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HERMITIAN MORITA EQUIVALENCES BETWEEN
MAXIMAL ORDERS IN CENTRAL SIMPLE ALGEBRAS

BHANUMATI DASGUPTA

Abstract. Let R be a Dedekind domain with quotient field K.
That every maximal order in a finite dimensional central sim-
ple K-algebra A, (the algebra of nxn matrices over D), where D

is separable over K, is Morita equivalent to every maximal or-
der in D is a well known linear result. Hahn defined the notion
of Hermitian Morita equivalence (HME) for algebras with anti-
structure, generalizing previous work by Frohlich and McEvett.

The question this paper investigates is the hermitian analogue

of the above linear result. Specifically, when are maximal or-
ders with anti-structure in A, HME to maximal orders with anti-
structure in D in the sense of Hahn? Two sets of necessary and

sufficient conditions are obtained with an application which pro-
vides the hermitian analogue under some conditions.

1. Introduction

Morita theory essentially consists of Morita I and Morita II. The first de-
rived the consequences of a Morita context and the latter concluded that every
equivalence between categories is induced by a Morita context. Frohlich and
McEvett [4] formulated a hermitian Morita theory for algebras with invo-
lution. There have been applications in K-theory of forms, Wall [9], and
computation of surgery obstruction groups in Bak [1]. The standard for eval-
uating a successful hermitian Morita theory for algebras with anti-structure is
how close it comes to the original Morita theory in terms of having analogues
of Morita I and Morita II as well as other analogues. Hahn [5] formulated a
far superior hermitian Morita theory than the one in Frohlich and McEvett
[4]. It has a complete hermitian Morita I theorem and has had successful
applications in the isomorphism theory of hyperbolic classical groups in Hahn
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and Zun-Xian [6], recently in the isomorphism theory of unitary groups over
semisimple rings in Dasgupta [3] and in a forthcoming paper we apply it to
that of hyperbolic quadratic modules over maximal orders in central simple
algebras. These applications come up with the exact relationship between
the underlying modules and rings of the unitary groups. These developments
furnish positive evidence that Hahn’s formulation is correct.

Let R be a Dedekind domain with quotient field K �= R. Let Λ and Δ be
rings. Λ and Δ are said to be Morita equivalent(ME) if there is an aggregate

(Λ,Δ,ΛMΔ,Δ(M ∗)Λμ, τ)

with μ and τ satisfying certain associativity properties. Now let Λ and Δ
be maximal R-orders in a central simple K-algebra A = Mn(D) and in D
respectively, where D is separable over K. Then every Λ is ME to Δ by 21.6
and 21.7 of Reiner [7]. This is a well known linear result. For example, see
also Chapter 5 of Swan [8].

Now suppose that Λ = (Λ, α, ε) and Δ = (Δ, β, δ) are algebras with anti-
structure. Λ and Δ are said to be hermitian Morita equivalent(HME) if
they are ME and if there is a map θ : ΛMΔ −→ Δ(M ∗)Λ, satisfying certain
properties Hahn [5].

We looked at the following problem: Assume further that α|K = idK and
β|K = idK . Let Λ = (Λ, α, ε) and Δ = (Δ, β, δ) be maximal R-orders with anti-
structure in A and D, respectively. Then are Λ and Δ, HME in the sense of
Hahn [5]? An affirmative answer will be an interesting hermitian analogue of
Morita equivalences between maximal R-orders and will be further validation
of Hahn’s formulation. While we cannot prove this to be true in general, we
can come up with some useful necessary and sufficient conditions for them to
be HME.

Let (aβ)ij = aβ
ji for a = (aij) ∈ A and let aα = y1a

βy−1
1 . Note that y1 exists

since β−1α fixes each element of K, and hence is an inner automorphism
by the Skolem–Noether theorem, Reiner [7]. Further, y1 is unique up to
multiplication by non-zero elements of K. A direct computation shows that
δ−1yβ

1 y−1
1 ε = ±1. If V = KM , assume that dimVD ≥ 2. We show by an

application of the necessary and sufficient conditions listed below that if y1

can be chosen to be a unit of Λ, then Λ is HME to either Δ or Δ1 = (Δ, β, −δ).
Let v = x1d1 + x2d2 + · · · + xndn and let vβ = dβ

1x∗
1 + dβ

2x∗
2 + · · · + dβ

nx∗
n

where {x∗
i } is a dual basis of {xi}, a basis of a vector space V . Assume

A = (A,α, ε) and D = (D,β, δ) are HME via the aggregate,
(
A,D,θ : AVD −→ D(V ∗)A, μ, τ

