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IDEMPOTENT SUBQUOTIENTS OF SYMMETRIC
QUASI-HEREDITARY ALGEBRAS

VOLODYMYR MAZORCHUK AND VANESSA MIEMIETZ

Abstract. We show how any finite-dimensional algebra can be
realized as an idempotent subquotient of some symmetric quasi-
hereditary algebra. In the special case of rigid symmetric al-
gebras, we show that they can be realized as centralizer sub-
algebras of symmetric quasi-hereditary algebras. We also show

that the infinite-dimensional symmetric quasi-hereditary algebras

we construct admit quasi-hereditary structures with respect to

two opposite orders, that they have strong exact Borel and Δ-
subalgebras and the corresponding triangular decompositions.

1. Introduction

A classical result of Dlab and Ringel (see [DR2]) says that every finite-
dimensional algebra can be realized as a centralizer subalgebra of some quasi-
hereditary algebra. Motivated by the discovery of (infinite-dimensional) sym-
metric quasi-hereditary algebras in [Pe] (see also [CT], [MT1], [MT2], [BS]),
we address the question whether every symmetric finite-dimensional algebra
can be realized as a centralizer subalgebra of some symmetric quasi-hereditary
algebra. Note that a symmetric quasi-hereditary algebra is either semisimple
or infinite-dimensional.

In the present paper, we generalize the construction from [DR2] and show
how one can realize finite-dimensional algebras as centralizer subalgebras of
certain infinite-dimensional quasi-hereditary algebras. Under some natural
assumptions on the original algebra (for example, if the original algebra is
symmetric and rigid), we obtain that the resulting infinite-dimensional quasi-
hereditary algebra is symmetric as well. In the general case, we show that
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every finite-dimensional algebra can be realized as an idempotent subquotient
of a symmetric quasi-hereditary algebra. Our construction produces many
new examples of symmetric quasi-hereditary algebras. Note that, in the case
when the original algebra was not weakly symmetric, it of course cannot be
realized as a centralizer subalgebra of any symmetric algebra. However, we do
not know whether all symmetric finite-dimensional algebras can be realized
as centralizer subalgebras of some symmetric quasi-hereditary algebras (an
additional assumption in Theorem 5 is essential for our arguments).

The infinite-dimensional (symmetric) quasi-hereditary algebras, which we
construct, have many interesting properties. To start with, all these algebras
are quasi-hereditary with respect to two natural orders (one of them being
the opposite of the other one). The standard and costandard modules for
these structures have a natural description in terms of the original algebra.
We also show that all these algebras have Δ-subalgebras in the sense of König
([Ko1], [Ko2]). Assuming that the original algebra is graded, we show that our
algebras have a strong exact Borel subalgebra in the sense of König ([Ko1],
[Ko2]), as well as the corresponding triangular decomposition.

The paper is organized as follows: In Section 2, we extend the construction
from [DR2] and realize finite-dimensional algebras as centralizer subalgebras
of some infinite-dimensional algebras and show that these infinite-dimensional
algebras are quasi-hereditary with respect to two natural opposite orders. In
Section 3, we prove that for symmetric rigid finite-dimensional algebras the
infinite-dimensional quasi-hereditary algebras constructed in Section 2 are
symmetric as well. For arbitrary algebras, we show how the construction
can be generalized to realize every finite-dimensional algebra as an idempo-
tent subquotient of some symmetric quasi-hereditary algebra. In Section 4,
we describe strong exact Borel and Δ-subalgebras and the corresponding tri-
angular decompositions for our infinite-dimensional quasi-hereditary algebras.
Finally, in Section 5, we discuss some examples, in particular those coming
from Schur algebras and the BGG category O.

2. Preliminaries

Let N denote the set of positive integers and k be an algebraically closed
field. Consider a basic k-linear category A which satisfies the following as-
sumptions:

(I) A has finitely or countably many objects;
(II) for any x, y ∈ A, the k-vector space A(x, y) is finite dimensional;

(III) for any x ∈ A, there exist only finitely many y ∈ A such that A(x, y) �= 0;
(IV) for any x ∈ A, there exist only finitely many y ∈ A such that A(y,x) �= 0;
(V) for any x ∈ A, the endomorphism algebra A(x,x) is local.

Under these assumptions, all indecomposable projective A-modules A(x, −)
are finite-dimensional. As, clearly, the opposite category Aop also satisfies
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all these assumptions, we obtain that all indecomposable injective A-modules
Aop(−, x)∗ = Homk(Aop(−, x),k) are finite-dimensional as well. We refer the
reader to [MOS] for generalities on modules over k-linear categories. We will
often loosely call such categories “algebras” (as they can be realized using
infinite-dimensional associative quiver algebras which do not have a unit el-
ement in the general case) and use for them the standard matrix notation
with infinite matrices. As in [CT], [MT1], we will call such algebras quasi-
hereditary if their module categories are highest weight categories [CPS]. For
x ∈ A, we denote by ex the identity element in A(x,x).

