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GROWTH IN FREE GROUPS (AND OTHER
STORIES)—TWELVE YEARS LATER
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To Paul Schupp, with the greatest affection

Abstract. We start by studying the distribution of (cyclically
reduced) elements of the free groups Fn with respect to their

Abelianization (or equivalently, their class in H1(Fn,Z)). We de-
rive an explicit generating function, and a limiting distribution,

by means of certain results (of independent interest) on Cheby-
shev polynomials; we also prove that the reductions mod p (p—
an arbitrary prime) of these classes are asymptotically equidis-
tributed, and we study the deviation from equidistribution. We

extend our techniques to a more general setting and use them

to study the statistical properties of long cycles (and paths) on

regular (directed and undirected) graphs. We return to the free

group to study some growth functions of the number of conjugacy
classes as a function of their cyclically reduced length.

Introduction—2010

The paper “Growth in free groups (and other stories),” has been around
in preprint form ([45]) since the late nineties (the arXiv version cited dates to
1999, but this was preceded by a 1997 IHES preprint). Since the paper has had
a fair amount of influence (and parts of it have since become separate papers),
it seems a good idea to publish it at last—this version is not very different from
the preprint, except for this introduction, which gives a bit of background on
how and why it was written together with a survey (necessarily incomplete
and subjective) of what has happened since the arXiv preprint appeared in
1999.
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Why? The work described in the paper was initially motivated by the au-
thor’s (continuing to this day) interest in the counting questions on geodesics
on hyperbolic surface, stemming from some conversations with Peter Sarnak
in the early 1990s. More precisely, Sarnak had asked about the asymptotics
of the number of simple geodesics on the punctured torus, where the only
result appeared to be the one in the paper of Beardon, Lehner, and Shein-
gorn [3], where the authors had shown that the number of simple geodesics
of length bounded by L grew somewhere between quadratically and quarti-
cally in L. This did not seem to be very sharp, and indeed, Greg McShane
and I improved it to an asymptotic result (with quadratic growth) in a pair
of short papers [38, 39], using purely geometric methods (showing that the
length of the unique shortest geodesic (which can be showed to be simple)
in a primitive integral homology class extends to a norm on real homology
(which is the Gromov, or the stable norm, though at the time McShane and
I had no knowledge of the connection). The fact that there is at most one
simple closed geodesic in a homology class is specific to the punctured torus,
and while other methods can be used to compute the asymptotics of the num-
ber of simple closed geodesics of bounded length on a surface of finite type
(the order of growth was computed by the author in [46], while asymptotics
were computed by Maryam Mirzakhani in [40]—see also [49]), the following
question is still wide open:

How many simple curves of length bounded by L are there in a fixed ho-
mology class h on a hyperbolic surface? Mirzakhani’s work implies that a
constant proportion of all simple geodesics are separating, but for a nontrivial
homology class nothing seems known to-date.

Geodesics in homology classes. Given the interest in geodesics and homol-
ogy, it was natural to investigate a similar question for all closed geodesics,
not necessarily simple. It is a well-known result of Huber (for hyperbolic
surfaces—Huber uses the Selberg Trace Formula)—[18]–[20] and Margulis [35,
36] for arbitrary negatively curved surfaces, using ergodic theory) that the
number of closed geodesics of length bounded by L without homological re-
strictions is asymptotic to exphL/(hL), where h is the topological entropy of
the geodesic flow (h = 1 for a hyperbolic surface). The methods used by Hu-
ber and Margulis (Selberg Trace Formula and ergodic dynamics, respectively)
are the two principal tools used in the vast majority of the paper discussed
below (generally either one technique or the other, but not both, generally
because the Trace Formula gets sharp results but only works in the constant
curvature setting, while dynamical methods are softer, so give weaker results
in a wider setting).

The first result on geodescis in homology classes is due to Parry and
Pollicott—in their paper [41] they show that when the homology group
H1(S,Z) is finite, then closed geodesics are equidistributed among homology
classes. Parry and Pollicott use the machinery of thermodynamic formalism
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and dynamical zeta functions, and their argument mimics the proof of the
Chebotarev density theorem. Parry and Pollicott’s methods work in vari-
able negative curvature, and they also analyze the lifting of geodesics in a
homology class to (finite) Galois covers. Roughly concurrently, Katsuda and
Sunada showed in [28] that for homology with coefficients in a finite group,
every homology class contains an infinite number of closed geodesics (but no
estimate of the growth of their number as a function of length).

The next result is due to Adachi and Sunada—in the paper [1], they show
that the exponential growth rate of the number curves in any homology class
is equal to h (just like for homologically unrestricted geodesics)—they use
Markov partitions as introduced by Bowen in [5] and use results on paths
in finite graphs to get the result (which is rather weak, since they do not
actually get an asymptotic result). They point out that getting such a result
(via the usual Tauberian machinery) would require an understanding of the
singularity of the L-functions involved greater than they could produce at the
time. They conjecture that the the number of geodesics of length bounded
by L in a homology class should grow like exp(hL)/(Lb+1), where b is the first
Betti number of the manifold.

This conjecture turns out to be false—in the paper [44], published almost
simultaneously with [1], Phillips and Sarnak give an asymptotic expansion
valid for a hyperbolic surface: the number of closed geodesics in a fixed ho-
mology class, of length bounded by L grows as

eL

Lg+1
(1 + c1/L + c2/L2 + · · · ),

where c1, . . . , ck, . . . depend on the homology class. This sort of expansion
appeared (at the time) to be possible only because the manifold had constant
negative curvature. The work of Phillips and Sarnak was extended (again,
approximately at the same time) by Epstein to cusped surfaces in [8], again
using the Selberg Trace Formula. As often with these kinds of extensions, the
result is a lot harder technically than the Phillips–Sarnak result.

At roughly the same time, Katsuda and Sunada extended the dynamical
methods of [1] first to surfaces of constant negtive curvature in [29] (by ob-
serving that the complicated L-function that could not be dealt with in [1]
became much simpler in constant curvature), and then for general negatively
curved surfaces in [30].

Last, but not least, Lalley uses the thermodynamical formalism and some
fairly intricate harmonic analysis in [33] to recover the results of Katsuda-
Sunada, and more: He shows a central limit theorem for the distribution
of homology classes of closed geodesics, and also a “large deviation result.”
Lalley’s result is closest in spirit to the current paper, but the methods are
completely different (and I had no knowledge of the paper’s existence until
this writing).
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Some motivation. All of the results mentioned in the survey above are
technically quite involved, and it was not clear what was really going on.
This is what gave birth to the current paper. One observation was that it is a
lot easier to work with groups (especially free groups) than with surfaces, and
secondly, since fundamental groups are often quasi-isometric to the spaces
they are fundamental groups of, one has the hope of obtaining “universal”
results (that is, a result for a surface group implies a result (usually somewhat
weaker) for every surface of the appropriate type.

One particular insight (on which much of the paper is based) is the ob-
servation that for graphs, the Selberg Trace Formula (quite pervasive in the
work surveyed above) is a triviality: the number of closed (based) cycles of
length N in the graph is the trace of the N th power of the adjacency matrix,
and thus the sum of the N th powers of eigenvalues of the adjacency matrix of
the graph. In the particular case where the graph is undirected, the adjacency
matrix is symmetric, and analysis becomes easy. Technically simpler methods
(based in large part on perturbation theory for eigenvalues) have helped to
get results of much wider scope than previously. Let us now review the results
and their follow-up in subsequent years.

Then what happened? Free groups and related subjects. In Section 1 we
have set up the basic model, and used it to count cyclically reduced words in
a free group. The basic method works for any automatic group, and if the
structure is bi-automatic, we similarly get an undirected graph. Somewhat
surprisingly, the count of cyclically reduced words has been used in a number
of papers (see, e.g., [7, 25]), and in the paper [31] by Koganov it is shown that
the formula is equivalent to Whitney’s formula for the chromatic polynomial
of the cycle graph. Koganov had apparently published two other papers (in
2002 and 2004) deriving the enumeration of cyclically reduced words—see
references [1] and [2] in [31].

A related question is considered in Sections 13–15, where we study the
number of conjugacy classes of fixed minimal length in the free group (and
elsewhere). We construct an ordinary generating function (in the form of a
Lambert Series, see [16] for definition), which turns out to be horribly irra-
tional (this result has gone on to have a life of its own in [47]), and the zeta
function enumerating primitive conjugacy classes, which turns out to be an
Ihara-type zeta function of the defining graph (see also the papers of Stark
and Terras [59]–[61]). The conjecture that the (standard) generating func-
tion is irrational for all nonvirtually-cyclic Gromov-hyperbolic groups is still
open. The Ihara zeta function immediately gives asymptotic growth rates for
primitive classes, however this is computed again by Coornaert in [7].

In Section 2, we write down explicit generating functions for the number of
elements in the free group with a given Abelianization. These formulas can be
expressed as Chebyshev polynomials—this is so, because the adjacency matrix
of the “recognizing automaton” graph has only two nontrivial eigenvalues, and
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this is special to free groups. It would be interesting to write down formulas
of this type for example, surface groups, and see what special functions arise.

The fact that certain variations on Chebyshev polynomials arise as gen-
erating functions give previously unknown positivity result on combinations
of their coefficients and shows that the functions Tn(c cosx) and Un(c cosx),
where T and U are Chebyshev polynomials of first and second kind respec-
tively, and c > 1 are positive semi-definite in the sense of Bochner. This, and
the Central Limit theorem for the coefficients of “Symmetrized Chebyshev
Polynomials” appear in the author’s paper [48].

The Central Limit theorem for distribution of elements of the free group Fn

is proved in Section 3, but the methods actually go through without much
change to prove a “Local Limit Theorem.” Such a theorem was also shown by
Sharp, using much more heavy lifting in his paper [57]. The Central Limit the-
orem was reproved, together with some variants of results of Phillips–Sarnak,
Adachi–Sunada, and Katsuda–Sunada in Petridis and Risager’s papers [42,
43]. The methods of [42] involve perturbation theory, and so are similar to
those of the current paper. Results of [42] are closely related to those of [24]—
in that paper we show (using the ergodicity of the SL :(n,Z) action on Rn

and the Central Limit theorem for free groups in the current paper) that some
probabilistic phenomena in the free group Fn can be studied by descending
to the Abelian quotient.

The Central Limit theorem has been extended in other ways as well: Cale-
gari and Fujiwara proved a Central Limit theorem for the values of bicombable
functions on word-hyperbolic groups in [6], using Markov chain methods, while
Horsham and Sharp extended the results to quasi-morphisms of free groups
by using the usual symbolic dynamics and thermodynamic formalism in [17].

Lest one think that every function of interest on free (or word-hyperbolic)
group satisfies a Central Limit theorem, we should note the results of
Guivarc’h–LeJan ([14, 15]) and Vardi ([62]), which show that the the dis-
tribution of lengths of geodesics on the modular surface satisfies a stable law
of Cauchy type.

