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THE SUPREMUM OF AUTOCONVOLUTIONS, WITH
APPLICATIONS TO ADDITIVE NUMBER THEORY

GREG MARTIN AND KEVIN O’BRYANT

Abstract. We adapt a number-theoretic technique of Yu to
prove a purely analytic theorem: if f ∈ L1(R) ∩ L2(R) is nonneg-
ative and supported on an interval of length I, then the supre-
mum of f ∗ f is at least 0.631‖f ‖2

1/I. This improves the previous

bound of 0.591389‖f ‖2
1/I. Consequently, we improve the known

bounds on several related number-theoretic problems. For a set

A ⊆ {1,2, . . . , n}, let g be the maximum multiplicity of any ele-
ment of the multiset {a1 + a2 : ai ∈ A}. Our main corollary is

the inequality gn > 0.631|A|2, which holds uniformly for all g, n,
and A.

1. Introduction

One measure of the “flatness” of a nonnegative function f is the ratio of
its L∞ norm to its L1 norm. If f is supported on an interval of length I ,
then we trivially have ‖f ‖∞ ≥ ‖f ‖1/I , and equality holds exactly if f is the
indicator function of the interval. However, it seems difficult for a convolution
of nonnegative functions to be flat throughout its domain, and we seek an
improved inequality that reflects this difficulty.

Define the autoconvolution of f to be

f ∗2(x) := f ∗ f(x) :=
∫

R

f(y)f(x − y)dy,

and for integers h > 2 let f ∗h = f ∗(h−1) ∗ f be the h-fold autoconvolution.
Since the h-fold autoconvolution is supported on an interval of length hI ,
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we have the trivial lower bound ‖f ∗h‖ ∞ ≥ ‖f ∗h‖1/hI = ‖f ‖h
1/hI . Our main

theorem shows that the constant can be improved for even integers h ≥ 2.

Theorem 1.1. If f ∈ L1(R) ∩ L2(R) is nonnegative and supported on an
interval of length I , and h is an even positive integer, then

‖f ∗h‖ ∞ >
1.262
hI

‖f ‖h
1 .

By replacing f(x) with c1f(c2x), we may assume without loss of generality
that I = 1/h and ‖f ‖1 = 1, in which case f ∗h is supported on an interval of
length 1 and the conclusion is simply

‖f ∗h‖ ∞ > 1.262.

In the case h = 2, this inequality improves the bound ‖f ∗ f ‖ ∞ ≥ 1.182778 of
the authors [5].

Before giving a one-paragraph summary of the proof of Theorem 1.1, we
state some of its applications, which will be deduced from the theorem in
Section 4. The main topic of [5] is to give upper and lower bounds on the
constant appearing in Corollary 1.2, a result in continuous Ramsey theory
concerning centrally symmetric sets, which are sets S such that S = c − S
for some real number c. As a consequence of Theorem 1.1, we obtain the
following improved lower bound.

Corollary 1.2. Every Lebesgue measurable subset of [0,1] with measure
ε contains a centrally symmetric subset with measure 0.631ε2.

Although Theorem 1.1 is a purely analytic theorem, it has applications to
discrete problems, specifically problems in additive number theory. If A is a
finite set, let A + A be the multiset {a1 + a2 : ai ∈ A}. We call the set A a
B∗[g] set if no element of the multiset A + A has multiplicity greater than g.
When g is even, it is common to call A a B2[g/2] set. Theorem 1.1 yields the
following upper bound on the size of B∗[g].

Corollary 1.3. If A ⊆ {1,2, . . . , n} is a B∗[g] set, then |A| < 1.258883
√

gn.

In [2], by comparison, Cilleruelo and Vinuesa construct B∗[g] sets with
|A| > ( 2√

π
− ε)

√
gn, provided that g is sufficiently large in terms of ε > 0,

and n is sufficiently large in terms of g and ε. The previous best upper bound
is Yu’s [8], who proved that for every fixed even integer g ≥ 2,

limsup
n→∞

(
max

A⊆ {1,2,...,n}
A is a B∗[g] set

|A|
√

gn

)
< 1.2649.

Our corollary improves on Yu’s result in three ways. First, we have simplified
and shortened the proof considerably. Second, we get a smaller constant. We
do use a better kernel function—possibly even the optimal kernel—but that
makes very little numerical difference. The bulk of the numerical improvement
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comes from a lower bound for a diagonal quadratic form in the real parts of
Fourier coefficients, inspired by a Fourier coefficient bound used in [4] and,
in a different form, in [5]. The third improvement is that Corollary 1.3 is
uniform—it applies to all g and n. For example, the uniformity allows us to
restate Corollary 1.3 as the following.

Corollary 1.4. If A ⊆ {1,2, . . . , n} has cardinality at least εn, then there
is an element s ∈ A + A with multiplicity greater than 0.631ε2n.