In this paper, we will study the category of finite-dimensional modules
over a category, satisfying conditions (I)–(V). This category is obviously an
Abelian Krull–Schmidt category having enough projectives and injectives.

Assume that for some N ∈ N we have a (fixed) finite filtration of A by
two-sided ideals as follows:

(1) A = I0 � I1 � I2 � · · · � IN = 0.

Assume further that IiIj ⊂ Ii+j and that Ii/Ii+1 are semi-simple as A-
bimodules.

Consider the new category A, whose objects are x[i], x ∈ A, i ∈ Z. For
x, y ∈ A and i, j ∈ Z set A(x[i], y[j]) = A(x, y). Then the multiplication in A
induces a multiplication in A, which makes A into a category. The category A

comes together with the natural action of Z by autoequivalences via shifts
[i], i ∈ Z (here [1] means “shift by one to the right”). The category A is
equivalent to the category A, moreover, every object from A has countably
many isomorphic copies in A. We shall think of A also as of infinite matrices
of the form ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · A A A A · · ·
· · · A A A A · · ·
· · · A A A A · · ·
· · · A A A A · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Denote by B the subcategory of A, which contains all objects but only the
following morphisms: For x, y ∈ A and i, j ∈ Z, set

B(x[i], y[j]) =

{
A(x[i], y[j]), i ≥ j;

Ij−i(x, y), otherwise.
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One can think of B also as of infinite matrices of the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · A A A A · · ·
· · · I1 A A A · · ·
· · · I2 I1 A A · · ·
· · · I3 I2 I1 A · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider the subset I of B with the same set of objects and morphisms given
by

I(x[i], y[j]) =

⎧⎪⎨
⎪⎩

IN −(i−j)(x, y), 0 < i − j < N ;
B(x, y), N ≤ i − j;
0, otherwise.

The set I is not a subcategory as it does not contain identity morphisms on
objects. One can think of I also as of infinite matrices of the form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · 0 IN −1 IN −2 IN −3 · · ·
· · · 0 0 IN −1 IN −2 · · ·
· · · 0 0 0 IN −1 · · ·
· · · 0 0 0 0 · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to see that I is an ideal of B. Define the category C = C(A) = B/I.
One can think of C as of infinite matrices of the form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · A A/IN −1 A/IN −2 A/IN −3 · · ·
· · · I1 A A/IN −1 A/IN −2 · · ·
· · · I2 I1 A A/IN −1 · · ·
· · · I3 I2 I1 A · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that, given x ∈ Ii and some class a + Ij ∈ A/Ij we have x(a + Ij) ⊂
xa + Ii+j due to our assumption that IiIj ⊆ Ii+j , so multiplication of these
matrices is well-defined. Note that, using the matrix notation, left modules
are columns, while right modules are rows.

Lemma 1. The category C satisfies conditions (I)–(V).

Proof. The conditions (I), (II) and (V) follow directly from the definitions.
To prove the condition (II), we observe that from the definition it follows that
for x, y ∈ A and i, j ∈ Z from C(x[i], y[j]) �= 0 we necessarily have A(x, y) �= 0
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and |i − j| ≤ N . This implies the condition (III) and the condition (IV) is
checked similarly. This completes the proof. �

We consider two natural linear orders on Z, we call the order where i < i+1
the first order, and the one where i > i + 1 the second order. These orders
induce partial orders on the equivalence classes of primitive idempotents in
C(A), which we will also call the first and the second orders, respectively.
From Lemma 1, we have that all indecomposable projective and injective
modules over C are finite-dimensional. Hence, we can define both standard
and costandard modules with respect to both orders defined above in the
same way as it is done for finite-dimensional quasi-hereditary algebras (see
[DR1], [CT], [MT1]). The following statement is a generalization of the main
construction from [DR2].

Proposition 2. (i) Left standard modules in the first order are given by
direct summands of the following modules:

Δ1,l
C

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
A/I1

A/I1

A/I1

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(ii) Left standard modules in the second order are given by direct sum-
mands of the following module:

Δ2,l
C

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
0

A/I1

I1/I2

I2/I3

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(iii) Right standard modules for the first order are given by direct sum-
mands of the following module:

Δ1,r
C

=
(

· · · I2/I3 I1/I2 A/I1 0 0 · · ·
)

(iv) Right standard modules for the second order are given by direct sum-
mands of the following module:

Δ2,r
C

=
(

· · · 0 0 A/I1 A/I1 A/I1 · · ·
)
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(v) The category C is quasi-hereditary with respect to both orders.