Then what happened? Walks on graphs. In Sections 6 and 6.1, we look at
homology modulo a prime p and derive the expected equidistribution results
(and also the analogue of Chebyshev bias, see [54], which in this case is com-
pletely explicit). More importantly, however, a study of the argument showed
that instead of a finite abelian group we can take any compact (in particular,
any finite) group—the harmonic analysis goes through, although with some
more work. The arguments in this paper are a little sketchy, but are pre-
sented in full detail in my papers [50, 51]. These papers, together with [52]
are devoted to proving that certain phenomena in algebraic groups, as well
as “geometric” groups, like the mapping class group and the outer automor-
phism group of the free group (and a large class of subgroups) are generic
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(which means that in large subsets of the groups in question, the vast ma-
jority of elements have a certain property—see [25] for other examples). The
way the results of the current paper are used is essentially through a “Chi-
nese remaindering” argument—if a certain property does not hold for some
fraction of the elements in the projection of an algebraic group (scheme) over
Z/pZ, then it does not hold generically in the group over Z. Using property T
and a more refined analysis (as in [51]) give estimates of convergence speed.
The appearance of the paper [50] is responsible the subsequent appearance of
Kowalski’s book [32], where these rather simple ideas are couched in a rather
formidable apparatus.

Then what happened? Topological entropy. In the mid-to-late 1990s, the
spectacular results of Besson, Courtois, and Gallot on “volume rigidity” of lo-
cally symmetric spaces (see [4]) were generating a lot of excitement. The result
was that among all the metrics of a given volume on a hyperbolic manifold,
the metric of constant sectional curvature minimizes volume entropy—this
answered a conjecture of Gromov stated in [13], and previously known only
in dimension two (thanks to Katok’s result [27]). Any time a function has a
single minimum, there is a suspicion that some sort of convexity is afoot, and
entropy in the simplest setting (see, for example, [56]) is a convex function of
the probabilities, and this pushed the author to analyze topological entropy
for walks on graphs as a function of weights on the vertices in Section 11.
The methods are again those of perturbation theory. Later, the result was
extended to edge weightings by Lim in [34]. Lim does not prove convexity, but
does write down the unique metric of minimal entropy. A related minimality
result is proved by Kapovich and Nagnibeda in their paper [22] for regular
graphs (their work has its roots in the study of Outer Space). In a different
direction, the convexity of entropy was used by Kapovich and myself in [23]
to show that there is no analogue to McShane’s identity in Outer Space.

Introduction

In this paper, we begin by studying certain growth functions of the free
group Fr, related to well-studied questions on the growth functions of geodes-
ics on manifolds. The free group is a relatively simple combinatorial object,
and this allows us to get fairly complete answers to our questions. Our tech-
niques, which are quite elementary, allow us to get precise results on the
distribution of elements in Fr as a function of their Abelianization and in
terms of their Abelianization mod p. Our techniques turn out to be easily
extensible to the study of paths in graphs with coefficients in compact groups.

Here is an outline of the paper: In Section 1, we set up an equivalence
between counting cyclically reduced words on the free group Fr and counting
circuits on an associated graph Gr, which, in turn, involves understanding
the spectrum of the adjacency matrix of Gr (of course the answer is easily
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obtained, and is well known; for convenience we state it as Theorem 1.1).
We use this framework to obtain a generating function for the number of
elements of a fixed cyclically reduced length with prescribed Abelianization
(or homology class). This turns out to be essentially a Chebyshev polyno-
mial of the first kind; see Definition 2.2 of the function Rr and Theorem 2.3
(a very brief introduction to Chebyshev polynomials is given in Section 3).
The fact that the function Rr(c;x) (at least for some special values of the
parameter c) is a combinatorial generating function implies a previously un-
noticed positivity result on Chebyshev polynomials; this result is generalized
in Section 4 in Theorems 4.1 and 4.2. Theorem 2.3 is used in Section 5 to de-
rive a limiting distribution (as n tends to infinity) of cyclically reduced words
length n among the possible homology classes. From the analytic standpoint,
this is also a qualitative result about Chebyshev polynomials, complementing
the positivity Theorems 4.1 and 4.2. In Section 6, we show that if we study
homology mod p, then the cyclically reduced words in Fr are asymptotically
equidistributed among the pr classes in H1(Fr,Z/pZ). We also succeed in
estimating the extent to which the cyclically reduced words in Fr are not
equidistributed mod p (Section 6.1).

While the results in Sections 5 and 6 seem to depend on the explicit gener-
ating function that we have obtained, in Section 7 we show that our techniques
are more general, and use them to study the equidistribution properties of long
walks on regular graphs—we obtain a complete answer (Theorem 7.1)—and,
without any change, closed orbits of irreducible primitive Markov processes
(with a finite number of states). The arguments use elementary perturbation
theory and the necessary technical results are contained in Section 10.

In Section 8, we extend our methods to study the functions defined on the
edges of a graph, and as an application we derive the statistical properties of
long walks without backtracking on the edges of an undirected graph.

We apply our methods to derive equidistribution results for long walks
with coefficients in compact groups in Sections 7.1 and 9. Our results are
completely explicit, in that knowing the irreducible representations of the
group in question allows us to obtain complete asymptotics for the convergence
to uniformity. Our results also apply, via the construction of a directed edge
graph to the statistics of “geodesic,” that is, backtrackless paths (Section 8).
This, in turn, implies a result on the statistical properties of “primitive” orbits
of Markov processes as above.

In Section 12 we point out real and philosophical applications of the above
mentioned result to group theory (where this all started) and geometry.

Finally, in Sections 13–14.1, we derive a relationship between the number
of cyclically reduced words and the number of conjugacy classes of bounded
length. While the generating function of the first is a rational function, the
generating function of the second is the integral of a Lambert series with an
infinite number of poles. These results are then extended to a slightly more
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general case than that of free groups. We then (in Section 15) compute a
zeta function for primitive conjugacy classes, and show that this is a rational
function.

1. A model and a generating function

Let G be the free group Fr = 〈a1, . . . , ar 〉, and let g ∈ G be an element. The
defining property of G is that g is uniquely represented by a reduced word in
a1, . . . , ar, that is, a word where ai is never adjacent to a−1

i (Notation: in
the sequel we shall write W for w−1). We observe that such words over
the alphabet a1,A1, . . . , an,An are, in turn, be generated by walks on the
graph Gr, constructed as follows: Gn has 2r vertices, labelled with the symbols
a1, . . . , ar,Ar, . . . ,A1—this peculiar order will simplify notation later. The
vertex corresponding to ai is connected by an edge to every vertex except Ai.
In particular, there is a loop joining ai to itself (so that Gr is not a simple
graph). A walk v1v2 · · · vk gives the word v2 · · · vk, so the correspondence
between walks and words is a 2r − 1-to-1 mapping. Note, however, that if
we restrict our attention to closed walks (circuits with basepoint) on Gr, then
those are in bijective correspondence with cyclically reduced words in G. In
the sequel, we will be interested exclusively with cyclically reduced words.

1.1. Counting cyclically reduced words. To count cyclically reduced
words, then, we need to count circuits in Gr. This is a well-understood prob-
lem: If Ar is the adjacency matrix of Gr, then the number of circuits of
length k is equal to the trace of Ak

r . To compute this trace, we must compute
the spectrum of Ar, and to do this, it is better to write Ar = J2r − Pr, where
JN is an N × N matrix all of whose elements are 1 and Pr is the 2r × 2r
matrix such that

(Pr)ij =

{
1, if i + j = 2r;
0, otherwise.

In order to compute the spectrum of Ar, we note first that the matrix J2r

has rank 1. The kernel of J2r is

kerJ2r =

{
(v1, . . . , v2r)

∣∣∣ 2r∑
i=1

vi = 0

}
,

while the vector 1 = (1, . . . ,1) is the eigenvector of eigenvalue 2r.
The spectrum of Pr is not much more difficult to compute: The vector 1

is the eigenvector of Pr as well as of J2r, this time with eigenvalue 1. To
compute the rest of the spectral decomposition, let x be an eigenvector of Pr

orthogonal to 1, and let λ be the corresponding eigenvalue. Then we have the
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following set of equations:

2r∑
j=1

xj = 0,

xj = λx2r−j+1, j = 1, . . . ,2r.

Since at least one of the xj is not equal to zero, we see that λ2 = 1, so λ = ±1.

The orthogonality condition equation (1.1) can be rewritten as
∑r

j=1(1 +
λ)xj = 0. Suppose λ = −1. Then, equation (1.1) holds a forteriori, and so
the eigenspace of of −1 is r-dimensional. On the other hand, if λ = 1, then
we have the additional constraint that

∑r
j=1 xj = 0, so the eigenspace of 1 is

(n − 1)-dimensional. Putting this all together, we see that the spectrum of
the adjacency matrix Ar is (2r − 1,1, . . . ,1︸ ︷︷ ︸

r

, −1, . . . , −1︸ ︷︷ ︸
r−1

). We see therefore the

following theorem.

Theorem 1.1. The number of cyclically reduced words of length m in Fr

is equal to (2r − 1)m + 1 + (r − 1)[1 + (−1)m].

2. Counting cyclically reduced words in homology classes

Recall that the Abelianization of Fr is Zr, generated by the classes of
[a1], . . . , [ar] of a1, . . . , ar respectively. To compute the homology class of a
word w in Fr, we simply count the total exponents e1(w), . . . , er(w) of the
generators used to write w. Then, [w] = e1(w)[a1] + · · · + er(w)[ar]. In this
section, we will compute the following generating function:

H(k)
r (x1, . . . , xr) =

∑
w∈Wk

r∏
i=1

x
ei(w)
i ,

where the sum is taken over the set Wk of all cyclically reduced words w in
a1, . . . , ar,A1, . . . ,Ar of length k.

To compute H(k)
r , we return to circuits in Gr. Given a circuit c = v1, . . . ,

vk, vk+1 = v1, the contribution of c to H(k)
r is the monomial mc given by the

following iterative procedure: we start with 1, every time we see the vertex ai,
we multiply mc by xi, and every time we see Ai, we multiply mc by 1/xi.
From this, it follows the following theorem.
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Theorem 2.1. The Laurent polynomial H(k)
r is given by trBk

r , where Br =
Dr Ar, where, in turn,

Dr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

. . .
xn

1/xn

. . .
1/x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Computing the trace of Bk
r seems daunting at first, but one can use the

approach we have used to prove Theorem 1.1.
First, note that

Br = Dr Ar = DrJ2r − DrPr.

Evidently, the rank of DrJ2r is still equal to 1, and

kerDrJ2r =

{
v = (v1, . . . , v2r)

∣∣∣ 2r∑
j=1

vj = 0

}
.

