector ((−1)i+1,0, . . . ,0).
Hence, by expanding the determinant of A′ with respect to the ith column,
we get

det(A) = det(A′) = det(B),
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where B is the (p − 1 × p − 1)-matrix⎛
⎝

∑
j jβS

1j(R) · · ·
∑

j jβS
i−1j(R)

∑
j jβS

i+1j(R) · · ·
∑

j jβS
pj(R)

..

.
..
.

..

.
..
.

..

.
..
.∑

j jp−1βS
1j(R) · · ·

∑
j jp−1βS

i−1j(R)
∑

j jp−1βS
i+1j(R) · · ·

∑
j jp−1βS

pj(R)

⎞
⎠ .

Thus,

det(A) = det(B)

=
∑
j1

· · ·
∑
ji−1

∑
ji+1

· · ·
∑
jp

U(j1, . . . , ji−1, ji+1, . . . , jp) ·
∏

1≤l≤p,l �=i

jl · βS
ljl

(R)

with the corresponding Vandermonde determinants

U(j1, . . . , ji−1, ji+1, . . . , jp)

= det

⎛
⎜⎜⎜⎝

1 · · · 1 1 · · · 1
j1 · · · ji−1 ji+1 · · · jp

...
...

...
...

...
...

jp−2
1 · · · jp−2

i−1 jp−2
i+1 · · · jp−2

p

⎞
⎟⎟⎟⎠ .

Observe that

V (j1, . . . , jp) =
∏

i<l≤p

(jl − ji) ·
∏

1≤l<i

(ji − jl) · U(j1, . . . , ji−1, ji+1, . . . , jp).

All in all we obtain from the discussion so far that∑
j1

· · ·
∑
jp

∏
i<l≤p

(jl − ji)(4)

·
∏

1≤l<i

(ji − jl) · U(j1, . . . , ji−1, ji+1, . . . , jp) ·
∏

1≤l≤p

βS
ljl

(R)

=
∑
j1

· · ·
∑
ji−1

∑
ji+1

· · ·
∑
jp

U(j1, . . . , ji−1, ji+1, . . . , jp)

·
∏

1≤l≤p,l �=i

jl ·
∏

1≤l≤p,l �=i

βS
ljl

(R).

It follows from the fact that R has a strict quasi-pure resolution that for all
integers l∏

1≤l<i

(mi − Ml)
∏

i<l≤p

(ml − Mi)(5)

≤
∏

1≤l<i

(ji − jl)
∏

i<l≤p

(jl − ji) ≤
∏

1≤l<i

(Mi − ml)
∏

i<l≤p

(Ml − mi).

We always have for those jl with βS
ljl

(R) �= 0 that∏
1≤l≤p,l �=i

ml ≤
∏

1≤l≤p,l �=i

jl ≤
∏

1≤l≤p,l �=i

Ml.(6)
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Using (4), the lower bound of (5) and the upper bound of (6) we obtain

βS
i (R) ·

∏
i<l≤p

(ml − Mi)
∏

1≤l<i

(mi − Ml)

·
∑
j1

· · ·
∑
ji−1

∑
ji+1

· · ·
∑
jp

U(j1, . . . , ji−1, ji+1, . . . , jp) ·
∏

1≤l≤p,l �=i

βS
ljl

(R)

≤
∏

1≤l≤p,l �=i

Ml

∑
j1

· · ·
∑
ji−1

∑
ji+1

· · ·
∑
jp

U(j1, . . . , ji−1, ji+1, . . . , jp)

·
∏

1≤l≤p,l �=i

βS
ljl

(R)

and thus

βS
i (R) ≤

∏
1≤j<i

Mj

mi − Mj
·

∏
i<j≤p

Mj

mj − Mi
.

Analogously using (4), the upper bound of (5) and the lower bound of (6) we
get

βS
i (R) ≥

∏
1≤j<i

mj

Mi − mj
·

∏
i<j≤p

mj

Mj − mi
.

(These lower bounds will also be proved in Section 5 where we show that
they hold in general for all Cohen–Macaulay rings.) Checking the inequalities
we see that we have equality above or below for all 1 ≤ i ≤ p if and only if
R has a pure resolution. We already observed that we have the inequalities∏

1≤j<i
Mj

mi −Mj

∏
i<j≤p

Mj

mj −Mi
≤ 1

(i−1)!·(p−i)!

