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HELIX, SHADOW BOUNDARY AND MINIMAL
SUBMANIFOLDS

GABRIEL RUIZ-HERNÁNDEZ

Abstract. We give conditions for the shadow boundary of a
Riemannian submanifold M to be regular. We prove that a he-
lix hypersurface is ruled. By studying some relations between

these natural submanifolds, we show that a minimal helix shadow
boundary hypersurface of M is totally geodesic in M .

1. Introduction

Let N be a Riemannian manifold and let M ⊂ N be a Riemannian subman-
ifold. Let us assume that Y : M −→ TN is a vector field along M . We say
that M is a helix submanifold with respect to Y when the angle between each
tangent space of M and Y is constant, equivalently, the tangent component of
Y with respect to M has constant length. The shadow boundary of M with
respect to Y consists of those points in M where Y is tangent to M . Because
such definitions are so general, it is natural to restrict the vector field. In this
work, we will assume that Y is parallel with respect to the submanifold.

In the joint work with Di Scala [5], we investigated helix submanifolds of
Euclidean spaces. In particular, we obtained a local classification of helix
hypersurfaces. In [6], Dillen and Munteanu classified helix surfaces in H

2 × R

with respect to the parallel global vector field in the direction of R and where
H

2 is the hyperbolic plane. The authors called them constant angle surfaces.
The authors of [7] give the corresponding classification for helix surfaces in
S

2 × R, where S
2 is the standard unitary sphere.

In the context of Affine Differential Geometry, Blaschke classified convex
analytic surfaces with planar shadow boundaries; see [12], p. 61. In [4], Choe
gives the definition of shadow boundary of Riemannian submanifolds, calling
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it horizon. Using the generalized Morse index theorem, he related this con-
cept with the index of stability of a complete minimal surface in R

3. More
recently, Ghomi solved the shadow problem formulated by Wente. He used
the very close concept of shadow. In my previous work [13], I studied shadow
boundaries of Euclidean submanifolds.

In this manuscript, I offer a new perspective that goes beyond Riemannian
ambients with a global parallel vector field. I will present four results in
the context of those Riemannian submanifolds M ⊂ N that admits a parallel
vector field Y along them. Let me explain them as follows. The helix and
shadow boundary will be with respect to Y . Our first result is Theorem 2.1,
which proves that if M is a helix hypersurface with respect to Y , then M
is ruled: for every point in it passes a geodesic of the ambient N contained
in M . This generalizes Lemma 2.5 in [5] where the ambient is an Euclidean
space. See [6] and [7] for the case when the ambient is H

2 × R and S
2 × R,

respectively. The next result, Theorem 3.1, gives a generic condition over the
second fundamental form of M , for the shadow boundary to be regular, i.e.,
a submanifold. This extends Theorem 1.1 in [13], where the ambient is again
an Euclidean space.

The third result, Theorem 3.2, shows that we can obtain helix submanifolds
as a shadow boundary: If the shadow boundary is totally geodesic in M ,
then it is a helix submanifold. This property was the motivation to study
helix submanifolds in this work. The second part proves that if a submanifold
L ⊂ M is a helix orthogonal to Y , then it is contained in the shadow boundary
if and only if it is totally geodesic in M . Theorem 1.2 in [13] is a consequence
of this result. Finally, Theorem 4.1, says: If L ⊂ M is a shadow boundary,
minimal in M , and it is a helix submanifold, then L is totally geodesic in M .
In this last result, it is assumed that there is some technical condition over
the mean curvature vector field of L ⊂ N .

2. Helix submanifolds

In this manuscript, we will work with C∞ manifolds and C∞ immersed Rie-
mannian submanifolds. The manifold N will denote a connected Riemannian
manifold with metric g. We denote the induced covariant derivative by ∇.

The next definition is a natural extension of the concept of parallel vector
field on a Riemannian manifold. The case when the submanifold has dimen-
sion one is well known. For higher dimensional submanifolds, I do not know
the reference where to find it.

Definition 2.1. Let M be a Riemannian immersed submanifold of N and
let Y : M −→ TN be a vector field along M . We will say that Y is a parallel
vector field along M , if ∇W Y = 0 for every W ∈ TM . We will denote the
set of all these vector fields by X0(N,M). We could call Y , also, an extrinsic
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parallel vector field. If M is connected, Y is constant. So, we will assume that
‖Y ‖ = 1.

Let us observe that we are taking the derivative of the extrinsic vector
field Y along tangent directions of the submanifold M . Equivalently, Y is
parallel along some submanifold if and only if it is invariant under the parallel
transport in N along curves contained in the submanifold (see Besse’s book
[3], p. 282 for details in the case that Y is global). In the case that the
manifold N admits a global parallel vector field Y , then the restriction of
Y to any immersed submanifold of N is parallel along such submanifold.
The conditions for the existence of a global parallel vector field Y on N are
well known, N should be locally a Riemannian product with a factor locally
isometric to R (see the work of Welsh in [15] and [16]). To read more comments
about this definition, see Remark 2.1.

The next definition is also a natural extension of the classic concept of
general helix in R

3 which appears in a basic course of differential geometry:
a curve in R

3 which makes constant angle with respect to a fixed direction.
These kind of curves have been studied also when the ambient is a Riemannian
or a Lorentzian three manifold (see [1] and [8]).