Proof. Let i ∈ Z. For the first order, the quotient of C modulo the two-
sided ideal, generated by all idempotents ex[j], x ∈ A, j ∈ Z, j > i, looks as
follows: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · ∗ ∗ A/I1 0 · · ·
· · · ∗ ∗ A/I1 0 · · ·
· · · I2/I3 I1/I2 A/I1 0 · · ·
· · · 0 0 0 0 · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(here we do not care about the asterisks).
Similarly, for the second order, the quotient of C modulo the two-sided

ideal, generated by all idempotents ex[j], x ∈ A, j ∈ Z, j < i, looks as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · 0 0 0 0 · · ·
· · · 0 A/I1 A/I1 A/I1 · · ·

· · · 0 I1/I2 ∗ ∗ · · ·
· · · 0 I2/I3 ∗ ∗ · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As left modules are columns and right modules are rows, the claims (i)–(iv)
follow.

The indecomposable right projective C-module, generated by ex[i], x ∈ A,
is a direct summands of the following module P :(

· · · 0 IN −1 IN −2 · · · I1 A A/IN −1 · · · A/I1 0 · · ·
)
.

The filtration (1) induces a filtration on every component of P , whose sub-
quotients could be organized into the following rhombal picture:

(2)

IN −1 · · · I2 I1 A A/IN −1 A/IN −2 · · · A/I1

I0/I1

I1/I2 I0/I1

I2/I3 I1/I2 I0/I1

· · · · · · · · · · · · · · · · · · · · ·
IN −1 · · · · · · · · · · · · · · · · · · · · · I0/I1

· · · · · · · · · · · · · · · · · · · · ·
IN −1 IN −2/IN −1 IN −3/IN −2

IN −1 IN −2/IN −1

IN −1
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Organizing these subquotients into a filtration of P as shown on the fol-
lowing pictures:

(3)

we obtain a filtration of P by direct summands of the module Δ1,r
C

and Δ2,r
C

,
respectively. This means that right C-projectives are filtered by standard
modules for both orders. The claim (v) follows and the proof is complete. �

Corollary 3. (i) Left costandard modules for the first order are given by
direct summands of the following module:

∇1,l
C

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
(I2/I3)∗

(I1/I2)∗

(A/I1)∗

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(ii) Left costandard modules for the second order are given by direct sum-
mands of the following module:

∇2,l
C

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
0

(A/I1)∗

(A/I1)∗

(A/I1)∗

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(iii) Right costandard modules for the first order are given by direct sum-
mands of the following module:

∇1,r
C

=
(

· · · (A/I1)∗ (A/I1)∗ (A/I1)∗ 0 0 · · ·
)
.

(iv) Right costandard modules for the second order are given by direct sum-
mands of the following module:

∇2,r
C

=
(

· · · 0 0 (A/I1)∗ (I1/I2)∗ (I2/I3)∗ · · ·
)
.
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Proof. This follows from Proposition 2 applying duality. �

Corollary 4. For every x ∈ A and every i ∈ Z, there is an isomorphism
∇2,l

C
(x, i) ∼= Δ1,l

C
(x, i + N).

Proof. Since the A-module A/I1 is semi-simple by our assumptions, the
claim follows directly from Proposition 2(i) and Corollary 3(ii). �

Note that, by construction, the original category A is a centralizer subcat-
egory of the category C.

3. Algebras as idempotent subquotients of symmetric
quasi-hereditary algebras

From now on, we assume that A has finitely many objects. Let A =⊕
x,y∈A A(x, y) be the associative algebra of A with the natural multipli-

cation. Then A is a finite-dimensional algebra and we may assume that it is
given by a quiver Q with set of vertices {1, . . . , n} and relations R. As in the
previous section, we fix a filtration of A by two-sided ideals

(4) A = I0 � I1 � I2 � · · · � IN = 0

with semisimple subquotients and such that IiIj ⊂ Ii+j . For example, we
can take (4) to be the radical filtration of A. For k ∈ {1, . . . , n}, we denote
by ek the idempotent corresponding to the vertex k in A, and we denote the
corresponding idempotent of A[i] (that is in the (i, i)-th matrix position) by
ek,i. Set C := C(A).

Theorem 5. Assume that A is symmetric with the symmetric trace form
(·, ·) and that (·, ·) induces a nondegenerate pairing between A/Ij and IN −j

for every j. Then the algebra C is symmetric.

Proof. Define a bilinear form (·, ·)C on C, by setting

(ai,j , bk,l)C := δj,kδi,l(a, b),

where a, b ∈ A (in a suitable ideal if i > j resp. k > l), i, j, k, l ∈ Z, and ai,j

means the element a in matrix position (i, j).
The form (·, ·)C is bilinear, symmetric and associative by construction.