∏
j �=i Mj . A straightforward dis-

cussion shows that βS
i (R) = 1

(i−1)!·(p−i)!

∏
j �=i Mj for all i if and only if I has

a linear resolution. This concludes the proof. �

4. Componentwise linear ideals

Let I ⊂ S = K[x1, . . . , xn] be a graded ideal. Recall that I has a k-linear
resolution if βS

i,i+j(I) = 0 for j �= k. For a nonnegative integer k, we denote
by I〈k〉 ⊂ S the ideal which is generated by all elements in Ik. Herzog and
Hibi [10] called I componentwise linear if I〈k〉 has a k-linear resolution for all
k ≥ 0.

It is well known that a lot of important classes of ideals in combinatorial
commutative algebra are componentwise linear. Recall that an ideal I ⊂ S is
called a monomial ideal if it is generated by monomials of S. Then we denote
by G(I) the unique minimal system of generators of I . A monomial ideal
I ⊂ S is called strongly stable, if for all monomials xu =

∏n
k=1 xuk

k ∈ G(I)
and i with xi|xu we have for all 1 ≤ j ≤ i that (xu/xi)xj ∈ I . It is well
known that strongly stable ideals are componentwise linear. But also stable
ideals, squarefree (strongly) stable ideals and more generally a-stable ideal are
componentwise linear. (See [18, Theorem 3.11] for definitions and a proof.) In
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particular, this implies that all generic initial ideals are componentwise linear
provided char(K) = 0. (E.g., see [1] or [13, Lemma 3.3].)

In the proof of the next theorem, we will need the Eliahou–Kervaire formula
[9] for the graded Betti-numbers of a strongly stable ideal I : we have for all
i ≥ 1 and j ≥ 0 that βS

i,i+j(S/I) =
∑

xu ∈G(I),deg xu=j+1

(
m(u)−1

i−1

)
where we set

m(u) = max{i : 1 ≤ i ≤ n, ui > 0} for a monomial xu with u ∈ N
n. Here we

make the convention that
(
a
b

)
= 0 for a, b ∈ Z unless 0 ≤ b ≤ a. (Note that these

formulas above are already true for stable ideals.) Observe the following facts.
If βS

i,i+j(S/I) �= 0 for some i, then βS
k,k+j(S/I) �= 0 for 1 ≤ k ≤ i. Moreover,

only those xu ∈ G(I) with m(u) ≥ i are relevant for the total ith Betti number
βS

i (S/I) �= 0 and then degxu ≥ mi − i + 1.

Theorem 4.1. Let I ⊂ S be a componentwise linear ideal such that R = S/I
is Cohen–Macaulay and let p = projdim(R). Then:

(i) We have for i = 1, . . . , p that

βS
i (R) ≤

∏
1≤j<i

Mj

Mi − Mj
·

∏
i<j≤p

Mj

Mj − Mi
≤ 1

(i − 1)! · (p − i)!

∏
j �=i

Mj .

Every upper bound is reached for all i if and only if I has a linear reso-
lution.

(ii) We have for i = 1, . . . , p that

βS
i (R) ≥

∏
1≤j<i

mj

mi − mj
·

∏
i<j≤p

mj

mj − mi
≥

∏
1≤j<i

mj

Mi − mj
·

∏
i<j≤p

mj

Mj − mi
.

Every lower bound is reached for all i if and only if I has a linear reso-
lution.

Proof. Without loss of generality, we may assume that the field K is in-
finite. We denote by gin(I) the generic initial ideal of I with respect to the
reverse lexicographical order. The proof of the main result in [1] and [13,
Lemma 3.3] shows that gin(I) has the same graded Betti numbers as I and is
a stable ideal in all characteristics. If we replace I by gin(I), then the Betti
numbers of I do not depend on the characteristic of K and we may assume
that char(K) = 0. Replacing another time I by gin(I) does not change the
Betti numbers and thus we may now assume that I is a strongly stable ideal.

