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CHEEGER CONSTANTS OF ARITHMETIC HYPERBOLIC
3-MANIFOLDS

DOMINIC LANPHIER AND JASON ROSENHOUSE

Abstract. We study the Cheeger constants of certain infinite
families of arithmetic hyperbolic three-manifolds, as well as cer-
tain graphs associated to these manifolds. We derive computable

bounds on the Cheeger constants, and therefore bounds on the

first eigenvalue of the Laplacian, by adapting discrete methods

due to Brooks, Perry and Petersen. We then modify probabilistic

methods due to Brooks and Zuk to obtain sharper, asymptotic

bounds. A consequence is that the Cheeger constants are quite

small, implying that Cheeger’s inequality is generally insufficient
to prove Selberg’s eigenvalue conjecture.

1. Introduction

Let M be a Riemannian manifold of dimension n and finite volume. The
Cheeger constant of M is defined to be

h(M) = inf
N

a(N)
min(v(A), v(B))

,

where N runs over codimension one submanifolds of M that disconnect M into
manifolds A and B. The expressions a(·), v(·) refer to (n − 1)-dimensional and
n-dimensional volume, respectively, where the measures are with respect to
the Riemannian metric. Denote by λ1(M) the first eigenvalue of the Laplacian
on M . In [6], Cheeger showed that

(1) λ1(M) ≥ 1
4
h(M)2.

This, coupled with Buser’s inequality [5], λ1(M) ≤ 2a(n − 1)h(M)+10h(M)2,
where −(n − 1)a2 ≤ R(M) for some a ≥ 0 and R(M) is the Ricci curvature of
M , show that h(M) and λ1(M) are qualitatively identical. Let 12 =

(
1
0

0
1

)
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and let PSL2(Z) = SL2(Z)/〈±12〉. For convenience, we treat the elements of
PSL2(Z) as matrices instead of two element cosets. Let H2 = {x + iy ∈ C |
y > 0} be the complex upper-half plane, and for N ∈ Z≥2 define

Γ(N) = {γ ∈ PSL2(Z) | γ ≡ 12 (modN)}.

Set X(N) = H2/Γ(N). It was suggested in [2] that one might prove Sel-
berg’s eigenvalue conjecture λ1(X(N)) ≥ 1/4, see [17], by establishing that
h(X(N)) ≥ 1. However, in [3], the following was shown:

Theorem 1 (Brooks, Perry and Petersen [3]). Let p be a prime satisfying
p ≡ 1 (mod4). Then

h(X(p)) ≤ 3 log(3)
2π

(
p − 1
p + 1

)
.

It was further shown in [11] that h(X(p)) ≤ 3 log(3)/2π for p ≡ 3 (mod4).
Thus, h(X(p)) ≤ 0.52455 . . . for odd primes p and it follows that Cheeger’s
inequality (1) is insufficient to obtain even Selberg’s 3/16 bound. The value
of h(X(N)) was further studied in [4] and the following result was shown:

Theorem 2 (Brooks and Zuk [4]). There is a constant C < 1/2 so that

h(X(N)) < C

for sufficiently large N .

A value of approximately 0.4402 . . . suffices for C. The analogue of the
Selberg conjecture for Cheeger constants is h(X(N)) ≥ 1/2, see [4], and thus
the above result shows that the Selberg conjecture for Cheeger constants is
not true.

Let d ∈ Z>0 and set Kd = Q(
√

−d). Let Od be the ring of integers of Kd.
Let

H3 = {(z, r) ∈ C × R | r > 0}
be the upper-half 3-space with z = x + iy and volume form r−3 dxdy dr. Let
PSL2(Od) = SL2(Od)/〈±12〉 as in [8]. The groups Γ̃d = PSL2(Od) are known
as the Bianchi groups [1]. Let n be a nonzero ideal in Od and let

Γ̃d(n) = {γ ∈ PSL2(Od) | γ ≡ 12 (modn)}.