These discrete results can also be phrased in terms of Newman polynomi-
als, which are polynomials all of whose coefficients are 0 or 1. Inequalities
for Newman polynomials that relate p(1), deg(p), and H(p2) have recently
received some attention ([3], [1]); here H(q) is the height of the polynomial q,
defined to be H(q) := max{ |qi| : 0 ≤ i ≤ deg(q)} if q(x) =

∑deg(q)
i=0 qix

i. Note
that p(1), for a Newman polynomial p, counts the number of coefficients of p
that equal 1. The main quantity of interest is the ratio

R(p) :=
H(p2)(deg(p) + 1)

p(1)2
,

which we can bound from below for all polynomials with nonnegative real
coefficients, not just Newman polynomials.

Corollary 1.5. If p is a polynomial with nonnegative real coefficients,
then R(p) > 0.631.

Berenhaut and Saidak [1] have constructed a sequence of polynomials
that yields R(p) → 8/9 ≈ 0.89, and a construction of Dubickas [3] yields
R(p) → 5/6 ≈ 0.83. The authors’ work on B∗[g] sets ([6], [5]) can be rephrased
in terms of Newman polynomials; that work shows that if ε > 0, then there
is a sequence of Newman polynomials with p(1)/deg(p) → ε and R(p) →
π/(1 +

√
1 − ε)2. In particular, there is a sequence of Newman polynomi-

als with p(1)/deg(p) → 0 and R(p) → π/4 ≈ 0.7854. We conjecture that π/4
is the best possible constant.

The proof of Theorem 1.1 proceeds by forming upper and lower bounds on
the integral ∫

R

(
f ∗ f(x) + f ◦ f(x)

)
K(x)dx,

where f ◦ f is the autocorrelation of f and K is a kernel function to be chosen
later. A trivial upper bound is used for

∫
R

f ∗ f(x)K(x)dx, while the upper
bound on

∫
R

f ◦ f(x)K(x)dx uses Parseval’s identity to convert the integral
into a sum over Fourier coefficients; the central coefficient is pulled out of the
sum, and Cauchy–Schwarz is used to bound the remaining terms. The lower
bound proceeds by using Parseval’s identity, applied to Fourier coefficients
with a period smaller than 1, to express the integral in terms of the Fourier
coefficients of f and K, and then bounding the resulting quadratic form in
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the real parts of the Fourier coefficients. This strategy reflects Yu’s approach
from [8] in two ways: noting that the Fourier coefficients of f ∗ f + f ◦ f have
nonnegative real parts, and using Fourier coefficients to two different periods.

After defining some notation and special kernel functions in Section 2, we
prove Theorem 1.1 in Section 3. The corollaries are deduced from the theorem
in Section 4; we prove Corollaries 1.2 and 1.5 first and then derive the other
two corollaries from Corollary 1.5. Finally, in Section 5 we indicate the extent
to which Theorem 1.1 could be improved.

2. Notation and kernel functions

For any integrable function g, we use the notation

g ∗ g(x) :=
∫

R

g(y)g(x − y)dy

for its autoconvolution and

g ◦ g(x) :=
∫

R

g(y)g(x + y)dy

for its autocorrelation. We define its Fourier transform ĝ by

ĝ(ξ) :=
∫

R

g(x)e−2πiξx dx,

and we note that the Fourier transforms of its autoconvolution and autocor-
relation satisfy

ĝ ∗ g(ξ) = ĝ(ξ)2 and ĝ ◦ g(ξ) = |ĝ(ξ)|2.
By a probability density function, or pdf, we mean a nonnegative function g
such that ‖g‖1 = 1. Note that for any pdf g, we have ĝ(0) = 1.

Often we will speak of the jth “Fourier coefficient” of a function g defined
on the real line; by this we mean the jth Fourier coefficient of the periodiza-
tion

∑
k∈Z

g(x + k) of g. The notation ĝ(j) represents two equal quantities:
the Fourier transform of g evaluated at the real number j, and the jth Fourier
coefficient of the periodization of g. In any case, the reader can generally re-
place occurrences of “Fourier coefficient” with “value of the Fourier transform
at integers” without changing the meaning.

As mentioned in the Introduction, our method involves using Fourier co-
efficients corresponding to a period smaller than 1, which we can introduce
as a differently normalized Fourier transform. We let δ be a parameter that
lies between 0 and 1

4 (we will at the end set δ = 13/100), and for notational
convenience we set u := δ + 1

2 . We define the differently normalized Fourier
transform g̃ of an integrable function g by

g̃(ξ) :=
1
u

∫
R

g(x)e−2πixξ/u dx.
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Note that in this notation,

g̃ ∗ g(ξ) = ug̃(ξ)2 and g̃ ◦ g(ξ) = u|g̃(ξ)|2,
while g̃(0) = 1

u for any pdf g.
We will invoke Parseval’s identity, which is technically a statement involv-

ing Fourier coefficients rather than values of Fourier transforms. The following
lemma establishes the form of Parseval’s identity that will suffice for our pur-
poses.