Again, by construction, the form (·, ·)C pairs matrix positions (i, j) and (j, i).
By the definition of C, the corresponding components in these positions are
A/Is and IN −s for some s. By our assumption, the form (·, ·) induces a non-
degenerate pairing of A/Is and IN −s. This yields that (·, ·)C is nondegenerate
as well, completing the proof. �
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Corollary 6. Assume that A is symmetric and that (4) is both the radical
and the socle filtration of AA (i.e., AA is rigid). Then C is symmetric.

Proof. By our assumptions, the filtration (4) is the unique Loewy filtration
of AA. The form (·, ·) pairs it with another Loewy filtration, and hence with
itself. This yields that (·, ·) induces a nondegenerate pairing between A/Ij

and IN −j for every j and the claim follows from Theorem 5. �

Some other examples to which Theorem 5 can be applied come from the
category O and will be discussed later on (see Example 25). If A is not
symmetric (or if it is symmetric but does not satisfy the assumptions of The-
orem 5), we cannot realize A as a centralizer subalgebra of some symmetric
quasi-hereditary algebra, but instead as an idempotent subquotient. This
goes as follows.

Assume that (4) is the radical filtration of A. We form a new algebra Ã

by attaching, for every vertex k, a vertex k̃ and an arrow k → k̃, keeping the
original relations R, defining the algebra A. Then A is a centralizer subalgebra
of Ã (corresponding to nontilded vertices) in the natural way, and Rad Ã has
nilpotency degree N + 1. Moreover, the algebra A is also an idempotent
quotient of Ã, obtained by factoring out the two-sided ideal, generated by
idempotents, associated with the new (tilded) vertices. Set N = {1, . . . , n},
Ñ = {1̃, . . . , ñ}, and N = N ∪ Ñ.

Now socÃÃ consists of simple modules with indices k̃. The right projective
ekÃ for Ã, corresponding to a vertex k ∈ N, is the same as the right projective
for A at the same vertex. The right projective ek̃Ã at vertex k̃ ∈ Ñ is an ex-
tension of the simple at k̃ with the right projective at k (the simple extending
the top of ekA), hence has a longer Loewy length. Therefore, ek RadN Ã = 0
or, equivalently, the Loewy length Nr

k of ekÃ is strictly less than the nilpo-
tency degree of Rad Ã (which is N + 1). Let Ãek be the left projective at
vertex k, N l

k its Loewy length.
We now take C = C(Ã) (with respect to the radical filtration) and form the

trivial extension D = D(Ã) of C with its “restricted dual” C-bimodule

C∗ :=
⊕

i,j∈Z;x,y∈N

Homk(ey,jCex,i,k)

(see [Ha, Section 3.1]). Being a trivial extension of C, the algebra D is au-
tomatically symmetric. To make the notation consistent with the previous
section, from now on we assume that the nilpotency degree of Rad Ã is N .

We now extend our first order in the following way: for (k, i), (l, j) ∈ N × Z

we set (k, i) > (l, j) if i > j or if i = j, k ∈ N and l ∈ Ñ. We will again call
this order the first order.
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Proposition 7. The algebra D(Ã) is quasi-hereditary with respect to the
first order and for left standard D-modules we have Δ1,l

D
(k, i) = Δ1,l

C
(k, i),

k ∈ N, i ∈ Z.

Proof. We first consider C. Let ek,i denote the idempotent in Ã at the
vertex k ∈ N, in matrix position i, i. With respect to our first order, left
standard modules Δ1,l

C
(k, i) are uniserial with a filtration with composition

factors
Ll(k, i), Ll(k, i − 1), . . . , Ll(k, i − N + 1)

read from top to bottom (see Proposition 2(i)). Then, by (2), the left projec-
tive Cek,i for C has a filtration with subquotients

Δ1,l
C

(k, i),
⊕
j∈J1

Δ1,l
C

(j, i + 1), . . . ,
⊕

j∈J
Nl

k

Δ1,l
C

(j, i + N l
k),

where Radm Ãek/Radm+1 Ãek
∼=

⊕
j∈Jm

Ll(j).
Similarly, the right projective ek,iC has a filtration with subquotients

Δ2,r
C

(k, i),
⊕
j∈Ĵ1

Δ2,r
C

(j, i − 1), . . . ,
⊕

j∈ĴNr
k

Δ2,r
C

(j, i − Nr
k ),

where ek Radm Ã/ek Radm+1 Ã ∼=
⊕

j∈Ĵm
Lr(j). Hence, the left injective

(ek,iC)∗ has a filtration with subquotients⊕
j∈ĴNr

k

∇2,l
C

(j, i − Nr
k ), . . . ,

⊕
j∈Ĵ1

∇2,l
C

(j, i − 1), ∇2,l
C

(k, i)

and thus, by the isomorphism ∇2,l
C

(k, i) ∼= Δ1,l
C

(k, i + N) (Corollary 4), a fil-
tration with subquotients⊕

j∈ĴNr
k

Δ1,l
C

(j, i + N − Nr
k ), . . . ,

⊕
j∈Ĵ1

Δ1,l
C

(j, i + N − 1), Δ1,l
C

(k, i + N).