Since R is Cohen–Macaulay and it is known that xn, . . . , xn−depth(R)+1 is
a regular sequence for R, we may assume that dim(R) = 0 and thus a pure
power of each variable belongs to I . Let a > 0 be the smallest natural number
such that xa

n ∈ I . Then deg(xu) ≤ a for all xu ∈ G(I) and xa
n ∈ G(I), because

I is strongly stable. Note that for (i) and (ii) we have to show only the
corresponding first inequalities, since the other are trivially true as noted in
the other sections of this paper.
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(i): It follows from the Eliahou–Kervaire formula for the graded Betti num-
bers of R that

Mi = a + i − 1 for i = 1, . . . , n.

We have that (x1, . . . , xn)a ⊆ I and thus it follows from [6, Theorem 3.2] that

βS
i (S/I) ≤ βS

i

(
S/(x1, . . . , xn)a

)
=

∏
1≤j<i

Mj

Mi − Mj
·

∏
i<j≤n

Mj

Mj − Mi
,

where the last equation follows from the fact that (x1, . . . , xn)a has an a-linear
resolution, the maximal shifts coincide with the ones of I and that in this case
the equation follows from [11, Theorem 1].

If I has a linear resolution, then I = (x1, . . . , xn)a and the upper bounds
for βS

i (S/I) are reached. Assume that we have equations everywhere. Then
it follows that βS

i (S/I) = βS
i (S/(x1, . . . , xn)a) for i = 1, . . . , n. In the proof of

[6, Theorem 3.2] it is shown, that this implies∣∣xu ∈ G
(
I〈j〉

)
: m(u) = k

∣∣
=

∣∣xu ∈ G
(
(x1, . . . , xn)a

〈j〉
)

: m(u) = k
∣∣ for j ∈ Z, 1 ≤ k ≤ n − 1.

This implies that I〈j〉 = 0 for j < a and thus I = (x1, . . . , xn)a. Hence, I has
an a-linear resolution.

(ii): Fix 1 ≤ i ≤ n and write mi = i + b − 1 for some natural number b.
Let J = I≥b be the ideal which is generated by all elements of I of degree
greater or equal to b. It follows from the Eliahou–Kervaire formula and the
observations given above that

βS
j (S/J) = βS

j (S/I) for j ≥ i,

mj(S/J) = mj(S/I) for j ≥ i,

mj(S/J) ≥ mj(S/I) for 1 ≤ j < i,

mj(S/J) = mi(S/J) − (i − j) for 1 ≤ j < i.

Note that S/J is still zero dimensional. Assume that we could prove the lower
bound for S/J , then it would follow that

βS
i (S/I) = βS

i (S/J)

≥
∏

1≤j<i

mj(S/J)
mi(S/J) − mj(S/J)

·
∏

i<j≤n

mj(S/J)
mj(S/J) − mi(S/J)

=
∏

1≤j<i

mj(S/J)
mi(S/I) − mj(S/J)

·
∏

i<j≤n

mj(S/I)
mj(S/I) − mi(S/I)

≥
∏

1≤j<i

mj(S/I)
mi(S/I) − mj(S/I)

·
∏

i<j≤n

mj(S/I)
mj(S/I) − mi(S/I)

.
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The last inequality follows because for 1 ≤ j < i we have
mj(S/J)

mi(S/I) − mj(S/J)
≥ mj(S/I)

mi(S/I) − mj(S/I)
⇔ mj(S/J)mi(S/I) − mj(S/J)mj(S/I)

≥ mj(S/I)mi(S/I) − mj(S/I)mj(S/J)
⇔ mj(S/J)mi(S/I) ≥ mj(S/I)mi(S/I)
⇔ mj(S/J) ≥ mj(S/I).

Here the last inequality follows from the definition of J as noted above. It
remains to show the lower bound for βS

i (S/J). Let L = (x1, . . . , xn)b. We
observe that J ⊆ L and we have

mj(S/L) = mi(S/L) − (i − j) for 1 ≤ j < i,

mj(S/L) = mi(S/L) + (j − i) for i < j ≤ n,

mj(S/J) = mj(S/L) for j ≤ i,

mj(S/J) ≥ mj(S/L) for i < j ≤ n.

