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ON THE BJÖRLING PROBLEM IN A THREE-DIMENSIONAL
LIE GROUP

FRANCESCO MERCURI AND IRENE I. ONNIS

Abstract. We prove existence and uniqueness of the solution of
the Björling problem for minimal surfaces in a three-dimensional
Lie group.

1. Introduction

The Weierstrass representation formula for minimal surfaces in R
3 has been

a fundamental tool for producing examples and proving general properties of
such surfaces, since the surfaces can be parametrized by holomorphic data.
In [8], the authors describe a general Weierstrass representation formula for
minimal surfaces in an arbitrary Riemannian manifold. The partial differential
equations involved are, in general, too complicated to be solved explicitly.
However, for particular ambient manifolds, such as the Heisenberg group,
the hyperbolic space and the product of the hyperbolic plane with R, the
equations are more workable and the formula can be used to produce examples
(see [7, 8]).

In this note, we will show how this formula can be used, at least if the
ambient manifold is a 3-dimensional Lie group, in order to prove existence
and uniqueness of the solution of the Björling problem. We also give some
examples for the case in which the ambient manifold is the Heisenberg group
H3 or H

2 × R, the product of the hyperbolic plane and the real line.

2. The Weierstrass representation formula

The arguments will be essentially local so we will consider, as ambient
manifold M , the space R

3 with a Riemannian metric g = (gij). We will
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denote by Ω ⊆ C ∼= R
2 a simply connected domain with a complex coordinate

z = u + iv, u, v ∈ R, and by:
∂

∂z
:=

1
2

(
∂

∂u
− i

∂

∂v

)
;

∂

∂z
:=

1
2

(
∂

∂u
+ i

∂

∂v

)
the complex derivatives.

In this situation, the general Weierstrass representation formula can be
stated as follows.

Theorem 2.1 (See [8] for a proof). Let f : Ω → M be a conformal minimal
immersion and g = (gij) be the induced metric. The complex tangent vector:

∂f

∂z
:= φ :=

∑
i

φi
∂

∂xi
, φi : Ω → C,

has the following properties:
(1)

∑
i,j gijφiφj �= 0,

(2)
∑

i,j gijφiφj = 0,

(3) ∂φi

∂z +
∑

j,k Γi
jkφjφk = 0,

where {Γi
jk } are the Christoffel symbols of the Riemannian connection.

Conversely, given functions φi : Ω → C that verify the above conditions,
then the map:

f : Ω → M, fi(z) = 2Re
∫ z

z0

φi dz,

is a well defined conformal minimal immersion of Ω into M (here z0 is an
arbitrary fixed point of Ω and the integral is along any curve joining z0 to z).

Remark 2.2. The first condition of Theorem 2.1 tells us that f is an im-
mersion, the second that f is conformal and the last one that f is minimal.
The last condition is called the holomorphicity condition since it is the lo-
cal coordinates version of the condition: ∇̃ ∂

∂z̄
φ = 0, where ∇̃ is the induced

connection on the pull-back bundle f ∗(TM ⊗ C). In fact, we have that the
section φ is holomorphic if and only if

∇̃ ∂
∂z̄

(∑
i

φi
∂

∂xi

)
=

∑
i

{
∂φi

∂z̄

∂

∂xi
+ φi∇ ∂f

∂z̄

∂

∂xi

}
(2.1)

=
∑

i

{
∂φi

∂z̄

∂

∂xi
+ φi∇∑

j φj
∂

∂xj

∂

∂xi

}
=

∑
i

{
∂φi

∂z
+

∑
j,k

Γi
jkφjφk

}
∂

∂xi
= 0.

In general, it is quite difficult to produce functions φi with the above prop-
erties since the holomorphicity condition is given by partial differential equa-
tions with nonconstant coefficients. If M is a Lie group equipped with a
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left-invariant metric g and {Ei} are orthonormal left-invariant vector fields,
we can write

φ =
∑

i

φi
∂

∂xi
=

∑
i

ψiEi, ψi : Ω → C,

with φi =
∑

i,j Aijψj and A = (Aij) being an invertible matrix, with function
entries Aij . In this case, the Weierstrass formula becomes the following.