A congruence subgroup of PSL2(C) is a discrete group which is SL2(C)-
conjugate to a group containing Γ̃d(n) for some nonzero ideal n ⊂ Od. Given(

a
c

b
d

)
∈ SL2(C), we have the action

(
a b
c d

)
(z, r) =

(
(az + b)(cz + d) + acr2

|cz + d|2 + |c|2r2
,

r

|cz + d|2 + |c|2r2

)
.
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Set X̃d = H3/PSL2(Od) and X̃d(n) = H3/Γ̃d(n). The Bianchi groups are
cofinite and it follows that the Cheeger constants h(X̃d(n)) are well defined.
We denote the first eigenvalue of the Laplacian

Δ = r2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂r2

)
− r

∂

∂r

on H3/Γ̃ by λ1(H3/Γ̃), and note that Selberg’s conjecture for H3 asserts that

λ1(H3/Γ̃) ≥ 1,

see [7]. It is known, see [9] and [16], that for any congruence subgroup Γ̃ of
PSL2(Od) we have λ1(H3/Γ̃) ≥ 3/4.

The goal of this paper is to extend Theorems 1 and 2 to h(X̃d(n)). Our
results confirm the intuition that the Cheeger constants for X̃d(n) are too
small to give a good estimate for λ1(H3/Γ̃d). Note that Selberg’s conjecture
for the Cheeger constant of these manifolds is h(X̃d(n)) ≥ h(H3)/2 = 1.

Let d ∈ {1,2,3,7,11}. In these cases we have that Od is Euclidean. Let (p)
be a prime ideal in Od such that (2,p) is a unit. The methods we employ for
estimating h(X̃d(p)) are modifications of the discrete arguments from [3], [11],
and [12], and the probabilistic arguments from [4]. Note that N(n) = | Od/(n)|
denotes the norm of n ⊂ Od. Our main results are the following.

Theorem 3. Let d ∈ {1,2,3,7,11} and let (p) be a prime ideal in Od where
(2,p) is a unit in Od. Then

h(X̃d(p)) ≤ Cd
N(p) − 1
N(p) + 1

for some Cd < 1.7.

It follows that the Cheeger constants of these manifolds are all less than√
3. Consequently, we cannot use (1) to obtain even the 3/4 estimate from

[9] and [16]. From Section 3, we have the values

C1 ≈ 1.11304 . . . , C2 ≈ 1.22624 . . . , C3 ≈ 1.08634 . . . ,

C7 ≈ 1.17806 . . . , C11 ≈ 1.63876 . . . .

Theorem 4. For d and (p) as in Theorem 3, we have

limsup
N(p)→∞

h(X̃d(p)) < C ′
d

for some C ′
d < 1.

Thus, as in the 2-dimensional case, the analogue of Selberg’s conjecture for
Cheeger constants is not true. From Section 4, we have the values

C ′
1 ≈ 0.82758 . . . , C ′

2 ≈ 0.52031 . . . , C ′
3 ≈ 0.76147 . . . ,

C ′
7 ≈ 0.83640 . . . , C ′

11 ≈ 0.98846 . . . .
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2. Cheeger constants of Cayley graphs

Throughout the paper, we take d ∈ {1,2,3,7,11}. The respective groups
Γ̃d are referred to as the Euclidean Bianchi groups, see [8]. The respective
discriminants are DKd

= −4, −8, −3, −7, −11. We denote the group of units
in Od by O ×

d .
If v1, v2 are adjacent vertices of a graph, then we write v1 ∼ v2. Let Γ be a

finite group and let Ω be a generating set for Γ. If Ω = Ω−1, then we say that Ω
is symmetric. The Cayley graph of Γ with respect to a symmetric generating
set Ω, denoted G(Γ,Ω), is defined as follows: The vertex set of G = G(Γ,Ω)
is denoted V (G) and consists of the elements of Γ. Distinct vertices γ1 and
γ2 are adjacent if and only if γ1 = ωγ2 for some ω ∈ Ω. Cayley graphs are
|Ω|-regular. Let A ⊂ V (G). The boundary of A, denoted ∂A, is defined to
be the collection of edges in G with exactly one endpoint in A. The Cheeger
constant, or isoperimetric number, of a finite graph G is then defined to be

ι(G) = inf
A

|∂A|
|A| ,

where A ranges over all subsets of V (G) satisfying |A| ≤ |V (G)|/2. Since the
rings Od are Euclidean, we can follow the methods of [8] to compute

[Γ̃d : Γ̃d(n)] = N(n)3
∏
p|n

(
1 − 1

N(p)2

)
,

where (2,n) ∈ O ×
d . Let (p) be a prime ideal in Od such that (2,p) ∈ O ×

d . Let
Γ̃d,p = PSL2(Od/(p)). It follows that |Γ̃d,p| = [Γ̃d : Γ̃d(p)] = (N(p)3 − N(p))/2.
Let