Note further that an eigenvector v of DrPr, such that v ∈ kerDrJ2r, with
associated eigenvalue λ, is also an eigenvector of Br, with associated eigen-
value −λ. To find such an eigenvector, we must solve the system of equations:

2r∑
j=1

vj = 0,

λvj = v2r−j+1/xj , j ≤ r,

λvj = v2r−j+1xj , j > r.

We find, as before, that λ = ±1. The first equation reduces (almost as before)
to

r∑
j=1

vj(1 + λxj) = 0,

so that the eigenspaces of both 1 and −1 are (r − 1)-dimensional. What are
the two remaining eigenvalues μ1 and μ2 of Br? Note that since detDr = 1,
we know that detBr = det Ar. Note now that detBr = μ1μ2(−1)r−1, while
det Ar = (2r − 1)(−1)r−1. So

(2.1) μ1μ2 = 2r − 1.

On the other hand,

(2.2) μ1 + μ2 = trBr =
r∑

j=1

(
xj +

1
xj

)
.
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Denoting yr = 1
2

∑n
j=1(xj + 1/xj), we see that μ1, μ2 are the two roots of the

equation z2 − 2yrz + (2r − 1) = 0, so that:

μ1 = yr −
√

y2
r − (2r − 1),

μ2 = yr +
√

y2
r − (2r − 1).

The trace of Bk
r is then equal to μk

1 + μk
2 + (r − 1)[1 + (−1)k]. This can be

expressed in terms of well-known special functions, if we make the substitution
yr =

√
2r − 1y′

r. Then,

μk
1 = (2r − 1)k/2

(
y′

r −
√

y′
r
2 − 1

)k
,

μk
2 = (2r − 1)k/2

(
y′

r +
√

y′
r
2 − 1

)k
,

and so

μk
1 + μk

2 = (2r − 1)k/2
{(

y′
r −
√

y′
r
2 − 1

)k +
(
y′

r +
√

y′
r
2 − 1

)k}
= 2
(√

2r − 1
)k

Tk(y′
r),

where Tk(x) is the kth Chebyshev polynomial of the first kind. To simplify
notation in the sequel, we define the following.

Definition 2.2.

Rn(c;x1, . . . , xk) = Tn

(
c

2k

k∑
i=1

(
xi +

1
xi

))
,

Sn(c;x1, . . . , xk) = Un

(
c

2k

k∑
i=1

(
xi +

1
xi

))
.

And to summarize the following theorem.

Theorem 2.3. The number of cyclically reduced words of length k in Fr

homologous to e1[a1] + · · · + er[ar] is equal to the coefficient of xe1
1 · · · xer

r in

(2.3) 2
(√

2r − 1
)k

Rk

(
r√

2r − 1
;x1, . . . , xr

)
+ (r − 1)[1 + (−1)k].

Remark 2.4. The rescaled Chebyshev polynomial Tk(ax)/ak is called the
kth Dickson polynomial Tk(x,a) (see [55]).

3. Some facts about Chebyshev polynomials

The literature on Chebyshev polynomials is enormous; [53] is a good to
start. Here, we shall supply the barest essentials in an effort to keep this
paper self-contained.
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There are a number of ways to define Chebyshev polynomials (almost as
many as there are of spelling their inventor’s name). A standard definition of
the Chebyshev polynomial of the first kind Tn(x) is:

(3.1) Tn(x) = cosnarccosx.

In particular, T0(x) = 1, T1(x) = x. Using the identity

(3.2) cos(x + y) + cos(x − y) = 2cosx cosy

we immediately find the three-term recurrence for Chebyshev polynomials:

(3.3) Tn+1(x) = 2xTn(x) − Tn−1(x).

The definition of equation (3.1) can be used to give a “closed form” used in
Section 2:

(3.4) Tn(x) =
1
2
[(

x −
√

x2 − 1
)n +

(
x +
√

x2 − 1
)n]

.

Indeed, let x = cosθ, then (x−
√

x2 − 1)n = exp(−inθ), while (x+
√

x2 − 1)n =
exp(inθ), so 1

2 (x −
√

x2 − 1)n + (x +
√

x2 − 1)n = � exp(inθ) = cosnθ.
Though we will not have too many occasions to use them, we also define

Chebyshev polynomials of the second kind Un(x), which can again be defined
in a number of ways, one of which is:

(3.5) Un(x) =
1

n + 1
T ′

n+1(x).

A simple manipulation shows that if we set x = cosθ, as before, then

(3.6) Un(x) =
sin(n + 1)θ

sinθ
.

In some ways, Schur’s notation Un = Un−1 is preferable. In any case, we have
U0(x) = 1, U1(x) = 2x, and otherwise the Un satisfy the same recurrence as
the Tn, to wit,

(3.7) Un+1(x) = 2xUn(x) − Un−1(x).

From the recurrences, it is clear that for f = T,U , fn(−x) = (−1)nf(x), or,
in other words, every second coefficient of Tn(x) and Un(x) vanishes. The
remaining coefficients alternate in sign; here is the explicit formula for the
coefficient c

(n)
n−2m of xn−2m of Tn(x):

(3.8) c
(n)
n−2m = (−1)m n

n − m

(
n − m

m

)
2n−2m−1, m = 0,1, . . . ,

[
n

2

]
.

This can be proved easily using equation (3.3).
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4. Analysis of the functions Rn and Sn

In view of the alternation of the coefficients, the appearance of the Cheby-
shev polynomials as generating functions in Section 2 seems a bit surprising,
since combinatorial generating functions have nonnegative coefficients. Below
we state and prove a generalization. Remarkably, Theorems 4.1 and 4.2 do
not seem to have been previously noted.

Theorem 4.1. Let c > 1. Then all the coefficients of Rn(c;x) are nonnega-
tive. Indeed the coefficients of xn, xn−2, . . . , x−n+2, x−n are positive, while the
other coefficients are zero. The same is true of Sn in place of Rn.

Proof. Let ak
n be the coefficient of xk in Un((c/2)(x+1/x)). The recurrence

gives the following recurrence for the ak
n:

(4.1) ak
n+1 = c(ak−1

n + ak+1
n ) − ak

n−1.

Now we shall show that the following always holds:

(a) ak
n ≥ 0 (inequality being strict if and only if n − k is even).

(b) ak
n ≥ max(ak−1

n−1, a
k+1
n−1), the inequality strict, again, if and only if n − k

is even.
(c) ak

n ≥ ak
n−2 (strictness as above).

The proof proceeds routinely by induction; first the induction step (we as-
sume throughout that n − k is even; all the quantities involved are obviously 0
otherwise):

By induction ak
n−1 < min(ak−1

n , ak+1
n ), so by the recurrence (4.1) it follows

that ak
n+1 > max(ak−1

n , ak+1
n ). (a) and (c) follow immediately.

For the base case, we note that a0
0 = 1, while a1

1 = a−1
1 = c > 1, and so the

result for Un follows. Notice that the above proof does not work for Tn, since
the base case fails. Indeed, if bk

n is the coefficient of xk in Tn((c/2)(x + 1/x)),
then b0

0 = 1, while b1
1 = c/2, not necessarily bigger than one. However, we can

use the result for Un, together with the observation (which follows easily from
the addition formula for sin) that

(4.2) Tn(x) =
Un(x) − Un−2(x)

2
.

Equation (4.2) implies that bk
n = ak

n − ak−2
n > 0, by (c) above. �

The proof above goes through almost verbatim to show the following the-
orem.

Theorem 4.2. Let c > 1. Then all the coefficients of Rn are nonnegative.
The same is true of Sn in place of Rn.

To complete the picture, we note the following theorem.
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Theorem 4.3.

Rn(1;x) =
1
2

(
xn +

1
xn

)
.

Proof. Let x = exp iθ. Then 1/2(x + 1/x) = cosθ, and Rn(1;x) = Tn(1/2 ×
(x + 1/x)) = cosnθ = 1/2(xn + 1/xn). �

Remark 4.4. For c < −1 it is true that all the coefficients of Rn(c; ·) and
Sn(c; ·) have the same sign, but the sign is (−1)n. For |c| < 1, the result is
completely false. For c imaginary, the result is true. I am not sure what
happens for general complex c.

By the formula (3.8), we can write

(4.3) Tn

(
c

2

(
x+

1
x

))
=

1
2

[ n
2 ]∑

m=0

(−1)m n

n − m

(
n − m

m

)
cn−2m

(
x+

1
x

)n−2m

.

Noting that

(4.4)
(

x +
1
x

)k

=
k∑

i=0

(
k
i

)
xk−2i

we obtain the expansion

Rn(c;x)(4.5)

= cn
n∑

k=−n

xk

[ n
2 ]∑

m=0

(
− 1

c2

)m
n

n − m

(
n − m

m

)(
n − 2m

(n − 2m − k)/2

)
,

where it is understood that (a
b ) is 0 if b < 0, or b > a, or b /∈ Z. We shall denote

the coefficient of xk by t(n,k, c).

5. Limiting distribution of coefficients

While the formula (4.5) is completely explicit, and a similar (though some-
what more cumbersome) expression could be obtained for Rn(c;x1, . . . , xk), for
many purposes it is more useful to have a limiting distribution formula as given
by Theorem 5.1 below. To set up the framework, we note that since all the co-
efficients of Rn(c;x1, . . . , xk) are nonnegative (according to Theorem 4.2), they
can be thought of defining a probability distribution on the integer lattice Zk,
defined by p(l1, . . . , lk) = [xl1

1 xl2
2 · · · xlk

k ]Rn(c;x1, . . . , xk)/Rn(c; 1, . . . ,1) (where
the square brackets mean that we are extracting the coefficients of the brack-
eted monomial). Call the resulting probability distribution Pn(c;z), where z
now denotes a k-dimensional vector.
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Theorem 5.1. When c > 1, the probability distributions Pn(c;z/
√

n) con-
verge to a normal distribution on Rk, whose mean is 0, and whose covariance
matrix C is diagonal, with entries

σ2 =
c

k

[
1 +
(

c + 1
c − 1

)1/2]
.

To prove Theorem 5.1, we will use the method of characteristic functions
(Fourier transforms), and more specifically at first the Continuity Theorem
([10, Chapter XV.3, Theorem 2]).

Theorem 5.2. In order that a sequence {Fn} of probability distributions
converges properly to a probability distribution F , it is necessary and sufficient
that the sequence {φn} of their characteristic functions converges pointwise to
a limit φ, and that φ is continuous in some neighborhood of the origin.

In this case, φ is the characteristic function of F . (Hence, φ is continuous
everywhere and the convergence φn → φ is uniform on compact sets.)

The characteristic function φn of Pn(c;z) is simply

Rn(c; exp(iθ1), . . . , exp(iθk))/Rn(c; 1, . . . ,1),

since the characteristic function is just the generating function evaluated on
the unit circle.

By definition of Rn,

Rn(c; exp(iθ1), . . . , exp(iθk)) = Tn

(
c

k

k∑
j=1

cosθj

)
,

Rn(c; 1, . . . ,1) = Tn

(
c

k

k∑
j=1

cos0

)
= Tn(c).