Moreover, it follows from [6, Theorem 3.2] that βS
i (S/J) ≥ βS

i (S/L). We
compute

βS
i (S/J) ≥ βS

i (S/(x1, . . . , xn)b)

=
∏

1≤j<i

mj(S/L)
mi(S/L) − mj(S/L)

·
∏

i<j≤n

mj(S/L)
mj(S/L) − mi(S/L)

=
∏

1≤j<i

mj(S/J)
mi(S/J) − mj(S/J)

·
∏

i<j≤n

mj(S/L)
mj(S/L) − mi(S/J)

≥
∏

1≤j<i

mj(S/J)
mi(S/J) − mj(S/J)

·
∏

i<j≤n

mj(S/J)
mj(S/J) − mi(S/J)

.

The last inequality follows because for i < j ≤ n we have
mj(S/L)

mj(S/L) − mi(S/J)
≥ mj(S/J)

mj(S/J) − mi(S/J)
⇔ mj(S/L)mj(S/J) − mj(S/L)mi(S/J)

≥ mj(S/J)mj(S/L) − mj(S/J)mi(S/J)
⇔ −mj(S/L)mi(S/J) ≥ −mj(S/J)mi(S/J)
⇔ mj(S/J) ≥ mj(S/L).

The last inequality is valid as noted above. Thus, we get the desired lower
bound for J and hence also for I .

Assume that for all i the lower bound for βS
i (S/I) is reached. For i = 1 the

corresponding constructed J is just I . It follows then also that βS
1 (S/I) =
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βS
1 (S/L) and applying again [6, Theorem 3.2] we see that βS

i (S/I) = βS
i (S/L)

for 1 ≤ i ≤ n. Now we deduce as in the proof of (i) that indeed I has a linear
resolution. This concludes the proof. �

The Cohen–Macaulay assumption is essential for the lower bounds in (2).
In fact, we can construct a strongly stable ideal as a counterexample. The
ideal is taken from [12].

Example 4.2. Let S = K[x1, . . . , x4] be a polynomial ring in 4 variables
and we consider the strongly stable ideal I = (x2

1, x1x2, x
3
2, x

2
2x3, x

2
2x4). Then

S/I is not Cohen–Macaulay because dim(S/I) = 2 and depth(S/I) = 0. It
follows from the Eliahou–Kervaire formula that

βS
1 (S/I) = 5, βS

2 (S/I) = 7, βS
3 (S/I) = 4, βS

4 (S/I) = 1

and
m1 = 2, m2 = 3, m3 = 5, M4 = m4 = 6.

But now

βS
4 (S/I) = 1 <

m3

M4 − m3
· m2

M4 − m2
· m1

M4 − m1
=

5 · 3 · 2
1 · 3 · 4

=
30
12

.

On the other hand, for strongly stable ideals we still can give an upper
bound for the ith total Betti number without the Cohen–Macaulay assump-
tion.

Theorem 4.3. Let I ⊂ S be a componentwise linear ideal and p = codim(S/
I). We have for i = 1, . . . , p that

βS
i (S/I) ≤

(
i + M1 − 2

i − 1

)
·
(

p + M1 − 1
p − i

)
.

The upper bound is reached for all i if and only if S/I is Cohen–Macaulay
and I has a linear resolution.

Proof. As shown in the proof of Theorem 4.1, we may assume that
char(K) = 0 and that I is a strongly stable ideal. It is known that xn, . . . ,
xn−depth(S/I)+1 is a regular sequence for S/I and thus we may assume that
depth(S/I) = 0, i.e. projdim(S/I) = n.

Let J = I≥M1(S/I) be the ideal which is generated by all elements of I of
degree greater or equal to M1(S/I). It follows from [6, Theorem 3.2] that
βS

i (S/I) ≤ βS
i (S/J). Note that Mi ≤ M1 + i − 1 as one deduces from the

Eliahou–Kervaire formula. By construction of J , we have M1(S/J) = M1 and
J has an M1-linear resolution. Assuming that we can show the upper bound
for S/J , we get for 1 ≤ i ≤ n that

βS
i (S/I) ≤ βS

i (S/J) ≤
(

i + M1 − 2
i − 1

)
·
(

n + M1 − 1
n − i

)
.
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It remains to show the upper bound for S/J . Note that

βS
i (S/J) =

∑
xu ∈G(J)

(
m(u) − 1

i − 1

)

=
n∑

j=i

(
j − 1
i − 1

)
| {xu ∈ G(J) : m(u) = j}|

≤
n∑

j=i

(
j − 1
i − 1

)(
j + M1 − 1 − 1

M1 − 1

)
.