Ωd =
{(

0 −1
1 0

)
,

(
0 ω±1

0

−ω∓1
0 0

)
,

(
1 ±1
0 1

)
,

(
1 ±ωd

0 1

)}
,

where ωd = i, i
√

2, 1+i
√

3
2 , 1+i

√
7

2 , 1+i
√

11
2 for d = 1,2,3,7,11 respectively, and

where ω0 = ωd for d = 1 or 3 and ω0 = −1 otherwise. It follows from [8] that
Ωd is a symmetric generating set for Γ̃d,p. Note that |Ωd| = 5 for d = 2,7,11,

|Ω1| = 6, and |Ω3| = 7. Let Gd,p = G(Γ̃d,p,Ωd). The main result of this section
is the following theorem.

Theorem 5. Let d ∈ {1,2,3,7,11} and let (p) ⊂ Od be a prime ideal such
that (2,p) ∈ O ×

d . Then

(2) ι(Gd,p) ≤ | O ×
d |
4

(
N(p) − 1
N(p) + 1

)
.

Since Gd,p is |Ωd|-regular and |V (Gd,p)| = (N(p)3 − N(p))/2, we have that
|E(Gd,p)| = |Ωd|(N(p)3 − N(p))/4. Consider the unipotent subgroup of Γ̃d,p,

Ud,p =
{(

1 n
0 1

) ∣∣n ∈ Od/(p)
}

.
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Then |Ud,p| = N(p). Consider the quotient Γ̃′
d,p = Ud,p\Γ̃d,p and the quotient

map φ : Γ̃d,p → Γ̃′
d,p. Define a graph G′

d,p with respect to the quotient by the
following equivalence relation: For v,w ∈ V (Gd,p), we set v ∼U w if and only
if v = ωw for ω ∈ Ud,p ∩ Ωd. Then we have V (G′

d,p) = V (Gd,p)/ ∼U . Thus, the
quotient map induces a map on the vertex sets φ : V (Gd,p) → V (G′

d,p). We say
that v′ is adjacent to w′ in G′

d,p if v′ �∼U w′ and there exists some v ∈ φ−1(v′)
and some w ∈ φ−1(w′) so that v is adjacent to w in Gd,p. Therefore, we have
an onto graph homomorphism φ : Gd,p → G′

d,p. Since left multiplication of
a matrix by an element of Ud,p leaves its bottom row unchanged, elements
of G′

d,p can be indexed by ordered pairs representing the bottom rows of
matrices. That is, we have

Γ̃′
d,p

∼= 〈±12〉\ {(α,β) | α or β is a unit in Od/(p)}.

We can index V (G′
d,p) by the above set of ordered pairs. Further, Γ̃d,p acts

by multiplication on the right of Γ̃′
dp and so on the set of ordered pairs above,

and this action commutes with the above isomorphism.
Note that by [9] and [16], the groups Γ̃d have property (τ) with respect to

the congruence subgroups Γ̃d(n). It follows, from [14] for example, that the
graphs G′

d,p form families of expanders in the sense of [13].

Lemma 1. Let (α,β), (γ, δ) ∈ V (G′
d,p). Then (α,β) is adjacent to (γ, δ) if

and only if

det
(

α β
γ δ

)
∈ O ×

d .

Proof. Let v′,w′ ∈ V (G′
d,p) be adjacent vertices. Then there exists v,w ∈

V (Gd,p) so that v ∈ φ−1(v′), w ∈ φ−1(w′), and v = xw with x ∈ Ωd and x /∈
Ud,p. It follows that v =

(
0
1

−1
0

)
w or v =

(
0

−ω∓1
0

ω±1
0
0

)
w. Thus, det(v) =

det(w). Let v =
(

a
c

b
d

)
and w =

(
α
γ

β
δ

)
. Taking φ of both sides of v = xw

gives

(c, d) = φ(v) = φ(xw) = ε(α,β),

where ε ∈ {±1, ±ω0, ±ω±1
0 } ⊆ O ×

d . It follows that

det
(

c d
γ δ

)
= det

(
εα εβ
γ δ

)
= ε ∈ O ×

d .

For the converse, note that det
(

α
γ

β
δ

)
∈ O ×

d implies
(

εα
γ

εβ
δ

)
∈ Γ̃d,p for some

ε ∈ O ×
d . It follows that multiplication by

(
0

−1
1
0

)
or

(
0

−ω∓1
0

ω±1
0
0

)
takes (γ, δ)

to (α,β) in Γ̃′
d,p. Thus, (α,β) and (γ, δ) are adjacent in G′

d,p. �
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Note that |V (G′
d,p)| = (N(p)2 − 1)/2 and that G′

d,p is | O ×
d |N(p)/2-regular.