We now claim that D = D(Ã) is quasi-hereditary with Δ1,l
D

(k, i) = Δ1,l
C

(k, i).
As the projective module Dek,i has a filtration with subquotients Cek,i and
(ek,iC)∗, which both have Δ1,l

D
-filtrations by above, Dek,i also has a Δ1,l

D
-

filtration. So it suffices to check that all standard modules appearing in
(ek,iC)∗ have larger index than (k, i). To see this, we need to distinguish
two cases.

The first case is when k ∈ N. In this case, the smallest second index of
the standard modules appearing in (ek,iC)∗ is i + N − Nr

k . But, as seen
above, for k ∈ {1, . . . , n}, Nr

k < N , so i + N − Nr
k > i, which is what we

need.
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The second case is when k ∈ Ñ. In this case, the smallest second index
of the standard modules appearing in (ek,iC)∗ can well be i, however, in this
case P r(k) has simple top Lr(k) and all other composition factors are of the
form Lr(j), with j ∈ {1, . . . , n}. Therefore, the standard modules appearing in
(ek,iC)∗ with smallest second index, namely Δ1,l

C
(j, i), have first index j where

Lr(j) occurs in ek RadNr
k Ã, so j ∈ N, and (k, i) < (j, i). This completes the

proof that D is quasi-hereditary. �

From Proposition 7 and [MT1, Corollary 5] it follows that, with respect
to the first order, right D-projectives also have standard filtrations. The
corresponding standard modules are described as follows.

Lemma 8. The right standard module Δ1,r
D

(i, k) for D is an extension of
the C-modules Δ1,r

C
(i, k) and ∇2,r

C
(i − N + 1, k).

Proof. The right projective module ek,iD has a filtration with subquotients
ek,iC and (Cek,i)∗. The module ek,iC is filtered by

Δ1,r
C

(k, i), Δ1,r
C

(k, i + 1), . . . , Δ1,r
C

(k, i + N − 1)

and the module Cek,i is filtered by

Δ2,l
C

(k, i), Δ2,l
C

(k, i − 1), . . . , Δ2,l
C

(k, i − N + 1).

Therefore, the module (Cek,i)∗ is filtered by

∇2,r
C

(k, i − N + 1), ∇2,r
C

(k, i − N + 2), . . . , ∇2,r
C

(k, i).

Let X denote the quotient of ek,iD modulo the trace of all ek,jD, j > i.
Obviously Δ1,r

C
(k, i) is a quotient of X . Since none of modules ek,jD, j > i,

contains Lr(k, i − N +1), ∇2,r
C

(k, i − N +1) is a subquotient of X as well. By
definition, none of other Δ1,r

C
(k, j) contributes to X , which yields that X

has a quotient X̃ , which is an extension of Δ1,r
C

(k, i) by ∇2,r
C

(k, i − N +
1).

As C is quasi-hereditary with respect to the second order, we also have
a quotient Δ2,r

C
(k, i) which is uniserial with a filtration Lr(k, i),Lr(k, i +

1), . . . ,Lr(k, i + N − 1). Since Lr(k, i + 1) is in the top of the kernel of
ek,iD � X , we know that Δ1,r

D
(k, i+1) appears as a subquotient of a standard

filtration of ek,iD. Inductively, we obtain that the modules

Δ1,r
D

(k, i), Δ1,r
D

(k, i + 1), . . . , Δ1,r
D

(k, i + N − 1)

appear as subquotients of a standard filtrations of ek,iD. Each of those
Δ1,r

D
(k, j) has a quotient which is an extension of Δ1,r

C
(k, j) by ∇2,r

C
(k, j −
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N +1) and we see that this exhausts the whole module. Hence, the surjection
of X onto X̃ must be an isomorphism and right standard modules in the first
order for D are of the desired form. �

Corollary 9. The algebra D is quasi-hereditary with respect to the second
order as well.

Proof. Since D is symmetric, projective and injective D-modules coincide.
By Proposition 7, left standard D-modules with respect to the first order
are uniserial and coincide with the corresponding C-modules. Take a stan-
dard filtration of a left projective D-module. Applying duality, we get a
costandard filtration of a right injective D-module, which is also a right pro-
jective.