We prove by induction on n − i that
n∑

j=i

(
j − 1
i − 1

)(
j + M1 − 2

M1 − 1

)
=

(
i + M1 − 2

i − 1

)
·
(

n + M1 − 1
n − i

)
.

The assertion is trivial for i = n. Let i < n. Using the induction hypothesis,
we compute

n∑
j=i

(
j − 1
i − 1

)(
j + M1 − 2

j − 1

)

=
n−1∑
j=i

(
j − 1
i − 1

)(
j + M1 − 2

j − 1

)
+

(
n − 1
i − 1

)(
n + M1 − 2

n − 1

)

=
(

i + M1 − 2
i − 1

)
·
(

n − 1 + M1 − 1
n − 1 − i

)
+

(
n − 1
i − 1

)(
n + M1 − 2

n − 1

)

=
(

i + M1 − 2
i − 1

)
·
(

n + M1 − 1
n − i

)

−
(

i + M1 − 2
i − 1

)(
n + M1 − 2

n − i

)
+

(
n − 1
i − 1

)(
n + M1 − 2

n − 1

)

=
(

i + M1 − 2
i − 1

)
·
(

n + M1 − 1
n − i

)

because
(
i+M1−2

i−1

)(
n+M1−2

n−i

)
=

(
n−1
i−1

)(
n+M1−2

n−1

)
as one verifies by a direct com-

putation. If S/I is Cohen–Macaulay and I has a (M1-)linear resolution, then
we know by [11] that βS

i (S/I) reaches the upper bound for all i. Assume now
that βS

i (S/I) =
(
i+M1−2

i−1

)
·
(
p+M1−1

p−i

)
for i = 1, . . . , p. As seen above, we may

assume that p = n. Then the corresponding bounds for S/J are also achieved.
It follows from the inequalities above that every monomial of degree M1 is a
minimal generator of J . This means that J = (x1, . . . , xn)M1 . Thus, S/J is
zero dimensional and hence Cohen–Macaulay. But since J = I≥M1 , then also
S/I is zero dimensional and therefore Cohen–Macaulay. Now we can apply
Theorem 4.1(i) to conclude that I has a linear resolution. �
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Remark 4.4. The results of this section can also be used to prove bounds
for the Betti numbers if I is not componentwise linear, at least if char(K) = 0.
Let I ⊂ S be an arbitrary graded ideal and p = projdim(S/I). Recall that
reg(S/I) = max1≤i≤proj dim(S/I){Mi − i} is called the Castelnuovo–Mumford
regularity of S/I . It is well known that reg(S/I) = reg(S/gin(I)) where gin(I)
is the generic initial ideal of I with respect to the reverse lexicographical
order (see [2]). Moreover, βS

i (S/I) ≤ βS
i (S/gin(I)) for all i. Since gin(I)

is componentwise linear, it follows from these observations and Theorem 4.3
that

βS
i (S/I) ≤ βS

i

(
S/gin(I)

)
≤

(
i + reg(S/gin(I)) − 1

i − 1

)
·
(

p + reg(S/gin(I))
p − i

)

=
(

i + reg(S/I) − 1
i − 1

)
·
(

p + reg(S/I)
p − i

)
,

where p = codim(S/I) = codim(S/gin(I)). With similar arguments, one can
use Theorem 4.1 to prove upper bounds in the Cohen–Macaulay case using
the regularity. Since we get better results for this case in the next section, we
omit the details.

5. Cohen–Macaulay rings

We saw that the lower and upper bounds in (1) do not hold in general. Also
the upper bounds in (2) are not candidates for upper bounds since the numbers
may be negative. Using the Boij–Söderberg theory which was conjectured
and developed partly by Boij–Söderberg [3] and then completely proved by
Eisenbud–Schreyer [8] (see also [3] and [7]) we show that the lower bounds in
(2) and upper bounds in (3) hold under the Cohen–Macaulay assumption.