)
,

where V and V ∗ are represented by matrices and μ and τ are given by matrix
multiplication. We come up with a new formulation or definition of θ which
does not exist in the literature. We show that θ(v) = kvβy−1

1 for some k ∈ K.
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In fact, if (
Λ,Δ, θ : ΛMΔ −→ Δ(M ∗)Λ, μ, τ

)

is a set of hermitian equivalence data, where M and M ∗ are represented by
matrices and μ and τ are given by multiplication of matrices, then we prove
that θ(m) = kmβy−1

1 . Conversely, if θ is a bijection given by θ(m) = kmβy−1
1 ,

then either Λ and Δ or Λ and Δ1 are HME.
We show that y1M

∗βP1 = M for a (Δ − Δ)-bimodule P1. We show that for
Λ and Δ to be HME, it is necessary that kP1 = Δ for some k ∈ K. Conversely,
if kP1 = Δ for some k ∈ K, either Λ and Δ or Λ and Δ1 are HME.

2. Preliminaries

The only prerequisites for this paper are Hahn [5] and some basic facts
about maximal orders in a central simple algebra as set out below. All Λ-
modules M are assumed to be unitary i.e., 1Λm = m for all m ∈ M .

Let A and B be rings. Let

(A,B,A PB ,B QA, μ, τ)

be a Morita context, i.e., it is an aggregate such that

(a) there exists an (A − A)-bimodule isomorphism μ : P ⊗B Q −→ A,
(b) there exists (B − B)-bimodule isomorphism τ : Q ⊗A P −→ B,
(c) μ(p ⊗ q)p′ = pτ(q ⊗ p′) for all p, p′ ∈ P and q ∈ Q,
(d) τ(q ⊗ p)q′ = qμ(p ⊗ q′) for all p ∈ P and q, q′ ∈ Q,

so that APB is a bimodule over R, i.e. (r.1)p = p(r.1). The rings A and B are
then said to be Morita equivalent (ME).

Let R be a commutative ring with a involution −. An R-algebra with anti-
automorphism is a pair (A,α) with A an R-algebra, α an anti-automorphism
and r̄.1 = (r.1)α for all r ∈ R. If α2 = idA, then (A,α) is an R-algebra with
involution. An R-algebra with anti-structure is a triple A = (A,α, ε) consisting
of an R-algebra A with anti-automorphism α and a unit ε in A such that
εα = ε−1 and aα2

= εaε−1.

Assumption 1. In the rest of the paper, the anti-automorphism of the R-
algebra with anti-structure is an R-anti-automorphism, i.e., rα = r for r ∈ R.

Let A = (A,α, ε) and B = (B,β, δ) be two rings with anti-structure and
regard both A and B as R-algebras with anti-structure. Recall from Hahn [5]
that a set of hermitian equivalence data is a Morita context along with a map
θ which satisfies items (e)–(g) below.

(e) θ : P −→ Q which satisfies θ(apb) = bβθ(p)aα, and
(f) μ(p ⊗ θ(p1)) = μ(p1 ⊗ θ(ε−1pδ))α, and
(g) τ(θ(p) ⊗ p1) = τ(θ(p1δ) ⊗ εp)β ,
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i.e., a hermitian equivalence data is an aggregate,
(
A,B, θ : APB −→B QA, μ, τ

)

such that items (a)–(g) above are satisfied. The algebras A and B are then
said to hermitian Morita equivalent (HME).

Assumption 2. In the rest of this section, let R be a Dedekind domain with
quotient field K, R �= K, and let A be a separable K-algebra. In particular,
assume that A is a finite dimensional central simple K-algebra, A = Mn(D),
where D is a separable K-algebra.

The following facts and definitions hold under these conditions.

(1) An R-lattice is a finitely generated R-torsion free R-module. If M is
a R-torsion free R module, then M ⊗R K = M.K = {

∑
finite miki|mi ∈

M,ki ∈ K} (p. 44 of Reiner [7]). An R-lattice is a R-submodule of a
finite dimensional vector space V = KM over K.

(2) A full R-lattice in finite dimensional V , a D-vector space, is a finitely
generated R-submodule M such that KM = V (p. 108 of Reiner [7]).

(3) If L is a left Λ-module with 1 ∈ Λ, L ⊆ ΛL since L is unitary. Since L is
a Λ-module, ΛL ⊆ L. Hence, L = ΛL.

(4) An R-order in the K-algebra A is a subring Λ of A with the same unity
as A, and such that Λ is a full R-lattice in A (p. 108 of Reiner [7]).

(5) A maximal R-order R-order in A is an R-order which is not properly
contained in any other R-order in A (p. 110 of Reiner [7]).