Taking into account that these right costandard modules coincide, up to
shift, with right standard modules with respect to the second order, we obtain
that right projective D-modules have a filtration by right standard modules
with respect to the second order. Since all shifts are the same (by N ), it fol-
lows that this filtration satisfies the necessary ordering condition. The claim
follows. �

Remark 10. Assume that the right projective Ã-module at vertex k has
radical filtration with subquotients P 1, . . . , P s. Then the indecomposable
right projective C-module at (k, i) looks as follows:

(5)

P 1
i

P 1
i+1 P 2

i−1

P 1
i+2 P 2

i
. . .

. . . . . . P s
i−s+1

P s
i−s+2

P 1
i+N −1

P 2
i+N −2

P s
i+N −s

If the left projective Ã-module at vertex k has a radical filtration with subquo-
tients Q1, . . . ,Qt, then the indecomposable right injective C-module at (k, i)
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looks as follows:

(6)

Qt
i−N+t

Qt
i−N+t+1 Qt−1

i−N+t−1

Qt
i−N+t+2 Qt−1

i−N+t
. . .

. . . . . . Q1
i−N+1

Q1
i−N+2

Qt
i+t−1

Qt−1
i+t−2

Q1
i

For k ∈ Ñ, s can reach N , but t = 1. For k ∈ N, t can reach N , but s is
always less than N and Qt only has composition factors indexed by k ∈ N.

The corresponding indecomposable injective D-module is obtained by glu-
ing (5) and (6). The standard filtrations of this module with respect to the
first and the second order can be organized using the left and the right dia-
grams from (3), respectively.

Proposition 11. A is an idempotent subquotient of D as follows:

A ∼=
1Ãi

D1Ãi

1Ãi
DẽiD1Ãi

, where ẽi =
n∑

k=1

ek̃,i ∈ D.

Proof. It is obvious that 1Ãi
D1Ãi

is isomorphic to the trivial extension S

of Ã by Ã∗. Now we claim that the ideal Ã∗ is contained in the ideal, generated
by ẽ :=

∑n
k=1 ek̃.

Consider the right projective S-module ekS at vertex k ∈ N. This module
has a filtration by the right projective Ã-module ekÃ (which is the dual of
the corresponding left injective A-module and only has composition factors
Lr(j) for j ∈ N), and the right injective Ã-module at the vertex k, which has
a semisimple quotient consisting of simples Lr(r) for r ∈ Ñ and sitting on a
submodule isomorphic to the right injective A-module at the vertex k. Hence,
right projectives for S/SẽS look like right projectives for A, so S/SẽS ∼= A. �
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4. Triangular decomposition

Recall (see [Ko1], [Ko2]) that a directed subalgebra B of a basic quasi-
hereditary algebra A is called a (strong) exact Borel subalgebra provided
that A and B have the same simple modules, the tensor induction functor
A ⊗B − is exact and maps simple modules to standard modules. Dually, one
defines (strong) Δ-subalgebras (again see [Ko1]). There is an obvious gener-
alization of these notions to k-linear categories (our algebras). We keep the
setup of the previous section and identify the algebra A/I1 with some max-
imal semisimple subalgebra of A, say S. Then S is a maximal semisimple
subalgebra (in particular, a subspace) of all algebras A/Ii for all i > 0.

Proposition 12. The algebra

B̃ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

. . .
...

...
...

...
. . .

· · · S S
. . . S 0 0 · · ·

· · · 0 S S
. . . S 0 · · ·

· · · 0 0 S S
. . . S · · ·

· · · 0 0 0 S S
. . . · · ·

· · · 0 0 0 0 S S
. . .

· · · 0 0 0 0 0 S · · ·
. . .

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(here, each row contains exactly N nonzero entries) is a strong exact Δ-
subalgebra of both C and D with respect to the first order.

Proof. The algebra B̃ is obviously a subalgebra of both C and D. It is
directed by definition and thus quasi-hereditary with respect to the first order.
Corresponding right standard modules are just simple modules, corresponding
left standard modules are projectives and look as follows:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
A/I1

A/I1

A/I1

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These coincide with left standard modules for both C and D (by Proposi-
tion 2(i) and Proposition 7). Therefore, using [Ko1, Theorem A], we deduce
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that B̃op is an exact Borel subalgebra for Cop and Dop. Thus, by [Ko1, The-
orem B], we have that B̃ is a Δ-subalgebra for C and D. That B̃ is strong
follows from the definitions. This completes the proof. �

Assume now that the algebra A is positively graded, A =
⊕∞

i=0 Ai and that
the filtration (4) coincides with the grading filtration, that is Ij =

⊕∞
i=j Ai. In

this case, we have Ij/Ij+1
∼= Aj for all i, in particular, Ij/Ij+1 can be realized

as a canonical subspace of A.