Theorem 2.3 (See [8] for a proof). Given functions ψi : Ω → C such that:
(1)

∑
i |ψi|2 �= 0,

(2)
∑

i ψ
2
i = 0,

(3) ∂ψi

∂z +
∑

j,k Li
jkψjψk = 0,

where Li
jk := g(∇Ej Ek,Ei), then the map:

f : Ω → M, fi(z) = 2Re
(∫ z

z0

∑
j

Aijψj dz

)
,

defines a conformal minimal immersion.

The advantage of having partial differential equations with constant coeffi-
cients is not really a great gain, in principle, since we still have to compute the
integrand Aijψj along the solutions. However, in certain cases, as for example
the hyperbolic space, the Heisenberg group and H

2 × R, this problem may be
overcome by ad hoc arguments, as shown (for example) in [8].

3. The Björling problem for three-dimensional Lie groups

In this section, we will suppose that M is a three-dimensional Lie group
endowed with a left-invariant Riemannian metric g. Let β : I ⊆ R → M be a
regular analytic curve in M and V : I → TM a unitary real analytic vector
field along β, such that g(β̇, V ) ≡ 0. The Björling problem is the following:

Determine a minimal surface f : I × (−ε, ε) = Ω ⊆ C → M , such that:
• f(u,0) = β(u),
• N(u,0) = V (u),
for all u ∈ I, where N : Ω → TM is the Gauss map of the surface.

We observe that if β is parameterized by arc-length and β̈ := ∇β̇ β̇, we have
that V = ‖β̈‖ −1β̈ is a unit vector field along the curve such that g(β̇, V ) ≡ 0.
Then the Björling problem is a generalization of the problem of finding a
minimal surface which contains a given curve as a geodesic.

Theorem 3.1. The Björling problem has a unique solution.1

1 Unique up to fixing the domain.
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Proof. In order to prove the theorem, we must analyze Theorem 2.3 care-
fully. In this theorem, we have essentially four conditions on the three func-
tions ψi (the first condition is “generically satisfied”). We will start showing
that these conditions are dependent.

Lemma 3.2. Let ψi : Ω ⊆ C → C, i = 1,2, be two differentiable functions
and ψ2

3 = −ψ2
1 − ψ2

2 . We suppose that ψi, i = 1,2, satisfy the two first equations
of the third item of Theorem 2.3. Then ψ3 satisfies the third equation.

Proof. Deriving with respect to z̄ the equation

−ψ2
3 = (ψ2

1 + ψ2
2),

and using the fact that the two first equations of the third item of Theorem 2.3
are satisfied, we have:

−ψ3
∂ψ3

∂z̄
= ψ1

∂ψ1

∂z̄
+ ψ2

∂ψ2

∂z̄

= −
3∑

j,k=1

(L1
jkψ1 + L2

jkψ2)ψ̄jψk.

Therefore, to prove the lemma it suffices to show that

3∑
j,k=1

(L1
jkψ1 + L2

jkψ2 + L3
jkψ3)ψ̄jψk = 0.

Writing the above sum as:

3∑
j,k=1

Lk
jkψ̄jψ

2
k +

3∑
j,k,l=1

k<l

(Ll
jk + Lk

jl)ψ̄jψkψl,

and using the relation Ll
jk + Lk

jl = 0, where j, k, l ∈ {1,2,3}, we conclude the
proof. �

We go back now to the proof of Theorem 3.1. Consider the system:

(3.1)

{
∂ψ1
∂z +

∑3
j,k=1 L1

jkψjψk = 0,
∂ψ2
∂z +

∑3
j,k=1 L2

jkψjψk = 0,

where ψi : Ω → C and ψ2
3 = −ψ2

1 − ψ2
2 .