We recall parts of the Boij–Söderberg theory which is needed in the fol-
lowing. Fix a positive integer p. For any strictly increasing sequence of non-
negative integers d = (d0, d1, . . . , dp) with d0 = 0, we define a diagram π(d)
by

π(d)i,j =

{∏
1≤k<i

dk

di −dk

∏
i<k≤p

dk

dk −di
, if j = di,

0, else

and call π(d) a pure diagram. The sequence d = (d0, d1, . . . , dp) is called the
degree sequence of the diagram. Note that there is a choice which diagrams
are called the pure ones up to multiplication with respect to a positive real
number. We choose them in such a way that π(d)0,0 = 1. A pure diagram is
called linear if dk = d1 + (k − 1) for 1 ≤ k ≤ p. There exists a partial order
on pure diagrams by defining π(d) ≤ π(d′) for two increasing sequences of
nonnegative integers d = (0, d1, . . . , dp) and d′ = (0, d′

1, . . . , d
′
p) if and only if

d ≤ d′ coefficientwise. For two fixed increasing sequences of positive integers d
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and d, denote by Πd,d the set of pure diagrams π(d) such that π(d) ≤ π(d) ≤
π(d). Since π(d)i,j �= 0, only for finitely many i, j we can consider the convex
hull of Πd,d, that is the set of convex combinations D =

∑
π(d)∈Πd,d

λdπ(d)
with real nonnegative coefficients λd and

∑
π(d)∈Πd,d

λd = 1.
One of the main results of the Boij–Söderberg theory implies (see [3, Con-

jecture 2.4] and the full proof in [8]) that for a Cohen–Macaulay algebra
R of projective dimension p the Betti-diagram βS(R) = (βS

i,j(R)) is a con-
vex combination of the convex hull of Πm,M where m = (m1, . . . ,mp) and
M = (M1, . . . ,Mp) and the mi,Mi are the usual maximal and minimal shifts
in the minimal graded free resolution of R.

Note that the Boij–Söderberg theory treads more generally modules in-
stead of rings. Then one of the results is that the Betti diagram of a Cohen–
Macaulay module may be written (uniquely) as a positive rational linear com-
bination of pure diagrams whose degree sequences form a totally ordered se-
quence. Since βS

0,0(R) = 1 and βS
0,j(R) = 0 for j �= 0, the Betti diagram of R

is already a convex combination of pure diagrams as considered above and we
restrict ourself to this situation.

Now we consider the convex hull of Πd,d, and a convex combination D as
described above. We define formally for 0 ≤ i ≤ p and j ∈ Z the numbers

βi,j(D) =
∑

π(d)∈Πd,d

λdπ(d)i,j , βi(D) =
∑
j∈Z

βi,j(D).

We also set for 1 ≤ i ≤ p

Mi(D) = max{j ∈ Z : βi,j(D) �= 0} and mi(D) = min{j ∈ Z : βi,j(D) �= 0}.

Observe that

Mi(D) = max{di : λd �= 0} and mi(D) = min{di : λd �= 0}.

Note also that it follows from the definition of the diagrams π(d) that Mi(D) <
Mi+1(D) and mi(D) < mi+1(D) hold for 1 ≤ i < p. At first, we prove the
following purely numerical result.

Theorem 5.1. Let d = (d0, . . . , dp) and d = (d0, . . . , dp) be two strictly in-
creasing sequences of non-negative integers with d0 = d0 = 0 such that d ≤ d.
Assume that D =

∑
π(d)∈Πd,d

λdπ(d) is a convex combination of elements of
Πd,d. Then:

(i) We have for i = 1, . . . , p that

βi(D) ≤ 1
(i − 1)! · (p − i)!

∏
j �=i

Mj(D).

The upper bound is reached for all i if and only if D is a linear diagram.
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(ii) We have for i = 1, . . . , p that

βi(D) ≥
∏

1≤j<i

mj(D)
Mi(D) − mj(D)

·
∏

i<j≤p

mj(D)
Mj(D) − mi(D)

.

Every lower bound is reached for all i if and only if D is a pure diagram.

Proof. (i) We compute

βi(D) =
∑

π(d)∈Πd,d

λdπ(d)i

=
∑

π(d)∈Πd,d

λd

∏
1≤j<i

dj

di − dj
·

∏
i<j≤p

dj

dj − di

≤
∑

π(d)∈Πd,d,λd �=0

λd

∏
1≤j<i

Mj(D)
i − j

·
∏

i<j≤p

Mj(D)
j − i

=
1

(i − 1)! · (p − i)!