Thus, we have

|E(G′
d,p)| =

| O ×
d |N(p)(N(p)2 − 1)

8
.

We now prove a decomposition theorem for G′
d,p that allows us to obtain a

good estimate for ι(G′
d,p). Let α ∈ (Od/(p))×, and define Vα ⊆ V (G′

d,p) by

Vα = {(0, uα), (u′α−1, β) | β ∈ Od/(p), u, u′ ∈ O ×
d }.

Note that since Vα ⊂ Γ̃′
d,p, we have |Vα| = | O ×

d |(N(p) + 1)/2. Let Hα de-
note the subgraph of G′

d,p induced by Vα. Denote the vertices {(0, uα) | u ∈
O ×

d /〈±1〉} as the center of Hα, and all other vertices in Vα as the crown of
Hα. Further note that every v′ ∈ V (G′

d,p) is in Vα for some α ∈ (Od/(p))×.

Lemma 2. The graph G′
d,p decomposes into (N(p) − 1)/| O ×

d | distinct copies
of Hα, with N(p)| O ×

d |3/4 edges between any pair of distinct Hα’s.

Proof. For α,α′ ∈ (Od/(p))×, we have Vα ∩ Vα′ = ∅ or Vα = Vα′ and so we
can find distinct elements αi ∈ (Od/(p))× such that

V (G′
d,p) =

⊔
i

Vαi .

Therefore, V (G′
d,p) decomposes into

N(p)2 − 1
| O ×

d |(N(p) + 1)
=

N(p) − 1
| O ×

d |

distinct copies of Vα. It follows that G′
d,p decomposes into (N(p) − 1)/| O ×

d |
copies of Hα, plus the edges between pairs of Hα’s. Note that this implies
(N(p) − 1)/| O ×

d | ∈ Z. By Lemma 1, every vertex in the center of Hα is adjacent
to every vertex in the crown of Hα. This accounts for | O ×

d |N(p)/2 edges for
each vertex in the center.

For u′ ∈ O ×
d , we have that

det
(

α β
u′α x

)
= u ∈ O ×

d

can be solved for x ∈ Od/(p) given any u,u′ ∈ O ×
d . Since the solutions (u′α,x)

are in Γ̃′
d,p we can choose any u,u′ ∈ O ×

d /〈±1〉. Thus, there are | O ×
d |2/4

solutions for each α. Since we also have solutions for (−u′α,x), it follows
from Lemma 1 that (α,β) is adjacent to | O ×

d |2/2 other vertices in the crown
of Hα. Counting the edges connecting vertices in the crown plus the edges
from the crown to the center, we obtain

|E(Hα)| =
| O ×

d |3N(p)
8

+
| O ×

d |2N(p)
4

=
N(p)| O ×

d |2(| O ×
d | + 2)

8
.
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As there are (N(p) − 1)/| O ×
d | copies of Hα in G′

d,p, this gives a total of
N(p)(N(p) − 1)| O ×

d |(| O ×
d | + 2)/8 edges in all of the Hα’s. Thus, there are

N(p)(N(p)2 − 1)| O ×
d |

8
− N(p)(N(p) − 1)| O ×

d |(| O ×
d | + 2)

8

=
N(p)(N(p) − 1)| O ×

d |
8

(
N(p) − | O ×

d | − 1
)

edges in G′
d,p connecting vertices in different Hα’s. Since the number of edges

between any distinct pair Hα and Hα′ does not depend on α and α′, there
are

N(p)(N(p) − 1)| O ×
d |(N(p) − | O ×

d | − 1)/8(N(p)−1

|O ×
d |
2

) =
N(p)| O ×

d |3
4

edges between any pair of Hα’s. �

Proof of Theorem 5. From Lemma 2, we can view G′
d,p as a complete

multigraph on (N(p) − 1)/| O ×
d | vertices, with N(p)| O ×

d |3/4 edges between
any pair of vertices and where each vertex can be viewed as a copy of Hα.
The isoperimetric number for the complete graph Kn from [15] is iso(Kn) =
[(n + 1)/2]. For our set S, we take (N(p) − 1)/(2| O ×

d |) copies of Hα. We
compute that

ι(G′
d,p) ≤ N(p) − 1

2| O ×
d |

N(p)| O ×
d |3

2| O ×
d |(N(p) + 1)

= N(p)
| O ×

d |
4

N(p) − 1
N(p) + 1

.