Lemma 2.1. For i ∈ {1,2}, suppose that gi is a square-integrable function
supported on (−αi, αi). If α1 + α2 ≤ u, then∫

R

g1(x)g2(x)dx = u
∑
r∈Z

g̃1(r)g̃2(r).

Proof. Without loss of generality, we assume that u ≥ α1 ≥ α2 > 0, so that
α2 ≤ u/2. Define Gi(x) =

∑
k∈Z

gi(ku + x), so that each Gi is a u-periodic
function and for r ∈ Z

g̃i(r) =
1
u

∑
k∈Z

∫ ku+u/2

ku−u/2

gi(x)e−2πixr/u dx

=
1
u

∑
k∈Z

∫ u/2

−u/2

gi(ku + x)e−2πi(ku+x)r/u dx

=
1
u

∫ u/2

−u/2

(∑
k∈Z

gi(ku + x)
)

e−2πixr/u dx

=
1
u

∫ u/2

−u/2

Gi(x)e−2πixr/u dx.

The fact that each gi is a square-integrable function with compact support
implies that each Gi is also square-integrable on any interval of length u.
Parseval’s identity is thus applicable, giving∫ u/2

−u/2

G1(x)G2(x)dx = u
∑
r∈Z

g̃1(r)g̃2(r).

Notice that G2(x) = g2(x) throughout the interval (− u
2 , u

2 ), since g2 is sup-
ported on (−α2, α2). In particular,∫ u/2

−u/2

G1(x)G2(x)dx =
∫ α2

−α2

G1(x)g2(x)dx.

But notice that

G1(x) =
∑
k∈Z

g1(x + ku) = g1(x) for x ∈ (−α2, α2),
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since the support of any term g1(x+ku) with k = 0 is contained in (u − α1, ∞)
or (−∞, −u + α1), both of which are disjoint from (−α2, α2) due to the in-
equality α1 + α2 ≤ u. Therefore,∫ α2

−α2

G1(x)g2(x)dx =
∫ α2

−α2

g1(x)g2(x)dx =
∫

R

g1(x)g2(x)dx,

which establishes the lemma. �

We also use Parseval’s identity with respect to the 1-periodic Fourier trans-
form ĝ in the following form.

Lemma 2.2. If g1 and g2 are square-integrable functions supported on
(− 1

2 , 1
2 ), then ∫

R

g1(x)g2(x)dx =
∑
r∈Z

ĝ1(r)ĝ2(r).

In particular, ‖g1‖2
2 =

∑
r∈Z

|ĝ1(r)|2.

We now turn to describing two kernel functions that will appear in our
proofs. We will need a first kernel function K with the following four prop-
erties: K is a pdf; K is square-integrable; K is supported on (−δ, δ); and
K̃(j) is real and nonnegative for all integers j. We also need to be able to
numerically compute ‖K‖2

2 and K̃(j) for small j to high accuracy; it will turn
out that the primary consideration for K is to have ‖K‖2

2 as small as possible.
We define our favored kernel Kß by setting

(2.1) Kß(x) :=
1
δ
ß ◦ ß

(
x

δ

)
, where ß(x) :=

{
2/π√
1−4x2 , if − 1

2 < x < 1
2 ,

0, otherwise.

It is obvious that Kß is nonnegative and supported on (−δ, δ), and simple
calculus verifies that ‖Kß‖1 = ‖ß‖2

1 = 1. Since Kß is defined as an autocorre-
lation, its Fourier transform K̃ß(j) is automatically real and nonnegative; in
particular,

(2.2) K̃ß(j) = u|ß̃(δj)|2 =
1
u

∣∣∣∣J0

(
πδj

u

)∣∣∣∣2,
where J0(t) is the Bessel J -function of order 0. The fact that |J0(x)| < 1/

√
x

for x > 0 implies that
∑

j∈Z
K̃ß(j)2 converges; it then follows from Lemma 2.1

that Kß is square-integrable. Moreover, we can use the formula (2.2) to ac-
curately compute the K̃ß(j) numerically; we can also accurately compute
‖Kß‖2

2 = 1
δ ‖ß ◦ ß‖2

2 < 0.5747/δ using

ß ◦ ß(x) =

{
2

π2|x| E
(
1 − 1

x2

)
, if |x| < 1,

0, otherwise,
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where E(x) is the complete elliptic integral of the first kind. We note that in [5]
the authors showed that any autocorrelation (or autoconvolution) supported
on (−δ, δ) has two-norm-squared at least 0.5745/δ, and so our particular ker-
nel Kß is at least nearly optimal.