We now use the form of equation (3.4):

Tn(x) =
1
2
((

x −
√

x2 − 1
)n +

(
x +
√

x2 − 1
)n)

,

setting

u =
k∑

j=1

cos
θj√
n

, θ = (θ1, . . . , θk),

we get

φn

(
θ/

√
n
)

=
1

Tn(c)

{
1
2

(
c

k
u +

√
c2

k2
u2 − 1

)n

(5.1)

+
1
2

(
c

k
u −
√

c2

k2
u2 − 1

)n}
.
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Notice, however, that for c > 1, the ratio of the second term in braces to
the first is exponentially small as n → ∞, since the first term grows like
(c +

√
c2 − 1)n, while the second as (c −

√
c2 − 1)n (since cos θj√

n
→ 1). Since,

for the same reason, 2Tn(c) = (c +
√

c2 − 1)n[1 + o(1)], we can write:

φn

(
θ√
n

)
=
[
(c/k)u +

√
(c2/k2)u2 − 1

c +
√

c2 − 1

]n
+ o(1).

Substituting the Taylor expansions for the cosine terms (hidden in u for type-
setting reasons), we get:

(5.2) u = k +
1
2n

〈θ,θ〉 + o(1/n),

so

(5.3)
c

k
u = c +

c

2kn
〈θ,θ〉 + o(1/n).

A similar computation gives

(5.4)
c2

k2
u2 = c2 +

c2

kn
〈θ,θ〉 + o(1/n).

Substituting the last expansion into the square root, we see that√
c2

k2
u2 − 1 =

√
c2 − 1

√
1 +

1
n

[
c2

(c2 − 1)k
〈θ,θ〉 + o

(
1
n

)]

=
√

c2 − 1
[
1 +

1
2n

c2

(c2 − 1)k
〈θ,θ〉

]
+ o

(
1
n

)
.

Adding equation (5.3) and collecting terms, get

(c/k)u +
√

(c2/k2)u2 − 1
c +

√
c2 − 1

(5.5)

= 1 +
1
2n

(
1 +

1
c +

√
c2 − 1

)(
c

k
+

c2

(c2 − 1)1/2k

)
〈θ,θ〉 + o

(
1
n

)
.

Performing some further simplifications, we see that

φn

(
θ√
n

)
= exp

(
− 1

2
θtCθ

)
+ o(1),

where C is the covariance matrix described in the statement of Theorem 5.1,
and Theorem 5.1 follows immediately.

Remark 5.3. The speed of convergence in Theorem 5.1 can be estimated
using standard technology (see [10, Chapter XVI], [58, Chapter III.11]), but
the speed of convergence in practice (as checked by numerical experiments)
seems to be much better than the general estimates. Indeed the L1 difference
between Pn and the normal distribution appears to decrease almost exactly
linearly in n.
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6. Distribution mod p

The explicit generating functions derived above can be used to study the
distribution of cyclically reduced words in Fr with respect to their mod p-
homology class (this is the analogue, in this setting, of the work of [44]).

Theorem 6.1. Let h1 and h2 be two elements of H1(Fr,Z/pZ) = Z/pZr
,

and let Wr,n,h1 and Wr,n,h2 be the numbers of cyclically reduced words in Fr

homologous to h1 and h2, respectively. Then

(6.1) lim
n→∞

Wr,n,h2

Wr,n,h1

= 1.

Proof. By elementary algebra (in one dimension, formula (6.3), the state-
ment of theorem is equivalent to the statement that

(6.2) lim
n→∞

φn(θ)
φn(0)

= 0

for θ = (2n1π/p, . . . ,2nrπ/p), with not all nj equal to 0 mod p, where φn is
the characteristic function defined in the previous section.

The estimate of equation (6.2), however, follows immediately from the ex-
plicit formula (5.1): indeed, in the current context,

u(θ) =
k∑

j=1

cos(2njπ/p),

which is strictly smaller than u(0), so the ratio of φn(θ) to φn(0) goes to zero
exponentially fast in n. �

Remark 6.2. Another way to see the equivalence of statements (6.1)
and (6.2) is though the well-known fact that the Fourier transform is an isom-
etry (of the corresponding L2 spaces). For a probability density to be close to
uniform, its Fourier transform has to be close to that of the uniform distrib-
ution, which is a delta function centered at the origin, which is precisely the
statement we need.

6.1. Deviation from uniformity. Although the distribution of homology
mod p approaches uniformity, it turns out that there is a persistent bias in
favor of certain homology classes. This is very much akin to the Chebyshev
bias, analyzed in [54]. To simplify the discussion, we project one more time:
for each cyclically reduced word in Fr homologous to ak1

1 ak2
2 · · · akr

r we consider
k1 + · · · + kr mod p. In this case, we have a univariate distribution, whose
generating function is given by ψn(x) = Rn(c;x, . . . , x), with c = r√

2r−1
(as per

formula (2.3); we leave in the general c, to underline that our results apply to
general question on distribution of coefficients of the Laurent polynomials Rn).
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The number of elements congruent to q mod p is given by

(6.3) Nn,q =
1
p

p−1∑
j=0

χ−qjψn(χj),

where χ = exp(2πi/p) is a primitive pth root of unity. Let us recall that

ψn(eix) =
1

Tn(c)

{
1
2
(
c cosx +

√
c2 cos2 x − 1

)n(6.4)

+
1
2
(
c cosx −

√
c2 cos2 x − 1

)n}
.

Note the following properties of the function ψn:

ψn(1/x) = ψn(x),(6.5a)

if c cosx < 1, then |ψn(exp(ix))|Tn(c) ≤ 1.(6.5b)
ψn

{
exp
(
i(π − x)

)}
= (−1)nψn{exp(ix)},(6.5c)

if c cosx ≥ 1, then ψn(exp(ix)) > 0.(6.5d)

If x ∈ [0,arccos1/c], n � 1, then
|ψn(exp(ix))|Tn(c)
[c +

√
c2 cos2 x − 1]n

= 1 + o(1),(6.5e)

ψn(exp(ix1)) = o(ψn(exp(ix2)))(6.5f)

for 0 ≤ x2 < arccos1/c,x2 < x1 < π − x2.

Using property (6.5a), we can write

(6.6) Nn,q =
1
p

[
ψn(1) + 2

p−1
2∑

j=1

cos
2πqj

p
ψn(χj)

]
.

Since cos 2πm
p < 1 is monotonically decreasing as a function of m for 0 ≤

m ≤ p−1
2 , we see the following theorem.

Theorem 6.3. For sufficiently large even n, Nn,q < Nn,0.

Proof. This is an immediate consequence of the monotonicity of cos, equa-
tion (6.6) and properties (6.5a), (6.5c), (6.5d) and (6.5f) above. �

For q �= 0 mod p, the term largest in absolute value in the sum (aside the
ψn(1) term) on the right-hand side of equation (6.6) is the ψ(χ

p−1
2 ) term, so

if we assume that n is even, then the next largest (after Nn,0) term will be
Nn,p−2 (since (p − 2)[(p − 1)/2] = 1 mod p), then Nn,p−4, and so on. For n
odd, the ordering is reversed.
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7. An extension and limiting distributions for graphs

An inspection of the proof of Theorem 5.1 reveals that in order to show that
for a sequence of probability distributions {Pn(x)} on Z, the distributions
{Pn(x/

√
n)} converged to a limiting normal distribution with mean 0, we

used the following conditions (we will state them in a univariate setting for
simplicity; the multivariate case is the same).

Condition 1. The characteristic function of {Pn} has the form

χ(Pn) = fn(θ) + o(1),

where fj(θ) is twice continuously differentiable at 0, so that fj(θ) = aj + bjθ+
cjθ

2 + o(θ2).

Condition 2.
a1 = 1, b2 = 0, c2 < 0.

Suppose now we generalize the setting of Section 1 as follows:
Let G be a connected r-regular nonbipartite graph, directed or not (possibly

with self-loops and multiple edges), on k vertices. Let v1 and v2 be two vertices
of G. Consider now the set WN of all closed walks (circuits) of length N on G.
Let f : V (G) → R be a function assigning a weight to each vertex of G, and
define a random variable Xf to be

∑N
l=1 f(vl) for w = v1, . . . , vN ∈ WN . What

can we say about the distribution of Xf ? It turns out that asymptotically we
can say a lot. First, however, define

μ(f) =
1
k

k∑
j=1

f(vj),

and f0 = f − μ(f)1. Define further the Laplacian Δ(G) of G to be Δ(G) = rI −
A(G), and define Δ0(G) to be Δ(G) viewed as an operator on the orthogonal
complement to 1 (that is, vectors with 0 sum). Let PN (x) be the distribution
of Xf on WN .

Theorem 7.1. The distributions PN ((x − Nμ(f))/
√

N) converge to a bal-
anced (that is, mean 0) normal distribution with variance

(7.1) σ2(f) =
1
k

[−‖f0‖2 + 2rf t
0Δ

−1
0 (G)f0] =

1
k

[
f t
0

(
−I0 + 2rΔ−1

0 (G)
)
f0
]
.

Proof. Exactly as in Section 1 we construct a generating function gN for Xf

on WN . To do this, let A be the adjacency matrix of G, and let

Dk(x) =

⎛
⎜⎜⎜⎜⎜⎝

xf(v1)

xf(v2)

xf(v3)

. . .
xf(vk)

⎞
⎟⎟⎟⎟⎟⎠ .
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Then

gN (x) = tr(Dk(x)A)N =
k∑

j=1

λN
j (Dk(x)A),

where λ1, . . . , λj are eigenvalues, and, just as in Section 5, we have χ(PN )(θ) =
gN (exp(iθ))/cN , where

cN = |WN | =
k∑

j=1

λN
j (A).

Since G is an r-regular, nonbipartite graph, it has a unique eigenvalue of
maximal modulus, and that eigenvalue is λ1 = r.

Now, we can directly apply Conditions 1 and 2 (and accompanying com-
ments) above, and the results of Section 10 (noting that Assumptions 1–4
hold) to obtain the desired result (in particular, the estimate needed in Con-
dition 2 is precisely Theorem 10.8). We replaced the resolvent in formula
(10.9) by the equivalent (by the discussion in the beginning of Section 10)
Laplacian form, since that is more common in graph theory. �

Remark 7.2. If the vector f is an eigenvector of AtA with eigenvalue r2,
the corresponding variance is equal to zero. By Remark 10.9 this will not
happen, for example, if G is a connected nonbipartite undirected graph, but it
does happen for general directed graphs; see the discussion of the directed line
graph in Section 8.

The above remark leads to the following question:

Question 7.3. What combinatorial property of an r-regular directed
graph G is reflected in the algebraic statement that the operator norm of
A0(G) is equal to r?