Since ι(Gd,p) ≤ ι(G′
d,p)/N(p), we obtain the estimate

ι(Gd,p) ≤ | O ×
d |
4

N(p) − 1
N(p) + 1

as was to be shown. �

3. Cheeger constants of 3-manifolds

The fundamental domains Fd for the action of Γ̃d on H3 were computed for
many values of d by Bianchi in [1], and a systematic method of constructing
such domains was developed by Swan in [19]. Let Id be the Wigner–Seitz cell
of Od at the origin, see [18]. In particular, for z = x + iy we have from [18],

I1 = {z ∈ C | x ∈ [−1/2,1/2], y ∈ [0,1/2]},(3)

I2 =
{
z ∈ C | x ∈ [−1/2,1/2], y ∈

[
−

√
2/2,

√
2/2

]}
,

I3 =
{
z ∈ C | x ∈ [0,1/2], y ∈

[
−x/

√
3, (1 − x)/

√
3
]}

,

I7 =
{
z ∈ C | x ∈ [−1/2,1/2], y ∈

[
(|x| − 2)/

√
7, (−|x| + 2)/

√
7
]}

,

I11 =
{
z ∈ C | x ∈ [−1/2,1/2], y ∈

[
(|x| − 3)/

√
11, (−|x| + 3)/

√
11

]}
.
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Figure 1. The fundamental domain F1.

Explicit fundamental domains Fd are therefore given by the following, see for
example [1], [18], and [19].

Lemma 3 (Bianchi, Steil, Swan). For d ∈ {1,2,3,7,11}, a fundamental
domain for the action of Γ̃d on H3 is

(4) Fd = {(z, r) ∈ H3 | z ∈ Id, |z|2 + r2 > 1}.

The fundamental domain for the case d = 1 is shown in Figure 1.
The manifold X̃d(p) is tiled by copies of Fd and this extends to a tiling of

all of H3. Denote the collection of these tiles in X̃d(p) by X̃d(p)∗, and denote
the collection of the faces of these tiles by ∂X̃d(p)∗. Two tiles are adjacent
if and only if they share a common face. Any Fd ∈ X̃d(p)∗ is isometrically
mapped by the action of Γ̃d onto the particular domain given in (4). Further,
any face in ∂X̃d(p)∗ is isometrically mapped by Γ̃d onto one of the faces of (4).
Thus, the action of Γ̃d defines an equivalence relation on ∂X̃d(p)∗ whereby
two faces Fd, F

′
d ∈ ∂X̃d(p)∗ are equivalent if and only if there is some γ ∈ Γ̃d

so that F ′
d = γFd. Note that since the action is isometric, a(Fd) = a(F ′

d) for
equivalent faces Fd and F ′

d. The graphs Gd,p can be obtained from X̃d(p) by
associating one vertex to each tile in X̃d(p)∗. Adjacent vertices in the graph
correspond to tiles sharing a face. Therefore, each edge in Gd,p corresponds
to an element in ∂X̃d(p)∗. Let v, v′ ∈ V (Gd,p) correspond to tiles Fd, F ′

d,
respectively. Then v′ ∼ v if and only if F ′

d = ωFd for some ω ∈ Ωd. This gives a
simple relation between h(X̃d(p)) and ι(Gd,p). For A ⊂ V (Gd,p), let A∗ denote
the corresponding set of tiles in X̃d(p)∗ and similarly, for ∂A ⊂ E(Gd,p) let ∂A∗

denote the corresponding set of faces in ∂X̃d(p)∗. Therefore, for A∗ ⊂ X̃d(p)∗
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with |A∗ | ≤ |X̃d(p)∗ |/2 we can estimate the Cheeger constant by

h(X̃d(p)) ≤
∑

Fd ∈∂A∗ a(Fd)∑
Fd ∈A∗ v(Fd)

.

Let m(Fd) = max(a(Fd)) where Fd ranges over the faces of the domain in (4).
As v(Fd) is the same for any tile, this gives

h(X̃d(p)) ≤ |∂A∗ |
|A∗ |

m(Fd)
v(Fd)

=
|∂A|

|A|
m(Fd)
v(Fd)

for the corresponding A ⊂ V (Gd,p) with |A∗ | = |A| ≤ |V (Gd,p)|/2. As A∗ is
an arbitrary set in X̃d(p)∗ with |A∗ | ≤ |V (Gd,p)|/2, it follows that

h(X̃d(p)) ≤ ι(Gd,p)
m(Fd)
v(Fd)

.