(6) Further, if Λ = (Λ, α, ε) is a maximal R-order with anti-structure in A,
since it is assumed that α is an R-anti-automorphism, the anti-structure
on Λ extends uniquely to A via aα = (λr−1)α = (λ)αr−1 and then (A,α, ε)
is a K-algebra and α is a K-anti-automorphism.

If L is a right R-lattice in A, then define

(i) the left order of L = Ol(L) = {x ∈ A|xL ⊆ L} is an R-order in A (p. 109
of Reiner [7]),

(ii) the right order of L = Or(L) = {x ∈ A|Lx ⊆ L} is an R-order in A (p. 109
of Reiner [7]) and

(ii) L−1 = {x ∈ A|Lx ⊆ Ol(L)} = {x ∈ A|xL ⊆ Or(L)} (p. 192 of Reiner [7]).

Let Λ be an R-order in A. The following hold.

(v) L is called a (full) right Λ-lattice (in A) to indicate that L is a right
Λ-module which is a (full) R-lattice (in A) (pp. 129 and 192 of Reiner [7]).

(w) If L is a full right R-lattice in A, then the left order of L is maximal if
and only if the right order of L is maximal (21.2 of Reiner [7]).

(x) If L is a full right Λ lattice in A, where Λ is a maximal order in A, then
LL−1 = Ol(L) = Or(L−1), L−1L = Λ = Or(L) = Ol(L−1) and (L−1)−1 = L
(pp. 192–193 of Reiner [7]).
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(y) If Λ is a maximal R-order of A and Δ is a maximal R-order of D, Λ =
End(MΔ) for some full right Δ-lattice M in V . Further, every maximal
R-order in A is Morita equivalent(ME) to any maximal R-order in D. This
follows from 21.6 and 21.7 of Reiner [7].

(z) For the structure of Λ in terms of Δ, refer to 27.6 of Reiner [7].
Let β be an anti-automorphism of D. If A = End(VD) and if for v ∈ V and

di ∈ D,

(1) v =

⎡
⎢⎢⎢⎣

d1

d2

...
dn

⎤
⎥⎥⎥⎦ ,

then define

(2) vβ =
[
dβ
1 dβ

2 · · · dβ
n

]
.

If for v∗ ∈ V ∗ and d′
i ∈ D,

(3) v∗ =
[
d′
1 d′

2 · · · d′
n

]
,

then define

(4) (v∗)β =

⎡
⎢⎢⎢⎢⎣

d′β
1

d′β
2
...

d′β
n

⎤
⎥⎥⎥⎥⎦

.

Hence, vβ2
= δvδ−1 and v∗β2

= δv∗δ−1 where for d ∈ D, dβ2
= δdδ−1.

For a set V1 of V or V ∗ define V β
1 = {vβ |v ∈ V1}.

Extend β to A thus: For a = (aij) ∈ A, define aβ by (aβ)ij = aβ
ji.

3. The structure of θ : AVD −→ D(V ∗)A

Assumption 3. Throughout this section, let A = (A = Mn(D), α, ε) and
D = (D,β, δ) be central simple K-algebras with anti-structure.

So α and β are K-anti-automorphisms. If a = (aij) ∈ A, extend β to A as
in Section 2. Then β is a K-anti-automorphism of A. Note β−1α determines
a K-automorphism of the central-simple algebra A and hence is an inner
automorphism of A by the Skolem–Noether theorem, Reiner [7]. Hence, aα =
y1a

βy−1
1 for some y1 of A where y1 is unique up to multiplication by a nonzero

scalar. This section comes up with a definition for θ of a hermitian equivalence
data between A and D. Let u(Λ) be the units of Λ.

Proposition 1. Let aα = y1a
βy−1

1 . Then δ−1yβ
1 y−1

1 ε = ±1.
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Proof. Observe for λ ∈ Λ, λα = y1λ
βy−1

1 and

ελε−1 = λα2
= y1(y−1

1 )βλβ2
yβ
1 y−1

1 = y1(y−1
1 )βδλδ−1yβ

1 y−1
1 .

So
δ−1yβ

1 y−1
1 ελ = λδ−1yβ

1 y−1
1 ε

and
δ−1yβ

1 y−1
1 ε = r,

for some r is in the centralizer of Λ in A. Since Λ is a full lattice in A,
centralizer of Λ in A ⊆ Cen A. But since A is a central simple K-algebra, Cen
A = K. So r ∈ K. So

ε = y1(y−1
1 )βδr.

But
εα = ε−1

and

(y1(y−1
1 )βδ)α = y1(y1(y−1

1 )βδ)βy−1
1

= y1δ
−1δy−1

1 δ−1yβ
1 y−1

1

= δ−1yβ
1 y−1

1

= (y1(y−1
1 )βδ)−1.