A slight change in notation transforms Theorem 7.1 into a Central Limit
theorem for distributions over closed orbits of primitive irreducible Markov
processes over a finite number of states—the irreducibilty is exactly equivalent
to the connectivity of the graph G above. For ease of reference, we state this
as a separate theorem. The notation for f , μ, etc., is as before; the space WN

is now a probability space with the obvious probability measure; P = Pt is
the transition matrix (note that Remark 7.2 remains valid in this setting as
well).

Remark 7.4. Let PN (x) be the distribution of Xf on WN . Then PN ((x −
Nμ(f))/

√
N) converge to a balanced (that is, mean 0) normal distribution

with variance

σ2(f) =
1
k

[−‖f0‖2 + 2f t
0(I0 − P0)−1f0](7.2)

=
1
k

[
f t
0

(
−I0 + 2r(I0 − P0)−1

)
f0
]
.



GROWTH IN FREE GROUPS (AND OTHER STORIES)—TWELVE YEARS LATER 347

Remark 7.5. We have actually shown a slightly stronger result: instead of
the trace (distribution over cycles), we could have considered the ijth element
of P. Since the principal eigenvector varies continuously under perturbations
(see [26, Chapter II.4.1]), we could have replaced our sample space WN as
above by the space CN of paths of length N joining the ith to the jth vertex.
An easy computation shows that the covariance is the covariance given in
equation (7.2), divided by a further factor of k. The same remark applies to
Theorem 7.1.

7.1. Distribution modulo a prime. Theorems 7.1 and 7.4 have partic-
ularly simple analogues if the function f we are studying is integer valued,
and we are interested in the distribution of the Z/pZ-valued random vari-
able Yf (n) which assigns to each cycle of length n the sum of the values of f
modulo p. In that case, under the assumption that the adjacency matrix A
(in the context of Theorem 7.1) or the transition matrix A (in the context
of Theorem 7.4) is irreducible and primitive (the last two A(Lu(G)) condi-
tions guarantee that A has a single eigenvalue λ0 of maximal modulus, the
eigenspace of λ0 is one-dimensional, and the orthogonal subspace is invari-
ant under A), then we see that the distributions Pn of Yf (n) approach the
uniform distribution (on Z/pZ) exponentially fast in n (though a more rea-
sonable measure of the speed of convergence is the size of Wn, in which case
the convergence is polynomial). This statement follows from the following
lemma.

Lemma 7.6. If A is a matrix satisfying the conditions above, then the
spectral radius rUA of UA, for U any nontrivial unitary matrix such that the
top eigenvector of A is not also an eigenvector of U , is strictly smaller than
that of A (rA).

The proof of the lemma is immediate.
In our case, the matrix U is the diagonal matrix U(χ) with ujj = χ

fj
p ,

with χp a nontrivial pth root of unity. The speed of convergence to the
uniform distribution is given by (maxχp=1 r(U(χ)A))/r(A).

8. Functions on edges and distributions over paths without
backtracking

In this section, we consider two kinds of questions, which are seen to be
intimately related. The first is:

Question 8.1. Let f be a function on the edges of G. How are the averages
of f over long cycles or paths in G distributed?

The second question is:

Question 8.2. Let f be a function on the vertices of G. How are the
averages of f distributed over long cycles in G without backtracking—such
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cycles are more closely related to, for example, geodesics on surfaces, then
arbitrary cycles.

Both questions can be answered at the same time by constructing the
directed line graph (or line digraph) of G. This construction can be performed
for either a directed or undirected graph G; In Section 8.1 we will derive the
results for undirected graphs in detail, whilst in Section 8.3 we will discuss the
directed case somewhat more briefly (since the technical details are essentially
identical).

8.1. The directed line graph of an undirected graph. The directed line
graph of G, denoted by L(G), is constructed as follows: The vertices of L(G)
are edges of G labelled with a + or a −; that is, to each edge e of G there
correspond vertices e− and e+ of L(G). These correspond to the two possible
orientations of e: if the vertices of e are v and w, then we say that v is the
head of e−, and w the tail (and write v = h(e−), w = t(e−)), while for e+ this
nomenclature is reversed. Two vertices v1 and v2 of L(G) are joined by a
(directed) edge if the head of v1 is the same as the tail of v2, except that e−
is never joined to e+, and vice versa. We now make some observations and
definitions.

Definition 8.3. Let f be a function defined on the vertices of a graph G.
We say that a function g defined on the vertices of L(G) is the gradient of f ,
and write g = ∇f if g(e) = f(h(e)) − f(t(e)).

Definition 8.4. We can identify functions on the vertices of G with (a sub-
set of) functions on the the vertices of L(G). To wit, if a f is a function on
the vertices of G, we let Lf(e) = f(t(e)).

Observation 8.5. There is a natural correspondence between walks
on L(G) and walks on G without backtracking. Indeed, passing through
a vertex e of L(G) corresponds to going from t(e) to h(e). Since e+ is not
connected to e− for any e ∈ E(G), any such walk is automatically without
backtracking. Similarly, a cycle on L(G) corresponds to a tailless cycle with-
out backtracking on G.

If G is an r-regular graph, then L(G) is r − 1-regular, in the strong sense:
each vertex of L(G) has in-degree and out-degree equal to r − 1 (thus, the
total degree is 2r − 2), and from the above Observation 8.5, L(G) is connected
if and only if G is. It follows that the adjacency matrix A(L(G)) of L(G) is an
irreducible nonnegative matrix, all of whose row and column sums are equal to
r − 1. It follows that the space of functions on the vertices of L(G) orthogonal
to the vector 1 is an invariant subspace of A(L(G)) and of At(L(G))—we will,
as before, denote the two matrices restricted to this subspace by A0 and At

0,
respectively; the algebraic and geometric multiplicities of the eigenvalue r − 1
is equal to 1, by standard Perron–Frobenius theory. Despite this, it turns
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out that AtA is spectacularly degenerate. Indeed, the ijth entry of AtA is
equal to the number of vertices of L(G) adjacent simultaneously to the ith
and the jth vertex. It follows that the iith entry of AtA is equal to r − 1,
while the ijth entry is equal to r − 2 if the corresponding directed edges of G
have the same tail, and is 0 otherwise. It follows that

(8.1) AtA = I2E(G) + (r − 2)

⎛
⎜⎜⎜⎝

J1

J2

. . .
JV (G)

⎞
⎟⎟⎟⎠ ,

where the last term contains V (G) r × r blocks, each of which is the matrix
of all 1s. We thus have the following observation.

Observation 8.6. The spectrum of AtA has the following form: The
eigenvalue (r − 1)2 occurs V (G) times, and the corresponding eigenvectors
are given precisely by Lf for arbitrary functions f on G (the Perron eigen-
vector corresponding to the constant function), while the eigenvalue 1 occurs
2E(G) − V (G) times. The eigenvectors are those functions on the directed
edges of G, for which, for all vertices v of G, the sum of values on all the
edges leaving v is equal to 0.

Corollary 8.7. The operator norm of A0 is equal to r − 1.

Consider now the Laplace operator on L(G): ΔL(G) = (r − 1)I − A(L(G)).
We will need the following in the sequel.

Theorem 8.8. Let Er−1 be the eigenspace of (r − 1)2 for AtA. If V ∗(G)
is the space of functions on the vertices of G, then

(a) Er−1 = L(V ∗(G)),
(b) ΔL(G)(Er−1) = ∇(V ∗(G)),
(c) ∇(V ∗(G)) ∩ Er−1 ∩ 1⊥ = ∅, unless G is bipartite.

Proof. Part (a) is the content of Observation 8.6. Part (b) is a corollary
of part (a). Indeed, ΔL(G)(f)(x) = (r − 1)f(x) −

∑
h(x)=t(y) f(y). If f = Lg,

then

(8.2) ΔL(G)(f)(x) = (r − 1)
(
g(t(x)) − g(h(x))

)
,

since all the y adjacent to x have the same tail, equal to the head of x.
To show part(c), suppose ∇(V ∗(G)) ∩ Er−1 �= ∅. Let g be in the inter-

section, and k be such that ∇(k) = g. It follows that for any x, y such that
t(x) = t(y), g(x) = g(y). We see that k(h(x)) − k(t(x)) = k(h(y)) − k(t(y)),
which implies in turn that k(h(x)) = k(h(y)). So, k is the eigenvector of the 0
eigenvalue of the Laplace operator on G, and hence is constant, unless G is
bipartite. �
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We end this section with a remark necessary to compute distributions, as
done in the following Section 8.2.

Remark 8.9. The adjacency matrix of the line graph of a nonbipartite
graph G is primitive. That is, there is only one eigenvalue on the circle of
radius r − 1 in the complex plane, and that is r − 1. Its geometric multiplicity
is 1.

Proof. Doubtlessly there are simpler arguments, but we choose to use the
results (described in [59]) on the Ihara zeta function Z of G, which can be
expressed as a determinant in two ways:

The first way (original theorem of Ihara [21]) is:

(8.3) Z−1(u) = (1 − u2)R−1 det
((

1 + (r − 1)u2
)
I − uA

)
,

with A the adjacency matrix of G, and R the rank of the fundamental group
of G.

The second way (due to Hyman Bass [2]) is:

(8.4) Z−1(u) = det(I − uM),

where M is the adjacency matrix of the directed line graph of G.
The equality of the two expressions implies that v is an eigenvalue of M if

and only if v + (r − 1)/v is an eigenvalue of A (we are ignoring the eigenval-
ues ±1, which occur with large multiplicity in the spectrum of M ). Suppose
that v has modulus r − 1, so that v = (r − 1) exp(iθ), for some θ. It follows
that w = exp(iθ)+ (r − 1) exp(−iθ) is an eigenvalue of A, and since A is sym-
metric, θ ∈ {0, π}. If θ = 0, v = r − 1, while if θ = π, v = −(r − 1), but then
w = −r is an eigenvalue of A, and so G is bipartite.

The statement about the multiplicity of the eigenvalue r − 1 is immediate,
since L(G) is clearly strongly connected. �

We include the following observations both for the sake of completeness,
and in view of Lemma 8.14 below.

Lemma 8.10.
ΔL = (r − 1)∇.

Proof. Indeed, L(f)(x) = f(t(x)). Further,

ΔL(f)(x) =
∑

t(y)=h(x)

f
(
t(x) − f(t(y)) = (r − 1)

(
f(t(x)) − f(h(x))

)
(8.5)

= ∇(f)(x). �

Lemma 8.11. For any f, g ∈ V ∗(G), we have

(Lf)t∇g = f tΔg.
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Proof. Indeed,

(Lf)t∇g =
∑

x

(
f(t(x))(g(t(x)) − g(h(x)))

)
(8.6)

=
∑

v∈V (G)

∑
w adjacent to v

f(v)g(v) − f(v)g(w)

=
∑

v∈V (G)

f(v)Δ(g)(v)

= f tΔg. �

Consider now a function g on the directed edges of G. How do we decom-
pose it into a gradient and a function orthogonal to gradients? First, we note
that a basis of the gradients is formed by the gradients of δ functions:

(8.7) δv(x) =

{
1, x = v,

0, otherwise.