Let d = 2,7 or 11. Consider an edge in Gd,p incident with v and v′ above
that is obtained from multiplication by

(
0
1

−1
0

)
∈ Ωd. For simplicity, we de-

note this generator by J . Thus, v′ = Jv. The face in ∂X̃d(p)∗ that corresponds
to this edge, Fd ∩ F ′

d for example, is equivalent by the action of Γ̃d to the face
of Fd in (4) that borders the unit sphere centered at the origin. Now, for d
above, the edges cut for estimate (2) of ι(Gd,p) arose solely through multipli-
cation by the generator J . So for d = 2,7, or 11 a cut-set for Gd,p corresponds
to a cut-set of X̃d(p) where the cut is along the faces of tiles in X̃d(p)∗. The
cut-set used to determine (2) only removed those edges of Gd,p that corre-
spond to the action of J . The corresponding faces in ∂X̃d(p) that consist of
the border of the bi-partition of X̃d(p) are all equivalent to the face of (4)
that borders the unit sphere centered at the origin. Let Fd,0 be the face of
Fd that corresponds to J . The faces above then all have area a(Fd,0). The
volumes of the domains Fd are well known, see [7] for example, and can be
expressed as

v(Fd) =
|DKd

|3/2ζKd
(2)

4π2
,

where ζKd
(s) = 1

4

∑
n
N(n)−s is the Dedekind zeta function of Kd and the

sum is over the nonzero ideals of Od. It follows from Theorem 5 that we have

(5) h(X̃d(p)) ≤ 1
2

a(Fd,0)
v(Fd)

N(p) − 1
N(p) + 1

=
a(Fd,0)2π2

|DKd
|3/2ζKd

(2)
N(p) − 1
N(p) + 1

.

In the case d = 1, there is the complication that the graph Gd,p contains
edges corresponding to the generator

(
0
i

i
0

)
. Nevertheless, formula (5) re-

mains valid in this case. To simplify the notation, set ω =
(

0
i

i
0

)
. Let d = 1,

and let F1 be the particular domain from (4). Note that the domains F1

and JωF1 share a face, and that the latter domain can be expressed as(
1
0

−i/2
1

)
F1. Likewise, the domains J F1 and ωF1 also share a face. Let
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v1 ∈ V (Gd,p) be the vertex that corresponds to F1. Every edge cut for the
estimate of ι(Gd,p) in Theorem 5 connects vertices in different sets V (α). How-
ever, it is easy to see that the pairs {v1, Jωv1} and {Jv1, ωv1} always reside in
the same V (α). It follows that both elements of each of these pairs correspond
to vertices on the same side of the cut. As a consequence, though there are
four edges in the graph connecting the pair { F1, JωF1} to {J F1, ωF1}, these
correspond to only two faces that need to be cut to separate them in the man-
ifold. This shows that formula (5) remains valid. Thus, cutting along faces
isometric to F1,0 means that we only need to consider those edges from Gd,p

that correspond to the action of the generator J . In a similar way, we obtain
the formula above for the d = 3 case, and so (5) holds for d ∈ {1,2,3,7,11}.
(Note that Lackenby in [10] obtained an estimate for the Cheeger constants
of more general 3-manifolds in terms of the Heegaard genus.)

Since
Fd,0 = {(z, r) ∈ Fd | z ∈ Id ⊂ R2, |z|2 + r2 = 1},

the hyperbolic area is

a(Fd,0) =
∫∫

Id

√
1 + r2

x + r2
y

dxdy

|r|2

=
∫∫

Id

1
(1 − x2 − y2)3/2

dxdy,

where Id is given by (3). This gives

a(F1,0) = 4arcsin
(√

2/3
)

− π = 0.679673818 . . . ,

a(F2,0) = 4arcsin
(
2
√

2/3
)
+ 4arcsin

(√
2/3

)
− 2π = 2.461918835 . . . ,

a(F3,0) = 4arcsin
(
1/

√
3
)

− arctan
(
1/

√
3
)

− π = 0.367523734 . . . ,

a(F7,0) = 8arcsin
(
1/2

)
+ 4arcsin

(
3/2

√
3
)

− 2π = 2.094395102 . . . ,

a(F11,0) = 8arcsin
(
1/

√
3
)
+ 4arcsin

(
5/3

√
3
)

− 2π = 3.821266473 . . . .