So rα = r−1. Since α|K = id , r2 = 1, and since K is an integral domain
r = ±1. �

Lemma 2. If B, B(v), E, E(v) are n × 1 matrices and C, C(v′), F , F (v′)
are 1 × n matrices, then the following hold.
(a) If BC = EF , then B = Cd and E = d−1F for d ∈ D and
(b) if B(v)C(v′) = E(v)F (v′) ∀v, v′ ∈ V , then B(v) = E(v)d1 and C(v′) =

d−1
1 F (v′) for a constant d1 ∈ D.

Proof. (a) Let B = (bi1), E = (ei1), C = (c1j) and F = (f1j), and observe
that since bi1c1j = ei1f1j , if b11 = e11d, c1j = d−1f1j for j = 1, . . . , n. Hence,
bi1 = ei1d for i = 1, . . . , n, B = Ed and C = d−1F .

(b) Note that if B(v)C(v′) = E(v)F (v′), then for a fixed v ∈ V , B(v) =
E(v)xv and ∀v′ ∈ V , C(v′) = x−1

v′ F (v′) = x−1
v F (v′). Here the latter follows

from (a). Hence, xv = xv′ . By symmetry xv = xv′ , ∀v ∈ V and a fixed v′ ∈ V .
Thus, d1 = xv = xv′ ∀v, v′ ∈ V . �

Proposition 3. Let

(A,D,AVD,D(V ∗)A, μ, τ)

be a Morita context where V is the set of n × 1 matrices over D and V ∗ is
the set of 1 × n matrices over D and μ and τ are given by multiplication
of matrices, i.e., μ(v ⊗ f) = vf and τ(f ⊗ v) = fv where v ∈ V and f ∈ V ∗.
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Let y1 satisfy aα = y1a
βy−1

1 . If A = (A = Mn(D), α, ε) is hermitian Morita
equivalent to D = (D,β, δ) via

(
A,D,θ : AVD −→ D(V ∗)A, μ, τ

)
,

then θ : V −→ V ∗ is a bijection defined by θ(v) = kvβy−1
1 , for some k ∈ K. If

θ : V −→ V ∗ is a bijection defined by θ(v) = kvβy−1
1 , for some k ∈ K,

(I) then (A,α, ε) is HME to (D,β, δ) when δ−1yβ
1 y−1

1 ε = 1 via
(
A,D,θ : AVD −→ D(V ∗)A, μ, τ

)
,

(II) then (A,α, ε) is HME to D1 = (D,β, −δ) when δ−1yβ
1 y−1

1 ε = −1 via
(
A,D1, θ : AVD1 −→ D1(V

∗)A, μ, τ
)
.

Proof. β extends to A. Let dimVD = n. As above aα = y1a
βy−1

1 for some
y1 in A and a ∈ A. By Proposition 1, δ−1yβ

1 y−1
1 ε = ±1. Let

(A,D,AV D,D(V ∗)A, μ, τ)

be a Morita context as stated in the proposition. Assume that θ and μ
satisfy items (a)–(g) of an hermitian equivalence data. In particular, θ : V −→
V ∗ is a bijection satisfying θ(avd) = dβθ(v)aα and that μ(v ⊗ θ(v′) = μ(v′ ⊗
θ(ε−1vδ))α. We will try to solve for θ(v). Since aα = y1a

βy−1
1 ,

μ
(
v ⊗ θ(v′)

)
= y1μ

(
v′ ⊗ θ(ε−1vδ)

)β
y−1
1 ,

(vθ(v′)) = y1(v′θ(ε−1vδ))βy−1
1 ,

vθ(v′) = y1θ(ε−1vδ)βv′βy−1
1 .

Now v, v′ are n × 1 matrices since v, v′ ∈ V , vβ , v′β are 1 × n matrices by
the definition of vβ for v ∈ V in Section 2, θ(v), θ(v′) are 1 × n matrices since
θ : V −→ V ∗, θ(v)β , θ(v′)β are n × 1 matrices by the definition of v∗β for
v∗ ∈ V ∗ in Section 2, and y1 is a n × n matrix. By Lemma 2,

v = y1θ(ε−1vδ)βx and θ(v′) = x−1v′βy−1
1 for an x ∈ D.

It is easily checked that these two equations form a consistent set of equations
having the solution θ(v) = x−1vβy−1

1 . Since

θ(vd) = dβθ(v), x−1dβvβy−1
1 = dβx−1vβy−1

1 ,

x−1 commutes with every d ∈ D, so x−1 ∈ K. Thus, θ : V −→ V ∗, a bijection
is defined by θ(v) = kvβy−1

1 for some k = x−1 ∈ K.
Conversely, if θ : V −→ V ∗ is a bijection defined by θ(v) = kvβy−1

1 for some
k ∈ K, we will show (I) and (II) below.