We will also need a second kernel function G that is u-periodic and at least 1
on the interval [− 1

4 , 1
4 ] and that has few nonzero ∼-Fourier coefficients, all of

which we can compute explicitly. (With respect to this kernel function only,
we speak literally of its Fourier coefficients, since it is a legitimate u-periodic
function.) For this, we turn to Selberg’s “magic functions”:

Lemma 2.3. Let 1
2 < u < 1 be a real number and n > 2u

2u−1 an integer, and
define

Cu,n(k) :=
(

1 − k

n

)(
cot

πk

n
sin

πk

2u
+ cos

πk

2u

)
+

1
π

sin
πk

2u

and

(2.3) Gu,n(x) :=
4u

2un − 2u − n

n−1∑
k=1

Cu,n(k) cos
2πkx

u
.

Then Gu,n(x) is u-periodic, even, and square-integrable on [− u
2 , u

2 ]; moreover,
Gu,n(x) ≥ 1 for − 1

4 ≤ x ≤ 1
4 , and

G̃u,n(k) =

{
2uCu,n(|k|)
2un−2u−n , if 1 ≤ |k| < n,

0, otherwise.

Specifically, we will use G63/100,22; we note for the record that

min
0≤x≤1/4

G63/100,22(x) > 1.006.

Proof of Lemma 2.3. Up to changes of variables that are convenient to our
present application, this lemma is directly from Montgomery’s account [7]. Let
K be a positive integer. Define e(u) := e2πiu and f(u) := −(1 − u) cot(πu) −
1/π, and set [7, Chapter 1, equations (16) and (18)]

ΔK(x) :=
K∑

k=−K

(
1 − |k|

K

)
e(kx),

VK(x) :=
1

K + 1

K∑
k=1

f

(
k

K + 1

)
sin(2πkx).

Then define [7, Chapter 1, equation (20)]

BK(x) := VK(x) +
1

2(K + 1)
ΔK+1(x)
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and, for any real numbers α and β such that α ≤ β ≤ α + 1, define [7, Chap-
ter 1, equation (21+)]

S+
K(x) := β − α + BK(x − β) + BK(α − x).

It follows from Vaaler’s lemma (see [7, page 6]) that S+
K(x) ≥ χ[α,β](x); that

is, S+
K(x) ≥ 0 for all x and S+

K(x) ≥ 1 for α ≤ x ≤ β. We are interested in the
special case α = −β.

Notice that for any positive integer n and any real number β, we have

Vn−1(x − β) + Vn−1(−β − x)

=
1
n

n−1∑
k=1

f

(
k

n

)(
sin

(
2πk(x − β)

)
+ sin

(
2πk(−β − x)

))
=

2
n

n−1∑
k=1

f

(
k

n

)
(− sin(2πkβ) cos(2πkx))

=
2
n

n−1∑
k=1

((
1 − k

n

)
cot

πk

n
+

1
π

)
sin(2πkβ) cos(2πkx).

Similarly, noting that

Δn(x) = 1 +
n∑

k=1

(
1 − k

n

)(
e(kx) + e(−kx)

)
= 1 + 2

n−1∑
k=1

(
1 − k

n

)
cos(2πkx),

we have

Δn(x − β) + Δn(−β − x)

= 2 + 2
n−1∑
k=1

(
1 − k

n

)(
cos

(
2πk(x − β)

)
+ cos

(
2πk(−β − x)

))
= 2 + 4

n−1∑
k=1

(
1 − k

n

)
(cos(2πkβ) cos(2πkx)).

Therefore, Bn−1(x − β) + Bn−1(−β − x) is equal to

Vn−1(x − β) + Vn−1(−β − x) +
1
2n

(
Δn(x − β) + Δn(−β − x)

)
,

which we expand into the form

1
n

+
2
n

n−1∑
k=1

((
1 − k

n

)(
cot

πk

n
sin(2πkβ) + cos(2πkβ)

)
+

sin(2πkβ)
π

)
× cos(2πkx).
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If we now set α := − 1
4u and β := 1

4u for a real number 1
2 < u < 1, then the

function

S+
n−1(x) =

1
2u

+
1
n

+
2
n

n−1∑
k=1

((
1 − k

n

)(
cot

πk

n
sin

πk

2u
+ cos

πk

2u

)
+

1
π

sin
πk

2u

)
× cos(2πkx)

satisfies S+
n−1(x) ≥ 1 for |x| ≤ 1

4u .
We now stipulate that n > 2u/(2u − 1), so that 2un − 2u − n > 0. Because

Gu,n(x) =
2un

2un − 2u − n

(
S+

n−1

(
x

u

)
−

(
1
2u

+
1
n

))
,

the inequality S+
n−1(x) ≥ 1 for |x| ≤ 1

4u implies that

Gu,n(x) ≥ 2un

2un − 2u − n

(
1 − 2u + n

2un

)
= 1 for

∣∣∣∣xu
∣∣∣∣ ≤ 1

4u
;

that is, Gu,n(x) ≥ 1 for |x| ≤ 1
4 as claimed. The other properties of Gu,n(x)

follow directly from its definition (2.3). �

These kernel functions Kß and Gu,n are quite good, but they have been
chosen primarily for their computational convenience rather than for their
optimality. For instance, there is no particular reason why an optimal K
would have to be an autocorrelation, and Selberg’s functions enjoy many
additional properties that are not relevant for our purposes.