Proposition 13. Under the above assumptions, the algebra

B :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · A0 0 0 0 · · ·
· · · A1 A0 0 0 · · ·
· · · A2 A1 A0 0 · · ·
· · · A3 A2 A1 A0 · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a strong exact Borel subalgebra of C with respect to the first order.

Proof. That B is a subalgebra follows from the definitions and the fact
that A is graded (i.e., AiAj ⊂ Ai+j). Note that A0 is a maximal semi-simple
subalgebra of A and hence simple A-modules can be identified with simple
A0-modules. Therefore, simple C-modules (shifted simple A-modules) and
B-modules (shifted simple A0-modules) can be identified as well.

The algebra B is directed by definition hence quasi-hereditary with respect
to the first order. Left standard B-modules are simple. Right standard B-
modules are projective. Left costandard B-modules are dual to right standard
B-modules and hence have the following form:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
A∗

2

A∗
i

A∗
0

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As Aj
∼= Ij/Ij+1 for all j, from Corollary 3(i) we obtain that these costandard

modules are restrictions of costandard C-modules. Hence, B is an exact Borel
subalgebra by [Ko1, Theorem A]. That B is strong follows from the definitions.
This completes the proof. �

Remark 14. If we assume the existence of a Borel subalgebra, the con-
dition of left costandard modules for this algebra being isomorphic to left
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costandard modules for C forces the Borel subalgebra to have the following
form: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · X0,i−1 0 0 0 · · ·
· · · X1,i−1 X0,i 0 0 · · ·
· · · X2,i−1 X1,i X0,i+1 0 · · ·
· · · X3,i−1 X2,i X1,i+1 X0,i+2 · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Xj,i are subspaces of Ij providing a splitting of Ij � Ij/Ij+1. Fur-
thermore, we must have Xj,iXi−k,k ⊆ Xj+i−k,k for this to be a subalgebra.
If we assume that the Borel subalgebra is stable under the shift, i.e., that
Xj,i = Xj,i+1 for all i, j, then the above is simply the condition that A is
graded. Hence, the existence of a Borel subalgebra which is invariant under
the shift is equivalent to A being graded with respect to the filtration (4).

We further assume that A is positively graded. Then the trivial extension
A = A ⊕ A∗ of A inherits a natural Z-grading by assigning degree −i to the
space A∗

i , i ≥ 0. We would need to redefine this natural grading as follows:
set degA∗

i = N − 1 − i. For i ∈ Z, set Ai = Ai ⊕ A∗
N −1−i and, because of

RadN (A) = 0, we have Ai = 0 for all i < 0.

Proposition 15. Under the assumptions of Proposition 13, the algebra

B :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · A0 0 0 0 · · ·
· · · A1 A0 0 0 · · ·
· · · A2 A1 A0 0 · · ·
· · · A3 A2 A1 A0 · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a strong exact Borel subalgebra of D with respect to the first order.

Proof. That B is a directed subalgebra of D and that simple B and D

modules can be identified follows from the construction. Using Lemma 8, the
rest is proved just as in the proof of Proposition 13. �

Denote by SZ the subalgebra

B̃ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

. . .
· · · A0 0 0 · · ·

· · · 0 A0 0 · · ·
· · · 0 0 A0 · · ·
. . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
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of C. Note that SZ is a semi-simple subalgebra of D, B̃, B and B. Proposi-
tions 13 and 15 allow us to deduce the following triangular decompositions for
the algebras C and D:

Theorem 16. Under the assumptions of Proposition 13, we have:
(1) Multiplication in C induce the following isomorphism of left B̃- and right

B-modules: C ∼= B̃ ⊗SZ
B.

(2) Multiplication in D induce the following isomorphism of left B̃- and right
B-modules: D ∼= B̃ ⊗SZ

B.

Proof. This follows from Propositions 13 and 15 and [Ko2]. �
Similarly, one obtains the following.

Theorem 17. With respect to the second order, we have the following:
(1) The algebra B̃ is a strong exact Borel subalgebra of both C and D.
(2) Under the assumptions of Proposition 13, the algebra B is a strong exact

Δ-subalgebra of C.
(3) Under the assumptions of Proposition 13, the algebra B is a strong exact

Δ-subalgebra of D.

Proof. Left to the reader. �
Corollary 18. Under the assumptions of Proposition 13, we have that

A−mod embeds into F (Δ1,l
C

).

Proof. As B is a Borel subalgebra of C, we have that B −mod embeds into
F (Δ1,l

C
) via exact tensor induction. As A is an idempotent subquotient of B

by construction, the claim follows. �
Similarly we have the following.