(I) If δ−1yβ
1 y−1

1 ε = 1, we will prove that (A,α, ε) is HME to (D,β, δ). All
that is required is to show that (e)–(g) below of a hermitian equivalence
data (refer to Section 2 for the definition of a hermitian equivalence data)
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are satisfied since by assumption a Morita context between A and D already
exists.

θ(avd) = kdβvβaβy−1
1(e)

= dβkvβy−1
1 aα since aα = y1a

βy−1
1

= dβθ(v)aα,

μ
(
v′ ⊗ θ(ε−1vδ)

)α = y1μ
(
v′ ⊗ θ(ε−1vδ)

)β
y−1
1(f)

= y1(v′kδβvβε−1βy−1
1 )βy−1

1

= y1y
−1β
1 δε−1δ−1δvδ−1δδδ−1kβv′βy−1

1

since dβ2
= δdδ−1

= vkv′βy−1
1 since y1y

−1β
1 δε−1 = 1 and β|K = idK

= μ
(
v ⊗ θ(v′)

)
,

τ
(
θ(v′δ) ⊗ εv

)β = (kδβv′βy−1
1 εv)β(g)

= (δ−1v′βy−1
1 εv)βkβ since δβ = δ−1

= (δ−1v′β(y−1
1 )βδv)βk since δ−1yβ

1 y−1
1 ε = 1

and β|K = idK

= vβδβδy−1
1 δ−1δv′δ−1δk

= kvβy−1
1 v′ since δβ = δ−1

= τ
(
θ(v) ⊗ v′).

(II) If δ−1yβ
1 y−1

1 ε = −1, then we will prove that (A,α, ε) is HME to (D,β,
−δ). We will do so by replacing δ by −δ in (I) above and repeating the
steps. Note then that (−δ)β = −δ−1, (−δ)−1 = −δ−1 and δ−1yβ

1 y−1
1 ε = 1 gets

replaced by by −δ−1yβ
1 y−1

1 ε = 1. �

4. Hermitian Morita equivalences between maximal orders

Assumption 4. Throughout this section, Λ = (Λ = End(MΔ), α, ε) is a
maximal R-order in A = End((KM)D) = Mn(D), a central simple K-algebra,
and Δ = (Δ, β, δ) is a maximal R-order with anti-structure in D where α and
β are R-anti-automorphisms. Further, D is separable over K.

So by 27.6 of Reiner [7], for J a right Δ-lattice in D, {xi} a basis of
V = KM , and {x∗

i } the dual basis of {xi},

M = x1Δ + x2Δ + · · · + xn−1Δ + xnJ,

M ∗ = Δx∗
1 + · · · + Δx∗

n−1 + J −1x∗
n
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and

(5) Λ = End(MΔ) =

⎡
⎢⎢⎢⎢⎢⎣

Δ Δ · · · Δ J −1

Δ Δ · · · Δ J −1

...
...

...
...

Δ Δ · · · Δ J −1

J J · · · J Δ′

⎤
⎥⎥⎥⎥⎥⎦

,

where Δ′ = Ol(J) by 27.6 of Reiner [7].
Consider M as a subset of n × 1 matrices, so

(6) M =

⎡
⎢⎢⎢⎢⎢⎣

Δ
Δ
...
Δ
J

⎤
⎥⎥⎥⎥⎥⎦

and

(7) M ∗ =
[
Δ Δ · · · Δ J −1

]
.

The module MΔ is a progenerator of MΔ. Hence, Λ and Δ are ME by
21.7 of Reiner [7], and by 16.9 of Reiner [7], via the Morita context below
derived from M ,

(
Λ,Δ,ΛMΔ −→ Δ(M ∗)Λ, μ, τ

)
,

where μ and τ are given by multiplication of matrices.
Note that by matrix multiplication it follows that M is a Λ − Δ bimodule,

M ∗ is a Δ − Λ bimodule. Recall the definition of M ∗β and Mβ from Section 2.
Then Mβ is a Δβ − Λβ bimodule and M ∗β is a Λβ − Δβ bimodule. Both Λβ

and Δβ are maximal orders.
Further A = KΛ = Mn(D) and, as in Section 3, α extends to a K-anti-

automorphism of A. Moreover, β extends to K-anti-automorphisms of D
and A and aα = y1a

βy−1
1 for some y1 ∈ A.

Proposition 4 below shows that there always exists a (Δ − Δ)-bimodule P1,
such that y1(M ∗)βP1 = M .