3. Proof of Theorem 1.1

We first note that it suffices to prove Theorem 1.1 in the case h = 2: if
h ≥ 4 is an even integer, then the function f ∗h/2 is supported on an inter-
val of length hI/2, and we can apply the theorem for twofold autoconvo-
lutions to f ∗h/2, obtaining the required lower bound for the L∞ norm of
(f ∗h/2)∗2 = f ∗h. Therefore, we may assume that h = 2 from now on; as noted
after the statement of the theorem, we may also assume that f is a pdf sup-
ported on an interval of length 1

2 . In fact, we may assume that f is supported
on (− 1

4 , 1
4 ) by replacing f(x) with f(x − x0) if necessary. For such a function f ,

we need to prove that ‖f ∗ f ‖ ∞ > 1.262.
As described earlier, the proof of Theorem 1.1 proceeds by forming upper

and lower bounds on the integral∫
R

(
f ∗ f(x) + f ◦ f(x)

)
K(x)dx.

The simple Lemmas 3.1 and 3.2 provide the required upper bound, using
standard inequalities and 1-periodic Fourier analysis (so the coefficients f̂(j)
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appear, for example). The lower bound is provided by the more complicated
Lemmas 3.3 and 3.4; the second kernel function G makes its appearance in
Lemma 3.4, as does u-periodic Fourier analysis (including the coefficients f̃(j),
for example). All four lemmas are stated with general kernels K and G and
unspecified parameter u, so that other choices can be easily examined for
possible improvements to the final outcome. Once these four lemmas are
established, the proof of Theorem 1.1 can be completed; it is here that we
use the specific kernels Kß and Gu,n (with n = 22) and the specific value
u = 63/100 corresponding to δ = 13/100.

Lemma 3.1. For any pdf K, we have
∫

R
(f ∗ f(x))K(x)dx ≤ ‖f ∗ f ‖ ∞.

Proof. Hölder’s inequality immediately gives∫
R

(
f ∗ f(x)

)
K(x)dx ≤ ‖f ∗ f ‖ ∞ ‖K‖1,

and ‖K‖1 = 1 by assumption. �

Lemma 3.2. Let f be a square-integrable pdf that is supported on (− 1
4 , 1

4 ),
and let K be a square-integrable pdf that is supported on (− 1

2 , 1
2 ). Then∫

R

(
f ◦ f(x)

)
K(x)dx ≤ 1 +

√
‖f ∗ f ‖∞ − 1

√
‖K‖2

2 − 1.

Proof. Note that f ◦ f is supported on (− 1
2 , 1

2 ); also, f ◦ f is square-
integrable, since f is a square-integrable function with compact support.
Therefore, we may apply Lemma 2.2:∫

R

(
f ◦ f(x)

)
K(x)dx =

∫
R

(
f ◦ f(x)

)
K(x)dx =

∑
r∈Z

f̂ ◦ f(r)K̂(r)

=
∑
r∈Z

|f̂(r)|2K̂(r) = 1 +
∑
r 	=0

|f̂(r)|2K̂(r),

since f̂(0) = K̂(0) = 1. The Cauchy–Schwarz inequality now yields∫
R

(
f ◦ f(x)

)
K(x)dx ≤ 1 +

(∑
r 	=0

|f̂(r)|4
)1/2(∑

r 	=0

|K̂(r)|2
)1/2

= 1 +
(∑

r∈Z

|f̂(r)|4 − 1
)1/2(∑

r∈Z

|K̂(r)|2 − 1
)1/2

= 1 +
(∑

r∈Z

|f̂ ∗ f(r)|2 − 1
)1/2(∑

r∈Z

|K̂(r)|2 − 1
)1/2

.
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Since f ∗ f is also square-integrable and supported on (− 1
2 , 1

2 ), two applications
of Lemma 2.2 now yield∫

R

(
f ◦ f(x)

)
K(x)dx ≤ 1 + (‖f ∗ f ‖2

2 − 1)1/2(‖K‖2
2 − 1)1/2

≤ 1 + (‖f ∗ f ‖ ∞ − 1)1/2(‖K‖2
2 − 1)1/2

as claimed. �

Recall that 0 < δ < 1
4 is a parameter and u = δ + 1

2 , and that g̃ refers to
the Fourier transform normalized using the parameter u.

Lemma 3.3. Let f be a square-integrable pdf that is supported on (− 1
4 , 1

4 ),
and let K be a pdf that is supported on (−δ, δ). Then∫

R

(
f ∗ f(x) + f ◦ f(x)

)
K(x)dx =

2
u

+ 2u2
∑
j 	=0

(�f̃(j))2�K̃(j).