So that

(8.8) ∇δv(x) =

⎧⎪⎨
⎪⎩

1, t(x) = v,

−1, h(x) = v,

0, otherwise.

The functions ∇δv form a basis of ∇(V ∗(G)), though not an orthonormal
one. Now, note that

gt∇δv =
∑

t(x)=v

g(x) −
∑

h(y)=v

g(y).

In other words, we have the following lemma.

Lemma 8.12. g is orthogonal to the gradients, if and only if the sum of g
over the edges coming into any vertex v is equal to the sum of g over the edges
leaving v. An equivalent condition is that ∇tg = 0.

One may ask: what is the orthogonal projection of a given Lf onto the
gradients? The following comes out of an easy computation:

Observation 8.13. The orthogonal projection of Lf onto the set of gra-
dients is ∇Δf.

8.2. Applications to distribution. We can use the results of the previ-
ous section to understand the limiting distribution of functions defined on
(directed) edges of G. Indeed, we can use Theorem 7.1 in the form corre-
sponding to equation (10.10) to observe that

(8.9) σ2(f) =
1

2rk
f t(Δ−1

0 )t(r − 1)2I − A(L(G))tA(L(G))Δ−1
0 f
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for f any function on the directed edges of G, and Δ0 the restriction of the
Laplace operator on L(G) to the subspace of 0-sum vectors.

Lemma 8.14. The right-hand side of equation (8.9) vanishes precisely
when f is the gradient of a function on the vertices of G.

Proof. Let f = Δu. By Observation 8.6, we see that the right-hand side of
equation (8.9) vanishes precisely if u ∈ L(V ∗(G)). By part (b) of Theorem 8.8
it follows that this is so if and only if f ∈ ∇(V ∗(G)). �

One direction of the above lemma is just common sense, since the sum over
any cycle of a gradient is equal to 0.

Keeping the above in mind, we note that a simpler form of the covariance
is given by Theorem 7.1:

(8.10) σ2(f) =
r − 1
2rk

[
f t
(
I − 2(r − 1)Δ−1

0

)
f
]
.

For functions on the vertices of G, the above assumes the form:

(8.11) σ2(f) =
r − 1
2rk

[
f tLt
(
I − 2(r − 1)Δ−1

0

)
Lf
]
.

8.3. The line graph of a directed graph. The construction of the line
graph of a directed graph G is essentially the same as that of an undirected
graph. This time, the vertices of L(G) without labels (so L(G) has E(G)
vertices). The operators ∇ and L are defined as in Section 8.1. We have an
observation even simpler than Observation 8.5.

Observation 8.15. There is a natural bijective correspondence between
walks on L(G) and walks on G.

If G is an r-regular directed graph (by this we mean that both the in- and
out-degree of each vertex is equal to r), then so is L(G); by Observation 8.15
L(G) is connected whenever G is. As before, A(L(G)) is the adjacency matrix
of L(G). We can compute:

(8.12) AtA = r

⎛
⎜⎜⎜⎝

J1

J2

. . .
JV (G)

⎞
⎟⎟⎟⎠ ,

where each block corresponds to the set of edges of G emanating from a given
vertex. From this we have the following observation.

Observation 8.16. The spectrum of At(L(G))A(L(G)) has the following
form: The eigenvalue r2 occurs V (G) times, and the corresponding eigen-
vectors are given by Lf for arbitrary functions f on G (The Perron eigen-
vector corresponding to the constant function) while the eigenvalue 0 occurs
E(G) − V (G) times. The eigenvectors are those functions on the edges of G
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for which the sums of the values over all edges leaving a vertex v is equal to
0 (for all v).

Corollary 8.17. The operator norm of A0(L(G)) is equal to r.

The Laplace operator on L(G) is defined as: ΔL(G) = rI − A(L(G)).
We have

Theorem 8.18. Let Er be the eigenspace of r2 for AtA. If V ∗(G) is the
space of functions on the vertices of G, then

(a) Er = L(V ∗(G)),
(b) ΔL(G)(Er) = ∇(V ∗(G)).

We also include the following remark.

Remark 8.19. The adjacency matrix of the line graph of G is primitive if
the adjacency matrix of G is.

Proof. We use Observation 8.15 and Theorem 15.1 to note that the nonzero
eigenvalues of G are exactly the same as those of L(G), since det(I − uA(G)) =
det(I − uA(L(G))). �

Lemma 8.20.

ΔL = r∇.

Lemma 8.21. For any f, g ∈ V ∗(G), we have

(Lf)t∇g = f tΔg.

Lemma 8.12 and Observation 8.13 go through without change.
The results of Section 8.2 go through essentially without change. Since

some constants change, we restate them here. First, let f be a function
defined on the edges of L(G). We see that:

(8.13) σ2(f) =
1

2rk
f t(Δ−1

0 )tr2I − A(L(G))tA(L(G))Δ−1
0 f .

Lemma 8.14 holds as well, and this gives us the following useful corollary
(a homological condition) about distribution on G itself.

Theorem 8.22. The variance of a function f on the vertices of G vanishes,
precisely when there exists a function g, such that Lf = ∇g.

Finally, we have a version of formula (8.10):

(8.14) σ2(f) =
1
2k

[f t(I − 2rΔ−1
0 )f ].
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9. Distribution in compact groups

The methods of the Section 7.1 can be adapted to the following setting:
Let G is a graph, and T be a compact topological group. Label the ith vertex
of G with ti ∈ T . Now, associate to each cycle c = v1, . . . , vk on G the element
tc = tk · · · · · t1 ∈ T . We ask: as c varies over the cycle space WN , how are the
elements tc distributed in T (with respect to the Haar measure). The answer
is given by the following theorem.

Theorem 9.1. If the graph G is as before (connected, nonbipartite), the
closed subgroup generated by the ti (i = 1, . . . , k) is equal to T , and the ele-
ments ti do not all lie in the same coset with respect to a one-dimensional
representation of T , then the elements tc become equidistributed, as N → ∞.

Proof. As before, the equidistribution is equivalent to the assertion that
for a nontrivial irreducible unitary representation ρ,

(9.1)
∑

c∈Wn

tr(ρ(tc)) = o(|Wn|).

This follows from the Fourier transform formula for compact groups; see [11]
for the finite case, [63] for the general compact topological group case. See
also [37] Now, let U(ρ) be the k degρ × k degρ block-diagonal matrix whose
jth block is just ρ(tj). Further more, as before, let A(G) be the adjacency
matrix of G, and Al(G) = A(G) ⊗ Il (where Il is the l × l diagonal matrix):
in other words, Al(G) is a kl × kl matrix, obtained from A(G) by replacing
each element aij by a k × k matrix Mij , all of whose elements are equal
to aij . It is not hard to see that the left-hand side of equation (9.1) is equal
to tr(U(ρ)Adeg ρ(G))N , and so it suffices to show that the spectral radius of
Mρ = U(ρ)Adeg ρ(G) is strictly smaller than the spectral radius of A(G) (which
we normalize to be equal to 1 by scaling) under the hypotheses of the theorem.
Suppose not. Since (U(ρ)) is unitary, the worst that can happen is that there
exists a unit vector v, such that ‖Mρ(v)‖ = 1. If that is so, v is contained in the
eigenspace of eigenvalue 1 of Adeg ρ. In such a case, v = v1 ⊗ u, where u ∈ V (ρ),
and v1 is an eigenvector of A(G) with eigenvalue 1. If v1 = (v1

1 , . . . , vn
1 ), then

vi
1u must be an eigenvector of ρ(ti), for all i. Since vi

1 �= 0 ∀i, this implies
that u is an eigenvector ρ(ti), ∀i. Since ρ is irreducible, this implies that
either the elements t1, . . . , tk do not generate all of T , or ρ is 1-dimensional,
in which case clearly ρ(ti) = ρ(tj), ∀i, j, which proves the theorem. �

Remark 9.2. As in Remark 7.5, the above argument also works if we pick
all paths between the ith and the jth vertex of G, instead of all cycles.
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10. Some perturbations and estimates

Consider an analytic family of linear operators M(x), acting on Rk, with
M(0) = M, and let λ be a simple eigenvalue of M . Then if

M(x) = M + M (1)x + M (2)x2 + · · · ,

perturbation theory (see [26, page 79, formula (2.33)]) tells us that

λ(x) = λ + λ(1)x + λ(2)x2 + · · · ,

where

λ(1) = trM (1)Pλ,(10.1)

λ(2) = tr
[
M (2)Pλ − M (1)SλM (1)Pλ

]
,(10.2)

where Pλ is the projection onto the eigenspace of λ, while Sλ is the reduced
resolvent of M at λ, which is the holomorphic part of the resolvent of M at λ,
defined by the properties

(10.3) SλPλ = PλSλ = 0; (M − λI)Sλ = Sλ(M − λI) = I − Pλ

(in other words, Sλ is the inverse of M − λI restricted to the orthogonal
complement of the eigenspace of λ), and thus

(10.4) MSλ = I − Pλ + λSλ.

Now we will specialize a bit:

Assumption 1. The eigenvalue λ is such that the constant vector 1 spans
the eigenspace of λ.

In this case, Pλ = Jk/k, where we recall that Jk is the k × k matrix of
all 1s.

In addition, the following assumption.

Assumption 2. We will assume that M(x) = D(x)M, where D(x) is an
analytically varying diagonal matrix, D(x) = D+D(1)x+D(2)x2 + · · · , where
we say that the diagonal elements of D(l) are d(l) = (d(l)

1 , . . . , d
(l)
k ).

Lemma 10.1. Let A = (Aij) be an n × n matrix. Then

trAJn =
∑

1≤i,j≤n

Aij .

Lemma 10.2. Let A = (Aij) be an n × n matrix, and let X be an n × n
diagonal matrix. Then

(XA)ij = AijXii,

(XAX)ij = AijXiiXjj .
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Lemma 10.3. Let D be a diagonal matrix, with diagonal elements d1, . . . , dn.
Then

vtDv =
n∑

i=1

div
2
i .

The proofs of the above lemmas are immediate.

Lemma 10.4. Let Pv is the projection operator on the subspace generated
by v (a unit vector). Then

trMPv = vtMv.

In particular, if v is an eigenvector of M with eigenvalue λ, then trMPv =
λ‖v‖.

Proof. This follows by a direct computation, since when v is a unit vector,
(Pv)ij = vivj . �

Lemma 10.5. If v is an eigenvector of M with eigenvalue λ, then MPv =
λPv .

Lemma 10.6. Suppose that λ has multiplicity 1, and v(λ) is a unit vector
generating the eigenspace of λ, and M(t) = D(t)M , where D(t) is a diagonal
matrix. Then

λ′(M) = λvt(λ)D′v.