∏
j �=i

Mj(D).

Note that if D is not a pure diagram, then the inequality is strict. But even
for a pure diagram which is not linear the inequality is strict. Hence, we have
equality if and only if D is a linear diagram.

(ii) Observe that Mi(D) − mj(D) ≥ mi(D) − mj(D) > 0 for j < i and sim-
ilar Mj(D) − mi(D) > 0 for i < j. Then we get

βi(D) =
∑

π(d)∈Πd,d

λdπ(d)i

=
∑

π(d)∈Πd,d

λd

∏
1≤j<i

dj

di − dj
·

∏
i<j≤p

dj

dj − di

≥
∑

π(d)∈Πd,d,λd �=0

λd

∏
1≤j<i

mj(D)
Mi(D) − mj(D)

·
∏

i<j≤p

mj(D)
Mj(D) − mi(D)

.

=
∏

1≤j<i

mj(D)
Mi(D) − mj(D)

·
∏

i<j≤p

mj(D)
Mj(D) − mi(D)

.

Note that if D is not a pure diagram, then the inequalities are strict in general.
Hence, we have equalities for all i if and only if D is a pure diagram. �

As always K is a field and S = K[x1, . . . , xn] a standard graded polynomial
ring. As a corollary of Theorem 5.1 and the Boij–Söderberg theory, we get
the following corollary.

Corollary 5.2. Let I ⊂ S be a graded ideal such that R = S/I is Cohen–
Macaulay and let p = projdim(R). Then:
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(i) We have for i = 1, . . . , p that

βS
i (R) ≤ 1

(i − 1)! · (p − i)!

∏
j �=i

Mj .

The upper bound is reached for all i if and only if I has a linear resolution.
(ii) We have for i = 1, . . . , p that

βS
i (R) ≥

∏
1≤j<i

mj

Mi − mj
·

∏
i<j≤p

mj

Mj − mi
.

Every lower bound is reached for all i if and only if R has a pure resolu-
tion.

Remark 5.3. Note that it is also known that the Betti diagram of a graded
ring S/I which is not necessarily Cohen–Macaulay may be written (uniquely)
as a positive rational linear combination of pure diagrams (see [4]). But here
the appearing degree sequences maybe of different lengths and this causes
problems. Indeed the Cohen–Macaulay assumption is essential for the lower
bound (2) as we saw in Example (4.2). Similar upper bounds as the ones
in (3) can be proved in the case where S/I is not Cohen–Macaulay. Since
the formulas in this case are not as nice and compact as the ones in the
Cohen–Macaulay case, we do not present them here and leave the details to
the interested reader.
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[11] J. Herzog and M. Kühl, On the Betti numbers of finite pure and linear resolutions,

Commun. Algebra 12 (1984), 1627–1646. MR 0743307
[12] J. Herzog and H. Srinivasan, Bounds for multiplicities, Trans. Am. Math. Soc. 350

(1998), 2879–2902. MR 1458304

http://www.ams.org/mathscinet-getitem?mr=1762120
http://www.ams.org/mathscinet-getitem?mr=0862710
http://www.ams.org/mathscinet-getitem?mr=2427053
http://arxiv.org/abs/0803.1645
http://cocoa.dima.unige.it
http://www.ams.org/mathscinet-getitem?mr=2099124
http://arxiv.org/abs/0709.1529
http://www.ams.org/mathscinet-getitem?mr=2505303
http://www.ams.org/mathscinet-getitem?mr=1037391
http://www.ams.org/mathscinet-getitem?mr=1684555
http://www.ams.org/mathscinet-getitem?mr=0743307
http://www.ams.org/mathscinet-getitem?mr=1458304


BETTI NUMBERS AND SHIFTS IN MINIMAL GRADED FREE RESOLUTIONS 467

[13] J. Herzog and X. Zheng, Notes on the multiplicity conjecture, Collect. Math. 57 (2006),
211–226. MR 2223853

[14] C. Huneke and M. Miller, A note on the multiplicity of Cohen–Macaulay algebras with
pure resolutions, Can. J. Math. 37 (1985), 1149–1162. MR 0828839
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