Proof. The function f ∗ f + f ◦ f is square-integrable and supported on
(− 1

2 , 1
2 ). Since the inequality 1

2 + δ ≤ u is satisfied, we may apply Lemma 2.1
to obtain∫

R

(
f ∗ f(x) + f ◦ f(x)

)
K(x)dx =

∫
R

(
f ∗ f(x) + f ◦ f(x)

)
K(x)dx

= u
∑
j∈Z

(
f̃ ∗ f(j) + f̃ ◦ f(j)

)
K̃(j)

= u2
∑
j∈Z

(
f̃(j)2 + |f̃(j)|2

)
K̃(j).

As the left-hand side is real, we may take real parts term by term on the
right-hand side:∫

R

(
f ∗ f(x) + f ◦ f(x)

)
K(x)dx = u2

∑
j∈Z

�
(
f̃(j)2 + |f̃(j)|2

)
�K̃(j)

= 2u2
∑
j∈Z

(�f̃(j))2�K̃(j),

using the fact that �(z2 + |z|2) = 2(�z)2 for any complex number z. Contin-
uing, ∫

R

(
f ∗ f(x) + f ◦ f(x)

)
K(x)dx(3.1)

= 2u2

(
(�f̃(0))2�K̃(0) +

∑
j 	=0

(�f̃(j))2�K̃(j)
)

=
2
u

+ 2u2
∑
j 	=0

(�f̃(j))2�K̃(j),
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since f̃(0) = K̃(0) = 1
u . This establishes the lemma. �

We comment that Lemma 3.3 implies∫
R

(
f ∗ f(x) + f ◦ f(x)

)
Kß(x)dx ≥ 2

u
,

since K̃ß(j) ≥ 0 for all j. Combining this lower bound with the upper bounds
of Lemmas 3.1 and 3.2 applied with K = Kß gives

2
u

≤
∫

R

(
f ∗ f(x) + f ◦ f(x)

)
Kß(x)dx

≤ ‖f ∗ f ‖∞ + 1 +
√

‖f ∗ f ‖ ∞ − 1
√

0.5747/δ − 1;

setting δ := 0.1184 and solving for ‖f ∗ f ‖ ∞ yields ‖f ∗ f ‖∞ ≥ 1.25087, already
an improvement over earlier work.

We should be able to do better, of course, than simply throwing away all
the j = 0 terms on the right-hand side of Lemma 3.3. To do so and thus
achieve the statement ‖f ∗ f ‖ ∞ ≥ 1.262 of Theorem 1.1, we utilize our second
kernel function G and the following lemma. Let Spec(G) := {j ∈ Z : G̃(j) = 0}
denote the support of the ∼-Fourier series for the function G.

Lemma 3.4. Let f be a square-integrable pdf supported on (− 1
4 , 1

4 ). Let G
be an even, real-valued, square-integrable function that is u-periodic, takes pos-
itive values on (− 1

4 , 1
4 ), and satisfies G̃(0) = 0. Let K be a function supported

on (−δ, δ), with K̃(j) ≥ 0 for all integers j and K̃(j) > 0 for j ∈ Spec(G).
Then

u2
∑
j 	=0

(�f̃(j))2�K̃(j) ≥
(

min
0≤x≤1/4

G(x)
)2

·
( ∑

j∈Spec(G)

G̃(j)2

K̃(j)

)−1

.

Proof. We observe that

min
0≤x≤1/4

G(x) =
(

min
−1/4≤x≤1/4

G(x)
)∫ 1/4

−1/4

f(x)dx

≤
∫ 1/4

−1/4

f(x)G(x)dx =
∫

R

f(x)G(x)dx,

since f is supported on (− 1
4 , 1

4 ). Lemma 2.1 then gives

min
0≤x≤1/4

G(x) ≤ u

∞∑
j=− ∞

f̃(j)G̃(j).

Taking real parts of both sides, and noting that G̃(j) is real under the hy-
potheses on G, yields

min
0≤x≤1/4

G(x) ≤ u

∞∑
j=− ∞

�f̃(j) · G̃(j) = u
∑

j∈Spec(G)

�f̃(j) · G̃(j).
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We now have, using Cauchy–Schwarz in the middle inequality,(
min

0≤x≤1/4
G(x)

)2

≤ u2

( ∑
j∈Spec(G)

�f̃(j) · G̃(j)
)2

= u2

( ∑
j∈Spec(G)

�f̃(j)
√

K̃(j) · G̃(j)√
K̃(j)

)2

≤ u2

( ∑
j∈Spec(G)

(�f̃(j))2K̃(j)
)( ∑

j∈Spec(G)

G̃(j)2

K̃(j)

)

≤
(

u2
∑
j 	=0

(�f̃(j))2K̃(j)
)( ∑

j∈Spec(G)

G̃(j)2

K̃(j)

)
,

where we have used the hypothesis that K̃(j) ≥ 0 for all integers j and
K̃(j) > 0 for j ∈ Spec(G) in the last inequalities (as well as G̃(0) = 0, so that
0 /∈ Spec(G)). �

Proof of Theorem 1.1. We assume, as we have observed we may, that h = 2
and that f is a pdf supported on (− 1

4 , 1
4 ). We would like to apply Lem-

mas 3.1–3.4 with the choices δ := 13/100, u := δ + 1/2 = 63/100, K := Kß as
defined in equation (2.1), and G := Gu,22 as defined in equation (2.3). We
already saw in Section 2 that Kß is a square-integrable pdf supported on
(−δ, δ) whose ∼-Fourier coefficients are nonnegative; a calculation shows that
K̃(j) > 0 for 1 ≤ |j| ≤ 21. We also know from Lemma 2.3 that Gu,22 is an
even, real-valued, square-integrable u-periodic function that takes positive val-
ues on (− 1

4 , 1
4 ); moreover, G̃u,22(0) = 0 and Spec(Gu,22) = {j : 1 ≤ |j| ≤ 21}.

Therefore, all the hypotheses of Lemmas 3.1–3.4 are satisfied.
By Lemmas 3.1 and 3.2, we have∫

R

(
f ∗ f(x) + f ◦ f(x)

)
Kß(x)dx(3.2)

≤ ‖f ∗ f ‖∞ + 1 +
√

‖f ∗ f ‖ ∞ − 1
√

‖Kß‖2
2 − 1

≤ ‖f ∗ f ‖ ∞ + 1 + 2L
√

‖f ∗ f ‖ ∞ − 1,

where

L := 0.9248 >
1
2

√
0.5747/δ − 1 >

1
2

√
‖Kß‖2

2 − 1.

(The constant in equation (3.2) has been called 2L rather than L simply
for later convenience.) On the other hand, by Lemmas 3.3 and 3.4, we
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have ∫
R

(
f ∗ f(x) + f ◦ f(x)

)
Kß(x)dx

≥ 2
u

+ 2
(

min
0≤x≤1/4

Gu,22(x)
)2

·
( ∑

j∈Spec(Gu,22)

G̃u,22(j)2

K̃ß(j)

)−1

≥ R,

where

R := 3.20874 <
2
u

+ 2(1.006)2
(

2
21∑

j=1

(2uCu,22(j)/(44u − 2u − 22))2

J0(πδj/u)2/u

)−1

=
2
u

+
(1.006)2(22u − u − 11)2

u3

(
21∑

j=1

Cu,22(j)2

J0(πδj/u)2

)−1

.

Combining these inequalities yields

(3.3) ‖f ∗ f ‖ ∞ + 1 + 2L
√

‖f ∗ f ‖ ∞ − 1 ≥ R.

Using the notation Q =
√

‖f ∗ f ‖ ∞ − 1, equation (3.3) becomes (Q2 +1)+
1 + 2LQ ≥ R, or equivalently Q2 + 2LQ + (2 − R) ≥ 0. The discriminant
4L2 − 4(2 − R) is nonnegative, and so Q must be at least as large as the pos-
itive root of x2 + 2Lx + (2 − R), which is (−2L +

√
4L2 − 4(2 − R))/2. This

establishes that √
‖f ∗ f ‖∞ − 1 ≥

√
L2 + R − 2 − L,

and it follows from the fact that
√

L2 + R − 2 − L is nonnegative that

‖f ∗ f ‖ ∞ ≥
(√

L2 + R − 2 − L
)2 + 1 > 1.262,

as claimed. �

4. Deriving the corollaries

We now derive Corollaries 1.2 and 1.5 from Theorem 1.1, then derive Corol-
laries 1.3 and 1.4 from Corollary 1.5. We let

χS(x) :=

{
1, if x ∈ S,

0, if x /∈ S

denote the indicator function of a set S, and we let μ denote Lebesgue measure
on R.

Proof of Corollary 1.2. Let B be a set with measure ε supported in [0,1],
so that ‖χB ‖1 = ε. Theorem 1.1 applied with h = 2 tells us that

‖χB ∗ χB ‖ ∞ >
1.262
2 · 1

‖χB ‖2
1 = 0.631ε2.
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On the other hand,

χB ∗ χB(x) =
∫

R

χB(y)χB(x − y)dy = μ(Cx),

where Cx = B ∩ (x − B) is the largest centrally symmetric subset of B with
center x/2. Therefore, ‖χB ∗ χB ‖ ∞ is the measure of the largest centrally
symmetric subset of B, which establishes the corollary. �

Proof of Corollary 1.5. Suppose that p(x) =
∑deg(p)

i=0 pix
i with all of the pi

nonnegative, and set

g(x) :=
deg(p)∑

i=0

piχ(i−1/2,i+1/2)(x).

Clearly, g is nonnegative and supported on the interval (− 1
2 ,deg(p) + 1

2 ), and
‖g‖1 =

∑deg(p)
i=0 pi = p(1). Theorem 1.1 applied with h = 2 gives

(4.1) ‖g ∗ g‖ ∞ >
1.262
2I

‖g‖2
1 =

0.631
deg(p) + 1

p(1)2.