Proof. By formula (10.1), we have

λ′(M) = trM ′Pv(λ) = vt(λ)M ′v(λ) = λvt(λ)D′v. �

Corollary 10.7. In the case when v(λ) = 1√
k
1, we have:

(10.5) λ(1) =
λ

k

k∑
j=1

d
(1)
j .

To compute the second derivative of λ, we use the formula (10.2) (we are
assuming that λ is an isolated eigenvalue with eigenvector v(λ), and M(t) =
D(t)M , as before):

λ′ ′ = tr[M ′ ′Pv(λ) − M ′SλM ′Pλ]

= λvtD′ ′v − tr[M ′SλM ′Pλ]
= λvtD′ ′v − λ tr[D′MSλD′Pλ]
= λvt[D′ ′ − D′MSλD′]v.

We can now use the formula (10.4) to get:

(10.6) λ′ ′ = λvt[D′ ′ − D′(I − Pλ)D′ − λD′SλD′]v.

In the special case where the eigenvector v is proportional to 1, we can
rewrite the formula in coordinates in a simple way. To wit, any diagonal
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matrix D can be written (uniquely) as D0 +dI, where D0 is such that trD0 =
0. A simple computation then shows that

(10.7) λ′ ′ =
λ

k

[
n∑

j=1

d′ ′
j −

n∑
j=1

(d′
0)

2 − λd′tSλd′

]
.

The case we are interested in is still more special, and that is where we get
the following assumption.

Assumption 3.

D(x) =

⎛
⎜⎜⎜⎝

exp(if1x)
exp(if2x)

. . .
exp(ifkx)

⎞
⎟⎟⎟⎠ .

Here, d(1) = (if1, if2, . . . , ifk), while d(2) = − 1
2 (f2

1 , f2
2 , . . . , f2

k ), and so, letting
f = (f1, . . . , fk),

(10.8) λ(2) =
λ

k

[
− 1

2
‖f ‖2 + ‖f0‖2 + λf tSλf

]
,

where, as before, f0 is the component of f orthogonal to constants.

To show our final estimates we shall need the following assumption.

Assumption 4. The matrix M is λ > 0 times a doubly stochastic matrix
(this implies that the operator norm and the spectral radius of M are both
equal to λ).

Theorem 10.8. With assumptions as above, and, in addition, f = f0 (that
is,
∑k

j=1 fj = 0), then λ(2) is nonpositive.

Proof. Since f = f0, equation (10.8) can be rewritten as

(10.9) λ(2) = − λ

2k
[−‖f0‖2 − 2λf ⊥

0 Sλf0] = − λ

2k
[f t

0(−I − 2λSλ)f0].

If we regard Sλ as an operator on the orthogonal complement to 1, then by
equations (10.3) and (10.4), Sλ(λI0 − M0) = −I0. Let v = −Sλf0. Then the
term in square brackets in equation (10.9) can be rewritten as:

(10.10) vt(λI0 − M0)t(−I − 2λSλ)(λI0 − M0)v = vt(λ2I0 − M t
0M0)v,

where we have used the fact that for any matrix A and any vector v, vtAv =
vtAtv. The quadratic form λ2I0 − M t

0M0 is positive semi-definite, since the
biggest eigenvalue of the symmetric matrix M t

0M0 is equal to the square of the
operator norm of M0, which, in turn, is no greater then λ, by Assumption 4
(since M tM is λ2 times a doubly stochastic matrix). �
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Remark 10.9. In the statement of Theorem 10.8, the word “nonpositive”
can be improved to “negative” under the further assumption that M is irre-
ducible, primitive, and normal.

Proof. Since the orthogonal complement to the subspace generated by the
vector 1 is invariant under M , it follows that M0 is also normal, and so
its operator norm is equal to its spectral radius μ. Under the assumptions
of irreducibility and primitivity, Perron–Frobenius theory tells us that |μ| <
λ. �

11. Topological entropy

Consider a graph G, and consider a positive function f on its vertices.
For each cycle c we let F (c) to be the sum of values of f over c, and we
want to know how many c are there for which F (c) ≤ L. We denote that
number by N(f,L), and we ask ourselves how N(f,L) behaves asymptotically
as L tends to infinity. To understand N(L,f), we consider first the matrix
U(f) = D(uf1 , . . . , ufn)A(G). As before, we observe that the coefficient of ur

in trUn(f) is the number of cycles of (combinatorial) length n, for which
F (c) = r. Write a formal series

L(f,u) =
∑

n

trUn(f).

This series converges for sufficiently small u, and can there be written in
closed form as L(f,u) = tr(I − U(f))−1, from which it follows that the ex-
ponential rate of growth of N(c) is equal to negative logarithm of the radius
of convergence of L(f,u)—we call this the entropy of G,f—which, in turn,
is equal to the smallest positive real value of u, such that the spectral ra-
dius of U(f) is equal to 1. Since it is more convenient to deal with analytic
functions (which L(f,u) is not), for arbitrary real values of fi, so we write
u = exp(−s), and now ask for the abscissa of convergence of L(f, exp(−s)).
This will give us the entropy. In this section, we use perturbation methods in
a rather straightforward way to get explicit information on the entropy.

Let A be an n × n nonnegative primitive irreducible matrix. Let f1, . . . , fn

be a collection of weights. We then define the matrix E(s, f) to be the diag-
onal matrix whose iith element is equal to exp(−sfi). Define M(s, f) to be
M(s, f) = E(s, f)A. We are interested in ρ(s, f): the spectral radius of M(s, f).
By Perron–Frobenius theory, we know that there is a real eigenvalue of M(s, s)
equal to ρ(s, f), and the eigenvector vρ of this eigenvalue is positive.

Lemma 11.1.

(11.1)
∂ρ

∂s
= −ρvt

ρD(f1, . . . , fn)v.

For positive f , ∂ρ
∂s < 0.
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Proof. This follows immediately from Lemma 10.4 and the positivity of ρ
and vρ. �

Lemma 11.2. We have the following expression for the gradient of ρ with
respect to f :

(11.2) ∇fρ = −sρ(v2
1 , . . . , v2

n),

where vρ = (v1, . . . , vn).

Proof. We note that

∂M

∂fi
= −sD(0, . . . ,1, . . . ,0)M,

where the 1 is in the ith place. Thus, by formula (10.1), we have

∂ρ

∂fi
= −svt

ρD(0, . . . ,1, . . . ,0)Mv = −sρv2
i . �

This can be restated as saying that the derivative of ρ in the direction of a
vector g is equal to −ρsvt

ρD(g)v.
This gives us the following important corollary.

Corollary 11.3. Consider deformations g keeping the sum of fi fixed.
Then the critical points of ρ occur precisely for those ρ for which |vi| = |vj |,
for any i, j.

We can also compute the second directional derivative of ρ. Indeed, let
g = (g1, . . . , gn) be the direction vector, so that we want to compute the second
derivative with respect to t of ρ(s, f + tg) at t = 0. To do this, we use the
formula (10.2):

(11.3) ρ′ ′ = tr
[
M ′ ′Pv(ρ) − M ′SρM

′Pρ

]
.

Note that (as in the proof of Lemma 11.2)

(11.4) M ′ = −sD(g1, . . . , gn)M,

while
M ′ ′ = s2D(g2

1 , . . . , g2
n)M,

and so

trM ′ ′Pv(ρ) = s2ρvtD(g2
1 , . . . , g2

n)v(11.5)

= s2ρ{D(g1, . . . , gn)v}t{D(g1, . . . , gn)v}.

To understand the second term of the right-hand side of equation (11.3), first
note that (by equation (11.4))

M ′SρM
′Pρ = D(g1, . . . , gn)MPρ

= ρs2D(g1, . . . , gn)MSρD(g1, . . . , gn)Pρ,



360 I. RIVIN

where the second equality is by Lemma 10.5. Now

trM ′SρM
′Pρ = ρs2v(ρ)tD(g1, . . . , gn)MSρD(g1, . . . , gn)v(11.6)

= ρs2{D(g1, . . . , gn)v}tMSρ{D(g1, . . . , gn)v}.(11.7)

Putting together equations (11.5) and (11.6), we see that

(11.8) ρ′ ′ = ρs2{D(g1, . . . , gn)v}t(I − MSρ){D(g1, . . . , gn)v}.

Using the formula (10.4), equation (11.8) simplifies further to:

(11.9) ρ′ ′ = ρs2{D(g1, . . . , gn)v}t(Pv(ρ) − ρSρ){D(g1, . . . , gn)v}.

The following lemma is not surprising.

Lemma 11.4. The quadratic form given Pv − ρSρ is positive-definite.

Proof. On the span of v, the projection operator Pv is equal to the identity,
whilst the reduced resolvent Sρ vanishes. On the orthogonal complement, the
projection operator vanishes, so since the Perron–Frobenius eigenvalue ρ is
positive, we need to show that Sρ is negative-definite. Consider a vector w, in
the orthogonal complement of v. Such a w is equal to (ρI − M)z, for some z
orthogonal to v. So,

wtSρw = zt(ρI − M)z.

So, it will suffice to show that (ρI − M) is negative-definite. Suppose not.
Then there exists a z0, such that zt

0Mz0 ≥ ρ‖z0‖2. By the argument in the
proof of Theorem 10.8, we see that ‖Mz0‖ ≤ ρ‖z0‖. So, zt

0Mz0 ≥ ρ‖z0‖2

implies that 〈z0,Mz0〉 ≥ ρ‖z0‖2, and hence that z0 is an eigenvactor of M
with eigenvalue ρ, which is impossible by assumption that M is irreducible
and primitive. �

We finish with the following theorem.

Theorem 11.5. Let s0(f) be the unique s such that ρ(s0, f) is equal to 1.
Then s0 is a convex function of f , and hence assumes a unique minimum
on each linear subspace of values of f . In particular, if we restrict to the
the subspace F0, where the sum of the values of of f is equal to 1, then the
minimum is achieved at the point where

(11.10) fi =
log(A1)i∑
i log(A1)i

,

in which case the entropy is equal to
∑

log(A1)i.

Proof. The convexity of s0 follows from Lemmas 11.4 and 11.1. The point
at which the minimum is achieved is computed easily using Corollary 11.3, as
is the value of entropy. �
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12. Applications to groups and other objects

The asymptotic results in the previous sections apply directly to the ques-
tion of the growth of homology classes in the free groups, and give in some
sense complete information:

Observation 12.1. We see that the asymptotic order of growth of any
two fixed homology classes is the same.

Observation 12.2. Theorem 7.1 shows in particular that a random long
cycle is equidistributed among the vertices of a regular graph.

Observation 12.3. We see that the order of growth the number of words
length n in any fixed homology class in Fk is asymptotic to ck(2k − 1)n/nk/2,
where ck is easily computed using the expression for σ in the statement of
Theorem 5.1, keeping in mind that

cFk
=

k√
2k − 1

,

where c is the parameter in the statements of theorems of the last two sections.
Alternately, Theorem 7.1 can be used.