Proposition 4. Let aα = y1a
βy−1

1 for some y1 ∈ A. Then there exists a
(Δ − Δ)-bimodule P1 which is a full R-lattice in D such that y1(M ∗)βP1 = M
and P −1

1 Mβy−1
1 = (y1M

∗βP1)∗ = M ∗.

Proof. Let V = KM and dimVD ≥ 2. Let y1P = M . Since M is a finitely
generated R-module, so is P . P is a right Δ-module which is a full R-lattice
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in V since Ky1P = KM = V . Let

(8) P =

⎡
⎢⎢⎢⎣

P1

P2

...
Pn

⎤
⎥⎥⎥⎦ .

Since each Pi is a summand of P it is a finitely generated R-module. Since
KP = y−1

1 V , KPi = D and Pi is a full right Δ-lattice in D for each i. Hence,
as in 27.6 of Reiner [7],

(9) End(PΔ) =

⎡
⎢⎢⎢⎣

HomΔ(P1, P1) HomΔ(P2, P1) · · · HomΔ(Pn, P1)
HomΔ(P1, P2) HomΔ(P2, P2) · · · HomΔ(Pn, P2)

...
...

...
...

HomΔ(P1, Pn) HomΔ(P2, Pn) · · · HomΔ(Pn, Pn)

⎤
⎥⎥⎥⎦ .

Since P −1
i Pi = Or(Pi) = Δ, PiP

−1
i = Ol(Pi) and PiΔ = Pi by 22.7 of Reiner

[7],

(10) End(PΔ) =

⎡
⎢⎢⎢⎣

P1P
−1
1 P1P

−1
2 · · · P1P

−1
n

P2P
−1
1 P2P

−1
2 · · · P2P

−1
n

...
...

...
...

PnP −1
1 PnP −1

2 · · · PnP −1
n

⎤
⎥⎥⎥⎦ .

Now, End(PΔ) = Λβ , as y1 End(PΔ)y−1
1 = End((y1P )Δ)) = End(MΔ) =

Λ = Λα = y1Λβy−1
1 . Let End(PΔ) act on P on the left in the natural way,

so P is a left Λβ-module.
Now, by the structure of Λ as at the beginning of Section 4, and the

definition of aβ for a ∈ A,

(11) Λβ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Δβ Δβ · · · Δβ Jβ

Δβ Δβ · · · Δβ Jβ

...
...

...
...

...
Δβ Δβ · · · Δβ Jβ

J −1β
J −1β · · · J −1β Δ′β

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We will show by comparing matrices (M ∗)βP1 and P that (M ∗)βP1 = P , and
hence y1(M ∗)βP1 = y1P = M . Compare the two matrices Λβ and End(PΔ)
to get P1P

−1
1 = P2P

−1
1 = · · · = Pn−1P

−1
1 = Δβ and PnP −1

1 = (J −1)β . Since,
by 22.7 of Reiner [7] P −1

1 P1 = Or(P1) = Δ, and since Pi are right Δ-modules,
P1 = P2 = Pn−1 = ΔβP1 and Pn = (J −1)βP1. Thus, P1 is a left Δβ-module
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and

(12) P =

⎡
⎢⎢⎢⎢⎢⎢⎣

ΔβP1

ΔβP1

...
ΔβP1

(J −1)βP1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Recall the definition of V β
1 for V1 ⊆ V ∗ from Section 2, so

(13) (M ∗)β =

⎡
⎢⎢⎢⎢⎢⎢⎣

Δβ

Δβ

...
Δβ

(J −1)β

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Now compare matrices to obtain (M ∗)βP1 = P and y1(M ∗)βP1 = M .
Now let dimVD = 1. We will show in this case too that y1(M ∗)βP1 =

M . Let Λ = End(JΔ) for a right Δ-lattice J in D and assume that λα =
y1λ

βy−1
1 and that y−1

1 J = J1 for a right Δ-lattice J1. Obtain End((J1)Δ) =
(End(JΔ))β since y1 End((J1)Δ)y−1

1 = End(JΔ) = Λ = Λα = (End(JΔ))α =
y1(End(JΔ))βy−1

1 . J is a left End(JΔ)-lattice and End(JΔ) is a maximal
order (21.2 of Reiner [7]). Hence, Ol(J) ⊆ End(JΔ) ⊆ Ol(J). Thus, obtain
Ol(J) = End(JΔ). Similarly obtain Ol(J1) = End((J1)Δ), to give Ol(J1) =
(Ol(J))β . Let P1 = JβJ1. Clearly, P1 is a Δβ − Δ-module, since JΔ ⊆ J and
ΔβJβ ⊆ Jβ . By 22.7 of Reiner [7], JJ −1 = Ol(J). By setting M = J and
P = J1, obtain y1(M ∗)βP1 = y1(J −1)βP1 = y1J

−1βJβJ1 = y1(JJ −1)βJ1 =
y1(Ol(J))βJ1 = y1Ol(J1)J1 = y1J1 = J = M .