However, note that

g ∗ g(x) =
deg(p)∑

i=0

deg(p)∑
j=0

pipjχ(i−1/2,i+1/2) ∗ χ(j−1/2,j+1/2)(x)

=
deg(p)∑

i=0

deg(p)∑
j=0

pipjΛ(x − i − j),

where Λ(x) := max{0,1 − |x| } is a tent function with corners only at integers.
In particular, g ∗ g is a piecewise linear function with corners only at integers,
and so ‖g ∗ g‖∞ = max{g ∗ g(k) : k ∈ Z}. Moreover, for k an integer

g ∗ g(k) =
deg(p)∑

i=0

deg(p)∑
j=0

pipjΛ(k − i − j) =
deg(p)∑

i=0

deg(p)∑
j=0

i+j=k

pipj

(since Λ(0) = 1 while Λ(n) = 0 for every nonzero integer n), which is exactly
the coefficient of xk in p(x)2. Therefore, ‖g ∗ g‖ ∞ = H(p2), and so the in-
equality (4.1) is equivalent to the assertion of the corollary. �

Proof of Corollaries 1.3 and 1.4. Fix A ⊆ {0,1, . . . , n − 1}, and let g be
the maximum multiplicity of an element of the multiset A + A, so that A is
a B∗[g] set. Define p(x) =

∑
a∈A xa, and observe that p(1) = |A|. Note that

the coefficient of xk in p(x)2 is exactly the multiplicity of k as an element of
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A + A, so that H(p2) = g. Corollary 1.5 then yields

0.631 < R(p) =
H(p2)(deg(p) + 1)

p(1)2
≤ gn

|A|2 ,

since deg(p) ≤ n − 1. Solving this inequality for |A| establishes Corollary 1.3;
on the other hand, setting |A| = εn and solving the inequality for g establishes
Corollary 1.4. �

5. Open problems

We conclude by mentioning a few open problems associated to twofold
autoconvolutions. The function

h(x) =

{
1/

√
2x, if 0 < x < 1/2,

0, otherwise

is a pdf whose autoconvolution is

h ∗ h(x) =

⎧⎪⎪⎨⎪⎪⎩
π/2, if 0 < x ≤ 1/2,

π/2 − 2arctan
√

2x − 1, if 1/2 < x < 1,

0, otherwise.

In particular, ‖h ∗ h‖1 = ‖h‖2
1 = 1, while ‖h ∗ h‖ ∞ = π/2 and ‖h ∗ h‖2

2 = log 4
(here log is the natural logarithm). We believe that this function is extremal
in two ways. First, this function demonstrates that the constant 1.262 in
Theorem 1.1 cannot be increased beyond π/2 ≈ 1.5708, and we believe that
this constant represents the truth:

Conjecture 5.1. If g ∈ L1(R) ∩ L2(R) is nonnegative and supported on
an interval of length I , then

‖g ∗ g‖∞ ≥ π/2
2I

‖g‖2
1.

Dubickas [3] gives a sequence of functions supported on [0,1], which take
only the values ±1 on that interval, satisfying ‖f ∗ f ‖∞ → 0. That example
shows that the hypothesis of nonnegativity in Conjecture 5.1 is necessary.

Second, Hölder’s inequality gives the upper bound ‖g‖2
2 ≤ ‖g‖ ∞ ‖g‖1, which

can be an equality if g is a multiple of an indicator function. However, when
we apply this inequality in the last step of the proof of Lemma 3.2, we apply it
to the function f ∗ f , which seems far from being constant on its support. We
conjecture that an improvement is possible here, with the function h again
providing the best possible constant. This conjecture would imply that the
constant 1.262 in Theorem 1.1 could be improved to 1.3674.

Conjecture 5.2. If g ∈ L1(R) ∩ L2(R) is nonnegative, then

‖g ∗ g‖2
2 ≤ log 16

π
‖g ∗ g‖ ∞ ‖g ∗ g‖1.
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The analogous discrete inequality cannot be improved in this manner. Set∑
i qix

i = (
∑deg(p)

i pix
i)2, where pi ≥ 0; the inequality that we refer to is∑

q2
i ≤ max qi ·

∑
qi. To see that this cannot be improved, set pi = 1 if i = 2k

with 0 ≤ k < N , and set pi = 0 otherwise. In this case,
∑

q2
i = 2N2 − N , while

max qi = 2 and
∑

qi = N2, and the inequality is seen to be asymptotically
sharp.

Finally, consider a pdf g that is supported on an interval of length 1.
Theorem 1.1 indicates that ‖g∗h‖ ∞ > 1.262/h for even integers h, while the
central limit theorem implies that much more is true: for large integers h
there is a constant c > 0 such that ‖g∗h‖ ∞ ≥ c/

√
h. It seems likely that 1/

√
h

is the true rate of decay as h → ∞, at least under some assumption on g such
as piecewise continuity, but we have not succeeded in proving this.
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