We can compute other growth functions. For example, let h : Fn → Z
be the “total exponent” homomorphism, that is, if Fn = 〈a1, . . . , an〉, then
h(ai) = 1. We see that the generating function for the preimages of j ∈ Z is
given by(

2
√

2n − 1
)k

Rk

(
n√

2n − 1
;x, . . . , x

)
=
(
2

√
2n − 1

)k
Rk

(
n√

2n − 1
;x
)

.

Observation 12.4. Instead of cyclically reduced words, it is perhaps more
natural to study conjugacy classes (ordered by their cyclically reduced length).
It seems futile to seek any enumeration as neat as Theorem 2.3, however,
since the relationship between the number Ck of conjugacy classes of words of
length k and the number of cyclically reduced words Wk is:

(12.1) Ck =
Wk

k
+ O
(√

Wk

)
,

it is clear that the asymptotic results are the same for the two problems. For
more on this subject, see Section 13 and the sequel.

Observation 12.5. Counting conjugacy classes is a problem closely related
to that of counting closed geodesics on manifold. In the context of compact
hyperbolic surfaces, it was observed by Sarnak (see, for example, [54]) that
among all geodesics shorter than L, null-homologous geodesics are more nu-
merous than those in any other prescribed homology class (that is, while the
ratio of the two quantities approaches 1, the difference is asymptotically pos-
itive). The results of the current note provide a certain justification for this,
since any limiting distribution likely to arise in this context is, for reasons of
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symmetry, likely to be unimodal, with the mode at 0. Certainly this is true
of the normal distribution, though even in this case, a careful analysis of the
error terms is required.

13. Counting conjugacy classes

Consider a finitely presented group G. Let g be an element of G. We define
the reduced length of g—denoted by |g|—to be the length of the shortest word
in the generators of G representing g. We define the length up to conjugacy
of g—denoted by |g|c—to be the minimum of |h|, the minimum being taken
over all group elements h conjugate to g. Length up to conjugacy is obvi-
ously invariant under conjugation, and we will also use the term to apply to
conjugacy classes.

NG(r) =
∣∣{g ∈ G | |g| = r}

∣∣,
CG(r) =

∣∣{g ∈ NG(r) | |g|c = r}
∣∣,

C CG(r) =
∣∣{C ∈ G/conjugacy | |C|c = r}

∣∣.
The subscript G will be omitted whenever the group G is obvious from

context.
Given a sequence A = a0, . . . , ai, . . . , we can define a generating function

F [A], by

F [A](z) =
∞∑

i=0

aiz
i.

There is frequently confusion as to whether the generating function is a holo-
morphic function or an element of the ring of formal power series. In this
section, “generating function” will mean a function analytic at 0 ∈ C.

The three counting functions above give rise to corresponding generating
functions F [NG], F [CG], F [C CG]. Our real interest will lie in the last of
these; the first one has been the most extensively studied, and the result most
relevant to us is:

Fact 1. If G is an automatic group, then the generating function F [NG]
is a rational function.

For definitions and properties of automatic groups, see [9].

Fact 2 (Gromov, Epstein). If G is an automatic group, then the generating
function F [CG] is a rational function.

Facts 1 and 2 might lead us to expect that F [C CG] is, likewise, rational,
but in fact the opposite seems to be the case, and we are led to the following.

Conjecture 13.1. Let G be a word-hyperbolic group. The F [C CG] is
rational if and only if G is virtually cyclic (elementary in the terminology
of [12]).
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In the sequel, this conjecture is supported by the complete analysis of the
case where G is Fk—the free group on k generators.

14. Growth functions for free groups

Let Fk be the free group on k generators. The following is obvious:

Fact 3. NFk
(r) = 2k(2k − 1)r−1.

Theorem 1.1 says that

CFk
(r) = (2k − 1)r + 1 + (k − 1)[1 + (−1)r].

Corollary 14.1.

F [CFk
](z) =

1
1 − (2k − 1)z

+
1

1 − z
+

2(k − 1)
1 − z2

− 2k.

In order to compute C CFk
(r), it is enough to notice the following theorem.

Theorem 14.2.
rC C(r) =

∑
d|r

φ(d)C(r/d),

where φ denotes the Euler totient function.

Proof. The theorem is a trivial consequence of Burnside’s lemma, stated
below as Theorem 14.3 for convenience, applied to the action of the cyclic
group Z/(rZ) on the set of cyclically reduced words of length r. �

Theorem 14.3. Let G be a finite group acting on a finite set X . For g ∈ G
let ψ(g) denote the number of x ∈ X , such that g(x) = x. Then the number of
orbits of X under the G-action is

1
|G|
∑
g∈G

ψ(g).

We now have the following general observation.

Theorem 14.4. Suppose we have three sequences A = {ai}, B = {bj }, and
C = {ck }, satisfying

an =
∑
d|n

cdbn
d
.

Then

F [A](z) =
∞∑

d=1

cdF [B](xd).
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Proof. On the level of formal power series, the statement is clear by ex-
panding the left-hand side. Otherwise, if the radius of convergence of F [A]
is ra, then the radius of convergence of Gd[A], defined as Gd[A](z) = F [A](zd)
is, by Hadamard’s criterion, equal to r

1/d
a , so all of Gd[A] converge on the

disk of radius Ra = min(ra,1) around the origin. Since the series on the right-
hand side converges at 0 (since all the terms vanish), it converges uniformly
on compact subsets of the disk of radius Ra around the origin. �

Corollary 14.5. Let H be the generating function of the sequence hr =
rC C(r). Then

H(z) = 1 +
∞∑

d=1

φ(d)F [C](zd).

We can combine all of the above results into the following conclusion.

Theorem 14.6. The generating function H as in the statement of Corol-
lary 14.5 can be expanded as:

H = 1 + (k − 1)
x2

(1 − x2)2
+

∞∑
d=1

φ(d)
(

1
1 − (2k − 1)xd

− 1
)

.

In particular, H has an infinite number of poles, and is not a rational
function for any k > 1. The generating function F [C CFk

] can be written as

F [C CFk
](z) =

∫ z

0

H(t)
t

dt

and so is not a rational function either.

Proof. The expression for H is fairly obvious, with the comment that the
second summand is a consequence of the fact that∑

d|n
φ(d) = n.

That H has an infinite number of poles follows from the observation that
the dth term in the third summand has its d poles on the circle |z| = (2k −
1)−1/d, while the first two summands are analytic in the open unit disk. The
expression for F [C CFk

] is immediate. �

Remark 14.7. For k = 1, it is not hard to see that

H = 1 +
x

(x − 1)2
.

Remark. Various people, when shown Theorem 14.6, appeared to believe
that it contradicts [12, Theorem 5.2D]. In fact (as pointed out by Greg Mc-
Shane), Gromov’s function [N ]k is not (as the common misunderstanding has
it) the same as C CG(r) in the case of a free group, but is the same as CG(r).
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14.1. Some further comments. The following observation is quite obvi-
ous:

Observation 14.8. Let G1 and G2 be two groups. Then

F [C CG1×G2 ](z)
= F [C CG1 ](z)F [C CG2 ](z).

It would be interesting to find other relationships (for example, what hap-
pens for HNN extensions)?

Observation 14.8 has some consequences.

Theorem 14.9. Let G1 and G2 be two groups, then if F [C CG1 ] is rational,
while F [C CG2 ] is not, then F [C CG1×G2 ] is not rational. If both F [C CG1 ] and
F [C CG2 ] are rational, then so is F [C CG1×G2 ].

Corollary 14.10. If G1 = Zn and G2 is a finite group, then F [C CG1×G2 ]
is rational.

Remark. It is not clear whether F [C CG] is rational when G is a Bieber-
bach group—most likely this depends on the choice of the generating set, as
conjectured by Epstein.

Corollary 14.11. If G1 = Fk and G2 is a direct product of finite groups
and infinite cyclic groups, then F [C CG1×G2 ] is irrational.

Theorem 14.12. If G = Fk1 × Fk2 × · · · × Fkn , then F [C CG] is irrational
(with respect to the “obvious” generating set).

Proof. This is an immediate consequence of Theorem 14.6. �

15. Primitive conjugacy class zeta function

One can compute a zeta-function analogous to that of Ihara for the numbers
of primitive conjugacy classes of a given length (a primitive class is one which
is not the power of a smaller class), using, essentially, the elementary method
described by Stark and Terras, [59], as applied to the graph constructed in
Section 1. This function turns out to be rational (in fact, there is a simple
formula for it, see Theorem 15.1). More precisely, consider

(15.1) ζ(G)−1 =
∏
[c]

(
1 + ul(c)

)
,

where [c] denotes the equivalences classes of primitive cycles, where two cycles
are considered equivalent if one can be obtained from the other by a rotation.

A computation then shows that

(15.2) ζ(Fr) = (1 − u2)r−1(1 − u)
(
1 − (2r − 1)u

)
.
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The computation goes as follows: first, note that

log ζ(G) =
∑
[c]

∞∑
i=1

1
i
uil(c),

and thus

u
d log ζ(G)

du
=
∑
[c]

∞∑
i=1

l(c)uil(c).

The above can be rewritten (note that the sum is now over primitive cycles,
and not equivalence classes thereof):

u
d log ζ(G)

du
=
∑

c

∞∑
i=1

uil(c).

But note that the right-hand side is simply the ordinary generating function
for all cycles:

(15.3) u
d log ζ(G)

du
=

∞∑
i=1

Niu
i,

where Ni is the number of cycles of length i in G, and this generating function
was computed in Section 1:

∞∑
i=i

Niu
i =

1
1 + (2r − 1)u

+
r

1 − u
+

r − 1
1 + u

.

The formula (15.2) now follows by a straightforward integration.
An quick examination of the above argument shows that the formula (15.2)

is a special case of the following result.

Theorem 15.1. Let G be a finite graph, and let ζG be the zeta-function
defined by formula (15.1). Let A(G) be the adjacency matrix of G. Then

(15.4) ζG(u) = det
(
I − uA(G)

)
.

In other words, the zeta-function is essentially the characteristic polynomial
of A(G).

Proof. The argument above up to equation (15.3) is completely general.
On the other hand, the right-hand side of equation (15.3) can be rewritten as:

∞∑
i=1

Niu
i =

∞∑
i=1

trA(G)iui

= tr

[
−I +

∞∑
i=0

[A(G)u]i
]

= tr
[

−I +
(
I − uA(G)

)−1]
= tr
(
uA(G)

(
I − uA(G)

)−1)
.
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Thus,
d log ζ(G)

du
= tr
(
A(G)

(
I − uA(G)

)−1)
,

and so it follows that

ζ(G) = C det
(
I − uA(G)

)
,

where C is a constant of integration, seen to be equal to 1 by computing both
sides at u = 0. �
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