Since this system is of Cauchy–Kovalevskaya type (see [10] for a proof of
the Cauchy–Kovalevskaya theorem), fixing the initial data ψi(u,0), i = 1,2,
it has, locally, a unique solution. This solution gives, via Theorem 2.3 and
Lemma 3.2, a minimal surface. Thus, we must find initial conditions so that
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this surface has the required properties. Observe that, if f is a solution of the
Björling problem, we have:

(3.2) φ(u,0) :=
1
2

(
∂f

∂u
− i

∂f

∂v

)
(u,0) =

1
2
(
β̇(u) + iβ̇(u) ∧ V (u)

)
.

Therefore, the initial data for the system is:

(3.3) ψ(u,0) = A−1(β(u))φ(u,0).

Note that the initial condition implies ∂f
∂u (u,0) = β̇(u). Hence, up to a

constant determined by the constant of integration in Theorem 2.3, we have
f(u,0) = β(u). Also, the initial condition forces the choice of one of the
determinations of ψ2

3 = −ψ2
1 − ψ2

2 .
Up to now, we have proved the existence of a local solution to the problem.

Using compactness of I and local uniqueness, we have existence and unique-
ness of the solution when β(I) is contained in a coordinate neighborhood,
for ε sufficiently small. Covering I with a finite number of inverse images,
via β, of coordinate neighborhoods and using (again) the uniqueness of the
local problem, the result is proved for the general case. �

4. Examples in the space H
2 × R

Let H
2 be the hyperbolic plane {(x, y) ∈ R

2 : y > 0} endowed with the met-
ric, of constant Gauss curvature −1, given by gH = (dx2 + dy2)/y2. The hy-
perbolic plane H

2, with the group structure derived by the composition of
proper affine maps, is a Lie group and the metric gH is left-invariant. Then
the product space H

2 × R is a Lie group with the product structure given by

(x, y, z) ∗ (x′, y′, z′) = (x′y + x, yy′, z + z′)

and the product metric g = gH + dz2 is left-invariant. The Lie algebra of the
infinitesimal isometries of (H2 × R, g) admits the following bases of Killing
vector fields

X1 =
(x2 − y2)

2
∂

∂x
+ xy

∂

∂y
,

X2 =
∂

∂x
,

X3 = x
∂

∂x
+ y

∂

∂y
,

X4 =
∂

∂z
.

With respect to the metric g, an orthonormal basis of left-invariant vector
fields is:

E1 = y
∂

∂x
, E2 = y

∂

∂y
, E3 =

∂

∂z
.
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Also, the matrix A is given by:

A =

⎛⎝y 0 0
0 y 0
0 0 1

⎞⎠ ,

and the nonzero Lk
ij are L1

12 = −1 and L2
11 = 1. Consequently, system (3.1)

becomes:

(4.1)

{
∂ψ1
∂z − ψ1ψ2 = 0,

∂ψ2
∂z + |ψ1|2 = 0.

Example 4.1 (The horizontal plane z = c). First of all, we consider the
curve

β(u) = (cosu, sinu, c), u ∈ (0, π), c ∈ R,

and the unit vector field V (u) = −E3. As β̇(u) = − sinuE1+cosuE2, it results
that g(β̇, V ) ≡ 0 and, also, using the equations (3.2) and (3.3), we have that
the initial data for the system (4.1) is:

ψ(u,0) =
(

− (sinu + i cosu)
2 sinu

,
(cosu − i sinu)

2 sinu
,0

)
.

Thus, it follows that ψ(u, v) = ψ(u,0) and, integrating, we obtain the confor-
mal immersion of the totally geodesic plane z = c given by

f(u, v) = (ev cosu, ev sinu, c).