Since Δβ = Δ, P1 is a (Δ − Δ)-bimodule and the first result follows.
We will now show that P −1

1 Mβy−1
1 = M ∗ if y1M

∗βP1 = M . Since J −1J =
Δ and JJ −1 = Ol(J) by 22.7 of Reiner [7], by matrix multiplication M ∗M = Δ
and MM ∗ = Λ. By 22.7 of Reiner [7], P1P

−1
1 = Δ = Δβ . Recall that Mβ is a

left Δβ-module and M ∗β is a right Δβ-module. Since

MM ∗ = Λ = Λα = y1(MM ∗)βy−1
1 = y1M

∗βP1P
−1
1 Mβy−1

1 = MP −1
1 Mβy−1

1 .

Now P −1
1 Mβy−1

1 M = Δ, so P −1
1 Mβy−1

1 ⊆ M ∗. If P −1
1 Mβy−1

1 ⊂ M ∗, then

M ∗ ⊆ ΔM ∗ = M ∗(MM ∗) = M ∗MP −1
1 Mβy−1

1 = ΔP −1
1 Mβy−1

1 = P −1
1 Mβy−1

1

leading to a contradiction. Hence, P −1
1 Mβy−1

1 = M ∗. �

4.1. Necessary and sufficient conditions for hermitian Morita equiv-
alences between maximal orders. Given below are previously proved nec-
essary conditions for Λ and Δ to be HME in terms of nonsingular forms
on M , Hahn [5]. If Λ is hermitian Morita equivalent Δ, then there exists
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a nonsingular β-sesquilinear form, Φ1 : MΔ × MΔ −→ Δ, as well as a non-
singular α−1-sesquilinear form Φ′

1 : ΛM × ΛM −→ Λ by the Morita theorem
of Hahn [5]. So this is an obvious necessary condition for Λ to be HME to Δ.
Conversely, if Δ = (Δ, β, δ) and if there exists a nonsingular β-sesquilinear
form, Φ1 : MΔ × MΔ −→ Δ, then by 1.8 of Hahn [5], (MΔ,Φ1) defines an
hermitian equivalence data so that Λ1 = (End(MΔ), α1, ε1) and Δ are HME
for some α1 and ε1. Analogously, if Λ = (End(MΔ), α, ε) and if, there exists a
nonsingular α−1-sesquilinear form, Φ′

1 : ΛM × ΛM −→ Λ, then by 1.9 of Hahn
[5] and Dasgupta [2], (ΛM,Φ′

1) defines an hermitian equivalence data so that
Λ and Δ1 = (End(ΛM), β1, δ1) are HME for some β1 and δ1.

As at the beginning of Section 4, there exists a Morita context derived
from M ,

(Λ,Δ,ΛMΔ,ΔM ∗
Λ, μ, τ),

where μ and τ are given by the multiplication of matrices.
Given below is a necessary and sufficient condition for Λ and Δ to be HME

in terms of the structure of θ of the hermitian equivalence data and in terms
of y1 such that aα = y1a

βy−1
1 . Note that Assumption 4 holds.

Theorem 1. If Λ = (Λ, α, ε) is hermitian Morita equivalent to Δ = (Δ, β, δ)
via the hermitian equivalence data,

(Λ,Δ, θ : ΛMΔ −→ ΔM ∗
Λ, μ, τ),

where μ and τ are given by multiplication of matrices, then θ : ΛMΔ −→ ΔM ∗
Λ

is a bijection given by θ(m) = kmβy−1
1 for some k ∈ K. If θ : ΛMΔ −→ ΔM ∗

Λ

is a bijection defined by θ(m) = kmβy−1
1 for some k ∈ K, then if μ and τ are

given by multiplication of matrices,
(a) (Λ, α, ε) is HME to (Δ, β, δ) when δ−1yβ

1 y−1
1 ε = 1 via(

Λ,Δ, θ : ΛMΔ −→ Δ(M ∗)Λ, μ, τ
)
.

(b) (Λ, α, ε) is HME to Δ1 = (Δ, β, −δ) when δ−1yβ
1 y−1

1 ε = −1 via(
Λ,Δ1, θ : ΛMΔ1 −→ Δ1(M

∗)Λ, μ, τ
)
.