From page 313 of [7], we have

v(Fd) = 0.305321 . . . ,1.003841 . . . ,0.169156 . . . ,0.888914 . . . ,1.165895 . . .

for d = 1,2,3,7,11, respectively. Putting together the values of a(Fd,0) and
v(Fd) into (5) gives Theorem 3.

4. Asymptotics of the Cheeger constants

Let Fd, F ′
d ∈ X̃d(p)∗ correspond to the elements g, g′ ∈ Γ̃d,p, respectively.

Consider the unipotent subgroup of SL2(C),

U =
{(

1 z
0 1

)∣∣z ∈ C

}
.
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We define an equivalence relation ∼U on X̃d(p)∗ by setting Fd ∼U F ′
d if and

only if g = ug′ for some u ∈ U . Denote the set of equivalence classes by
X̃d(p)U . For d = 1, we can choose a different fundamental domain than (4)
from Lemma 3. In particular, we choose the domain

F1 =
{
(z, r) ∈ H3 | x ∈ [0,1], y ∈ [0,1/2],(6)

r ≥ max
(√

1 − x2 − y2,
√

1 − (x − 1)2 − y2
)}

.

For this section, we tile X̃1(p) by copies, via the action of Γ̃1(p), of the above
domain. We abuse notation and as in Section 3 denote the set of these tiles by
X̃1(p)∗. Note that any F1 ∈ X̃1(p)∗ has a face F1 that is equivalent to the face
from (6) that consists of the union of the surfaces of two distinct unit spheres,
but of the same hyperbolic area as the corresponding face from the domain
given in (4). We now give a new tiling of X̃d(p) by altering these domains in
the following way: Consider F1 = F1,A ∪ F1,B where F1,A and F1,B are on the
surfaces of distinct unit spheres. Replace these two faces with the single face
F ′

1 which is on the surface of the sphere(
x − 1

2

)2

+ y2 + r2 =
5
4
.

That is, F ′
1 is the intersection of this sphere with the domain F1 from (6).

The altered region is then defined to be

F ′
1 = {(z, r) ∈ H3 | x ∈ [0,1], y ∈ [0,1/2], |z − 1/2|2 + r2 ≥ 5/4}.

Note that in the example above, a(F ′
1) < a(F1,A) + a(F1,B) = a(F1). The

new choice for fundamental domain, coupled with its alteration, is shown in
Figure 2.

More generally, let y1 = y7 = y11 = 0, y2 =
√

2/2, and y3 =
√

3/6. Let
r2
d = 5/4 + y2

d and

(7) I ′
d = {z + 1/2 + iyd | z ∈ Id}.

Thus, for d ∈ {1,2,3,7,11} we take the altered region to be

F ′
d = {(z, r) ∈ H3 | z ∈ I ′

d, |z − (1/2 + iyd)|2 + r2 ≥ r2
d }.

Let Fd(1), Fd(2) be tiles in X̃d(p)∗ so that Fd(1) ∼U Fd(2). Assume fur-
ther that they share a common face, and note that their common face must
correspond to an element of U . That is, there exists a unique u ∈ U so that
Fd(2) = uFd(1). It follows that their respective altered domains Fd(1)′ and
Fd(2)′ are also adjacent and altered in the same way as above, so that their
volumes are either both increased or both decreased. Therefore, tiles in the
same equivalence class of X̃d(p)∗ are altered in the same way. That is, if
Fd(1) ∼U Fd(2) then v(Fd(1)′) = v(Fd(2)′).
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Figure 2. The modified domain for d = 1.

Altering all of the tiles in X̃d(p)U in this way gives a new tiling of X̃d(p).
In this new tiling, 1/2 of the new tiles have volume strictly larger than that of
Fd and 1/2 have volume strictly smaller than that of Fd. For n ∈ Z, denote
by ε(n) any positive function satisfying limε(n) = 0 as n → ∞. Consider
the collection of equivalence classes {X̃d(p)U }(p). Note that it is easy to
show that |X̃d(p)U | → ∞ as N(p) → ∞. Therefore, we can divide each set of
equivalence classes X̃d(p)U randomly into two sets, A∗ = A∗(p) ⊂ X̃d(p)U and
B∗ = B∗(p) ⊂ X̃d(p)U , so that |A∗ |/|B∗ | = 1 − ε(N(p)). That is, A∗ and B∗

are asymptotically of equal size but without loss of generality we can choose
A∗ to be no larger than B∗. Furthermore, we can choose the sets A∗ and
B∗ so that asymptotically, one half of the tiles in A∗ have volume strictly
larger than Fd and one half have strictly smaller volume, and similarly for
B∗. Let

A∗ ± = { F ′
d ∈ A∗ | v(F ′

d) ≷ v(Fd)}.