Example 4.2 (The helicoid). Consider the curve β(u) = (0,1,2u) and the
unit vector field V (u) = cos(2u)E1 +sin(2u)E2. As β̇(u) = 2E3, it results that
g(β̇, V ) ≡ 0. Also, using the equations (3.2) and (3.3), we have that the initial
data for the system (4.1) is:

ψ(u,0) = (−i sin(2u), i cos(2u),1)

and moreover ψ3 = (−ψ2
1 − ψ2

2)1/2. Consequently, the solution is given by

ψ1(u, v) =
2i sin(2u) − 2(cos(2u) + sin(2v)) tan(2v)

−2 + sin(2u − 2v) − sin(2u + 2v)
,

ψ2(u, v) =
sec(2v)[2i(cos(2u) + sin(2v)) + sin(2u) sin(4v)]

2 − sin(2u − 2v) + sin(2u + 2v)
,(4.2)

ψ3(u, v) = 1.

After integration, we have the immersion of the minimal helicoid in H
2 × R

described in [8], given by:

f1(u, v) =
2sin(2u) sin(2v)

2 − sin(2u − 2v) + sin(2u + 2v)
,

f2(u, v) =
2cos(2v)

2 − sin(2u − 2v) + sin(2u + 2v)
, f3(u, v) = 2u.
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5. Examples in the Heisenberg group H3

We now consider the Heisenberg group

H3 =

⎧⎨⎩
⎛⎝1 x z + 1

2xy
0 1 y
0 0 1

⎞⎠ , x, y, z ∈ R

⎫⎬⎭ ,

equipped with the left-invariant metric given by

g = dx2 + dy2 +
(

1
2
y dx − 1

2
xdy + dz

)2

.

An orthonormal basis of left-invariant vector fields is given by:

E1 =
∂

∂x
− y

2
∂

∂z
, E2 =

∂

∂y
+

x

2
∂

∂z
, E3 =

∂

∂z
.

The matrix A takes the form

A =

⎛⎝ 1 0 0
0 1 0

− y
2

x
2 1

⎞⎠
and the nonzero Lk

ij are:

L3
12 =

1
2
, L3

21 = − 1
2
,

L2
13 = − 1

2
, L2

31 = − 1
2
,

L1
23 =

1
2
, L1

32 =
1
2
.

Thus, the system (3.1) becomes:

(5.1)

{
∂ψ1
∂z + Re(ψ2ψ3) = 0,

∂ψ2
∂z − Re(ψ1ψ3) = 0.

Example 5.1 (Helicoids). We consider

β(u) = (ρ(u),0, b) and V (u) =
(ρ2 − 2c)

2ρ′ E2 +
ρ

ρ′ E3,

where b, c ∈ R and the real-valued function ρ = ρ(u) satisfies:√
(ρ′)2 − ρ2 = ρ2/2 − c.

Since β̇(u) = ρ′(u)E1, we obtain that g(β̇, V ) ≡ 0. Using (3.2) and (3.3), we
have that the initial data for the system (5.1) is

ψ(u,0) =
1
2
(
ρ′(u), −iρ(u), i

(
ρ(u)2 − 2c

)
/2

)
.
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Consequently, ψ3 = (−ψ2
1 − ψ2

2)1/2 and

ψ(u, v) =
1
2
(
ρ′(u) cosv + iρ(u) sinv, ρ′(u) sinv − iρ(u) cosv, i

(
ρ(u)2 − 2c

)
/2

)
.

Using the fact that:

φ1 = ψ1, φ2 = ψ2, φ3 = − y

2
ψ1 +

x

2
ψ2 + ψ3,

and:

(5.2)

⎧⎪⎪⎨⎪⎪⎩
f1(z) = 2Re

∫ z

z0
ψ1 dz,

f2(z) = 2Re
∫ z

z0
ψ2 dz,

f3(z) = 2Re
∫ z

z0

(
ψ3 − f2

2 ψ1 + f1
2 ψ2

)
dz,

we obtain the minimal immersion:

f(u, v) =
(
ρ(u) cosv, ρ(u) sinv, cv + b

)
.