Proof. Since M is a full Δ-lattice in V , KM = V . If there exists an her-
mitian equivalence data,

(Λ,Δ, θ : ΛMΔ −→ ΔM ∗
Λ, μ, τ),

then it extends to the following hermitian equivalence data,(
A,D, θ̄ : AVD −→ D(VD)∗

A, μ̄, τ̄
)
,

where θ̄(k̄m) = k̄θ(m) for any k̄ ∈ K and m ∈ M and μ̄ and τ̄ are the natural
extensions of μ and τ . Note that θ̄ is well defined and a bijection. Since μ̄ and
τ̄ are given by multiplication of matrices if μ and τ are, θ̄(k̄m) = kk̄mβy−1

1

by Proposition 3 and θ̄(m) = θ(m) = kmβy−1
1 .

Conversely, if θ : ΛMΔ −→ ΔM ∗
Λ given by θ(m) = kmβy−1

1 is a bijection,
it is clear from the proof of Proposition 3 that θ, that μ and τ satisfy the
properties of the hermitian equivalence data listed below,
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(a)
(Λ,Δ, θ : ΛMΔ −→ ΔM ∗

Λ, μ, τ),
when δ−1yβ

1 y−1
1 ε = 1,

(b) (
Λ,Δ1 = (Δ, β, −δ), θ : ΛMΔ1 −→ Δ1M

∗
Λ, μ, τ

)
,

when δ−1yβ
1 y−1

1 ε = −1. �
By Proposition 4, y1(M ∗)βP1 = M for some two sided full Δ-lattice P1

in D. Given below is a necessary and sufficient condition in terms of P1 for
Λ and Δ to be hermitian Morita equivalent under Assumption 4.

Theorem 2. If Λ = (Λ, α, ε) is hermitian Morita equivalent Δ = (Δ, β, δ)
via the hermitian equivalence data,

(Λ,Δ, θ : ΛMΔ −→ ΔM ∗
Λ, μ, τ),

where μ and τ are given by multiplication of matrices, then for some k ∈ K,
kP1 = Δ. If kP1 = Δ for some k ∈ K then
(a) (Λ, α, ε) is HME to (Δ, β, δ) when δ−1yβ

1 y−1
1 ε = 1 and

(b) (Λ, α, ε) is HME to (Δ, β, −δ) when δ−1yβ
1 y−1

1 ε = −1.

Proof. If there exists an hermitian equivalence data,(
Λ,Δ, θ : ΛMΔ −→ Δ(M ∗)Λ, μ, τ

)
,

where μ and τ are given by multiplication of matrices, then by Theorem 1, θ
is given by θ(m) = kmβy−1

1 for m ∈ M . Since θ is a bijection, kMβy−1
1 =

M ∗. Now by Proposition 4, y1M
∗βP1 = M for a (Δ − Δ)-bimodule P1,

so Δ = M ∗M = kMβy−1
1 y1M

∗βP1 = k(M ∗M)βP1 = kΔβP1 = kΔP1 = kP1.
Thus kP1 = Δ.

Conversely, assume that for some k ∈ K, kP1 = Δ. Now y1(M ∗)βP1 = M ,
so by Proposition 4, P −1

1 Mβy−1
1 = M ∗ and k−1P −1

1 Mβy−1
1 k = M ∗. Since

kP1 = Δ, k−1P −1
1 = Δ = Δβ and since Mβ is a left Δβ-lattice, so ΔβMβy−1

1 ×
k = Mβy−1

1 k = M ∗. Define θ : M −→ M ∗ by θ(m) = mβy−1
1 k. It is a bijec-

tion. By Theorem 1, the result follows. �
4.2. An HME between maximal orders. A sufficient condition for Λ to
be HME to Δ under Assumption 4 follows.

Theorem 3. Let aα = y1a
βy−1

1 . Let V = KM . Assume that dimVD ≥ 2.
If y1 can be chosen to be a unit of Λ, then
(a) (Λ, α, ε) is HME to (Δ, β, δ) when δ−1yβ

1 y−1
1 ε = 1 and

(b) (Λ, α, ε) is HME to (Δ, β, −δ) when δ−1yβ
1 y−1

1 ε = −1.

Proof. λα = y1λ
βy−1

1 for λ ∈ Λ and a fixed y1 ∈ Λ. Λβ = y−1
1 Λαy1 =

y−1
1 Λy1 = Λ. So by the structure of Λ, since dimVD ≥ 2, Δβ = Δ, J −1β = J

and M ∗β = M . Since by Proposition 4, y1M
∗βP1 = M for a (Δ − Δ)-bimodule

P1, so yIMP1 = M . But since y1 is a unit of Λ, y1M = M . Hence, MP1 = M ,
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M ∗MP1 = M ∗M , ΔP1 = Δ, and hence P1 = Δ. By Theorem 2, the result
follows. �
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