Thus, we have

|A∗+| = |A∗ |/2 ± ε(N(p)),
|A∗ − | = |A∗ |/2 ∓ ε(N(p)),

A∗ = A∗+ � A∗ −.

Note that if F +
d ∈ A∗+ and F −

d ∈ A∗ − then v(F +
d ) + v(F −

d ) = 2v(Fd). As
in the previous section, let m(F ′

d) denote the maximum of a(F ′
d), where F ′

d

ranges over the faces of the domain F ′
d. Therefore, for nontrivial A∗ ⊂ X̃d(p)∗
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so that |A∗ | ≤ |X̃d(p)∗ |/2 and corresponding sets A ⊂ Gd,p, we have

h(X̃d(p)) ≤
∑

F ′
d ∈∂A∗ a(F ′

d)∑
F ′

d ∈A∗ v(F ′
d)

≤ |∂A∗ |m(F ′
d)∑

F +
d ∈A∗+ v(F +

d ) +
∑

F −
d ∈A∗ − v(F −

d )

=
|∂A∗ |m(F ′

d)
|A∗+|v(F +

d ) + |A∗ − |v(F −
d )

≤ |∂A|m(F ′
d)

|A|
2 v(F +

d ) + |A|
2 v(F −

d ) − ε(N(p))(v(F +
d ) + v(F −

d ))

=
|∂A|m(F ′

d)
|A|v(Fd) − ε(N(p))2v(Fd)

.

As |A| ≥ 1, this is

|∂A|
|A|

m(F ′
d)

v(Fd) − ε(N(p))2v(Fd)/|A| ≤ |∂A|
|A|

m(F ′
d)

v(Fd) − ε(N(p))2v(Fd)
.

As there is a 1–1 correspondence between X̃d(p)∗ and V (Gd,p), this holds for
any A ⊂ V (Gd,p) with |A| ≤ |V (Gd,p)|/2. Thus, we have

h(X̃d(p)) ≤ ι(Gd,p)
m(F ′

d)
v(Fd) − ε(N(p))2v(Fd)

.

As in Section 3, the edges removed for the cut-set in Theorem 5 are all equiv-
alent to Fd,0, and thus are all altered in the same way in the new tiling above.
Denote the altered face by

(8) F ′
d,0 = {(z, r) ∈ H3 | z ∈ I ′

d, |z − (1/2 + iyd)|2 + r2 = r2
d }.

Therefore, from Theorem 5, the arguments from Section 3, and the previous
paragraph we have

h(X̃d(p)) ≤ 1
2

(
N(p) − 1
N(p) + 1

)
a(F ′

d,0)
v(Fd) − ε(N(p))2v(Fd)

.

Taking the limit, we get the asymptotic version of (5),

limsup
N(p)→∞

h(X̃d(p)) ≤ 1
2

a(F ′
d,0)

v(Fd)
=

a(F ′
d,0)2π2

|DKd
|3/2ζKd

(2)
.(9)

To prove Theorem 4, we determine a(F ′
d,0) and apply (9). From (7) and (8),

we have

a(F ′
d,0) =

∫ ∫
Id

rd

(r2
d − x2 − y2)3/2

dxdy,



782 D. LANPHIER AND J. ROSENHOUSE

where Id and rd are given by (3) and (7). This gives us

a(F ′
1,0) = 4arcsin

(√
10/4

)
− π = 0.5053605 . . . ,

a(F ′
2,0) = 4arcsin

(√
7/3

)
+ 4arcsin

(√
7/15

)
− 2π = 1.0446296 . . . ,

a(F ′
3,0) = 4arcsin

(
2/

√
13

)
− arctan(1/

√
15) − π/2 = 0.2576153 . . . ,

a(F ′
7,0) = 4arcsin

(
3

√
5/8

)
+ 8arcsin

(√
5/2

√
6
)

− 2π = 1.4869790 . . . ,

a(F ′
11,0) = 4arcsin

(
5

√
5/12

)
+ 8arcsin

(√
5/24

)
− 2π = 2.3048998 . . . .

The above results, the known values of v(Fd), and (9) prove Theorem 4.
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