Therefore, if c �= 0 we have the parametrization of a helicoid, while, if c = 0
we obtain the horizontal plane z = b.

Example 5.2 (Catenoid-type surface). We consider the curve in H3 given
by:

β(u) = (g cos l, g sin l, h̃),

where g = g(u), l = l(u) and h̃ = h̃(u) are real-valued functions such that

g′2 =
g2(g4 − 16) − 4

g2 − 4

and

h̃′ = h =

√
g2 + 4
g2 − 4

, l′ =
2h

g2 + 4
,

with g2 > 4. Let

V (u) = − (gg′ sin l + 2h cos l)
g(g2 + 4)

E1 +
(gg′ cos l − 2h sin l)

g(g2 + 4)
E2 +

2g′

g(g2 + 4)
E3

be a unitary vector field. As

β̇(u) = (g′ cos l − gl′ sin l)E1 + (g′ sin l + gl′ cos l)E2 + 2l′E3,

it is easy to check that g(β̇, V ) ≡ 0 and

β̇ ∧ V = 2g sin lE1 − 2g cos lE2 + g2E3.

Therefore, using (3.2) and (3.3), it follows that the initial data for system (5.1)
is

ψ(u,0) =
1
2
(g′ cos l − gl′ sin l + 2ig sin l, g′ sin l + gl′ cos l − 2ig cos l,2l′ + ig2).
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Hence,

ψ1(u, v) =
1
2
(
g′ cos(l + 2v) − gl′ sin(l + 2v) + 2ig sin(l + 2v)

)
,

ψ2(u, v) =
1
2
(
g′ sin(l + 2v) + gl′ cos(l + 2v) − 2ig cos(l + 2v)

)
,

ψ3(u, v) =
1
2
(2l′ + ig2).

After integration, we have the catenoid-type minimal surface given by

f(u, v) =
(
g cos(l + 2v), g sin(l + 2v), h̃

)
.

6. Final comments

If the ambient space is R
3 with the flat metric, the solution of the Björling

problem can be given by an explicit formula. This fact has been used to prove a
reflection principle and a nice application of this is the characterization of the
helicoid as the unique ruled minimal surface, besides the plane (see [3, 11]).

In our case, the partial differential equations involved are more complicated
than the Cauchy–Riemann ones, and we were not able to find an “explicit”
formula for the solution of the Björling problem. It is not clear that a reflection
principle holds for a generic three-dimensional Lie group. For example, in
the case of the Heisenberg group H3, there are many minimal surfaces ruled
by translated of 1-parameter subgroups. Such surfaces were classified in [2]
and [5] (see also [6] and [9] for the constant mean curvature case). If we
consider the developable ones, i.e., the ones with Gauss map of rank 1, then
they are (up to isometries of the ambient space) the graphs of the following
functions:

f(x, y) =

⎧⎪⎪⎨⎪⎪⎩
xy
2 + k

[
ln

(
y +

√
1 + y2

)
+ y

√
1 + y2

]
or

2ky − xy
2 , k ∈ R.

Since these are complete graphs, the Bernstein Theorem does not hold.
A classification of complete minimal graphs has been recently given in [4], in
terms of the generalized Hopf differentials introduced in [1].

We could also consider minimal surfaces of a Lie group, in particular of H3,
ruled by geodesics. Very little is known for such surfaces and the classification
problem seems to be more difficult. However, our feeling is that this is the
right context for a reflection principle.

Acknowledgment. We thank the referee for his appropriate and useful ob-
servations. In particular, the last section is inspired by his comments.
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University of Campinas, 2005, available at http://libdigi.unicamp.br/document/

?code=vtls000364041.
[10] I. G. Petrovsky, Lectures on partial differential equations, Interscience Publishers, New

York, 1954. MR 0065760
[11] H. A. Schwarz, Gesammelte mathematische abhandlungen, Band I, Springer, Berlin,

1890.

Francesco Mercuri, Departamento de Matemática, C.P. 6065, IMECC, UNI-
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