Corollary 19. Under the assumptions of Proposition 13, we have that
mod−A embeds into F (Δ2,r

C
).

Let B be the path algebra of the quiver

modulo the relations that any composition of N arrows is zero.
Corollary 20. The category B−mod embeds into F (Δ2,l

C
).

Proof. The algebra B̃ consists of direct summands, each of which is iso-
morphic to B. As B̃ is a Δ-subalgebra of C, we have that B̃−mod, and hence
B−mod, embeds into F (∇1,l

C
). However, up to a shift, costandard modules

in the first order are the same as standard modules in the second order by
Corollary 4, so F (∇1,l

C
) = F (Δ2,l

C
). This completes the proof. �

Similarly, we have the following.
Corollary 21. The category mod−B embeds into F (Δ1,r

C
).
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Corollary 22. (1) The category mod−B embeds into F (Δ1,r
D

).

(2) The category B−mod embeds into F (Δ2,l
D

).
(3) Under the assumptions of Proposition 13, we have that A−mod embeds

into F (Δ1,l
D

).
(4) Under the assumptions of Proposition 13, we have that mod−A embeds

into F (Δ2,r
D

).

5. Examples

Example 23 (An easy quiver algebra). Let A be the path algebra of the
following quiver:

Assume that (4) is the radical filtration of A. Let e1 and e2 be the idempotents
of A, corresponding to the vertices 1 and 2, respectively. In this case, the
algebra C(A) is the path algebra of the following quiver:

modulo the ideal, generated by the following relations:

(7) ei+1
1 ei

1 = ei+1
2 ei

2 = 0, ei−1
2 ai = ai+1ei

1,

where i ∈ Z.
We also have A ∼= k̃ (where 2 = 1̃). In this case, the algebra D(k̃) is the

path algebra of the following quiver (the dual part C∗ is depicted using the
dotted arrows):
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(here, xi = (ei−1
2 ai)∗) modulo the ideal, generated by the relations (7), the

relations saying that the product of any two dotted arrows is zero, and the
relations defining the natural C-bimodule structure on C∗.

Example 24 (Schur algebras for GL2). Let A be a block of a Schur algebras
for GL2, say with apk + r simple modules (1 ≤ a ≤ p − 1, k ≥ 0,1 ≤ r ≤ pk).
These have been extensively studied in [MT1] and [MT2] and in particular
have been shown to be hereditary idempotent subquotients of certain infinite-
dimensional symmetric quasi-hereditary algebras. Instead of taking an idem-
potent subquotient, one might also take a centralizer subalgebra B which
is again symmetric, such that it corresponds to the endomorphism ring of
the first apk projectives for the Schur algebra. From the explicit description
in terms of quivers and relations in [MT2], it is easily seen that this has a
Z-grading, which coincides with the radical filtration, hence has semisimple
subquotients. By [MV, Theorem 3.3], any connected finite-dimensional self-
injective positively graded algebra is rigid. Therefore, we can apply Corol-
lary 6 to obtain a symmetric quasi-hereditary algebra. This will however give
an algebra that is significantly larger than the symmetric quasi-hereditary
algebra given in [MT1], [MT2].

Example 25 (Category O). Let g be a semi-simple finite-dimensional com-
plex Lie algebra with a fixed triangular decomposition g = n− ⊕ h ⊕ n+, and
p ⊃ h ⊕ n+ be a parabolic subalgebra of g. Let Op

0 denote the principal block
of the p-parabolic category O for g, and Ap denote the endomorphism algebra
of the multiplicity-free direct sum of all indecomposable projective-injective
modules in Op

0 .
The algebra Ap is positively graded and symmetric (see [MS]) and simple

Ap-modules are naturally indexed by the elements of some right cell for the
Weyl group W of g. In the special case g = sln, the parabolic subalgebra p is
given by some composition of n and the algebra Ap can be used to model the
corresponding Specht module (for the symmetric group or Hecke algebra) via
the action of some exact functors on Ap−mod, see [KMS]. The algebra Ap has
a simple preserving duality, which yields that all indecomposable projective
Ap-modules are self-dual. Since the trace form on Ap respects grading, it fol-
lows that this form induces a nondegenerate pairing between the components
of the grading filtration of Ap as required in the formulation of Theorem 5.
Thus, from Theorem 5 it follows that the quasi-hereditary algebra C(Ap) of
Ap is symmetric and thus Ap is a centralizer subalgebra of a symmetric quasi-
hereditary algebra. It would be interesting to understand the algebra C(Ap).
Note that the natural grading filtration on Ap does not have to coincide with
the radical filtration.

In the special case g = sl2 and p = h ⊕ n+, the algebra C(Ap) is closely
related to the algebras from [MT1].
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