In the following definition, a helix submanifold might have higher dimension
or codimension.

Definition 2.2. Let M be a Riemannian submanifold of N and let Y ∈
X0(N,M) be a parallel vector field along M . We say that M is a helix
submanifold, of N , with respect to Y if the following function h : M −→ R is
constant.

(1) h(x) = max{g(w,Y (x)) | w ∈ TxM,g(w,w) = 1}.

Let us observe that

h(x) = g

(
tan(Y (x))

(g(tan(Y (x)), tan(Y (x))))1/2
, Y (x)

)
= (g(tan(Y (x)), tan(Y (x))))1/2,

where tan(Y ) is the orthogonal projection of Y on TM . So, M is a helix
if and only if tan(Y ) has constant length, i.e., the angle 0 ≤ tan−1(h(x)) ≤
π/2 between TM and Y is constant. So an alternative name for a helix
submanifold could be constant angle submanifold.

Any Riemannian manifold M can be isometrically immersed as a helix
submanifold of the Euclidean space with angle π/2. So the interesting case is
when the angle is not π/2.

Let us see some examples below:
(1) Two elementary examples: a circular cylinder and any cone of revo-

lution in R
3 are helix submanifolds with respect to a constant vector field

parallel to their axis. In [5], we described a method to construct, locally, any
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immersed helix hypersurface in Euclidean space R
n: they are ruled. For higher

codimension, we have also a local characterization in particular, they can be
nonorientable. See [6] and [7] for the local characterization and construction
in the case of helix surfaces in H

2 × R and S
2 × R, respectively. In these cases,

the direction is the global parallel vector field induced the factor R.
(2) Let M ⊂ N be a connected and totally geodesic submanifold. If Y ∈

X0(N,M), then M is a helix submanifold of N with respect to Y . To prove
this, let us observe that TM and Y are invariant under parallel transport
on N , along curves contained on M . So the angle between Y and TM is
constant.

(3) We are going to see that the 2-dimensional torus is the only compact,
connected, and orientable surface that can be immersed as a helix submanifold
with angle different from π/2. Let M be a connected, orientable, and compact
surface immersed in N . If M is a helix of N , then M is diffeomorphic to a
torus or the angle is π/2.

Proof: Let us assume that M is a helix with respect to Y ∈ X0(N,M). If
Y is orthogonal to M , we are done. Otherwise, by definition, tan(Y ) has
nonzero constant length. Since M is compact and orientable, we conclude
by Poincare–Hopf’s theorem (see [10]) that M has zero Euler characteristic.
This proves that M is a torus.

For general Riemannian hypersurfaces which are helix, we have the follow-
ing result. We will call a Riemannian submanifold ruled if through each point
of it, there is a geodesic of the ambient contained in the submanifold. The
next result proves that any helix hypersurface is ruled.

Theorem 2.1. Let M be a connected hypersurface in a Riemannian man-
ifold N . Let us assume that M is a helix submanifold of N with respect to
Y ∈ X0(N,M), and the following will hold.

(a) If Y is orthogonal to M at some point, then M is totally geodesic
submanifold of N .

(b) If Y is tangent to M at some point, then M is locally a Riemannian
product R × M2, and the integral curves of Y are geodesics in the ambient.

(c) If Y is transversal (nonorthogonal) to M at some point, then M is
ruled.

Proof. Let ∇ and ∇M , be the Levi–Civita connections of N and M , re-
spectively, and let II (·, ·) be the second fundamental form of M ⊂ N . Since
M is a helix, the angle between Y and M is constant.

(a) We have that Y is parallel along M and orthogonal to M . So M is a
totally geodesic submanifold of N .

(b) Let us observe that Y is a parallel vector field on M , then by Welsh’s
work in [15], M is locally isometric to a Riemannian product. The integral
curves of Y are geodesics in M , i.e., ∇M

Y Y . By Remark 2.1, II (Y,Y ) = 0. So
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the integral curves of Y are also geodesics in the ambient: ∇Y Y = ∇M
Y Y +

II (Y,Y ).
(c) In this case, Y is transversal to M in any point. Let Y0 = tan(Y ),

Y1 = nor(Y ) be the orthogonal projection of Y into TM and TM ⊥, respec-
tively. Let α ⊂ M be an integral curve of Y0, i.e., α̇(t) = Y0(α(t)). First, we
want to prove that the integral curves of Y0 = tan(Y ) are geodesics in M ,
i.e., ∇M

Y0
Y0 = 0. Since Y is parallel along M , 0 = ∇XY = ∇XY0 + ∇XY1.

Gauss and Weingarten formulas say that ∇XY0 = ∇M
X Y0 + II (X,Y0) and

∇XY1 = −AY1(X), where AY1 is the shape operator, and X ∈ TN . Taking the
tangent and normal components of ∇XY , we have that ∇M

X Y0 − AY1(X) = 0
and II (X,Y0) = 0. Finally, let us see that AY1(Y0) = 0. In particular, Wein-
garten implies that g(∇Y0Y1,X) = −g(AY1(Y0),X) = −g(Y1, II (Y0,X)) = 0.
This proves that ∇Y0Y1 has not tangent component. So AY1(Y0) = 0, and
therefore, ∇M

Y0
Y0 = AY1(Y0) = 0, i.e., α is geodesic in M . Finally, let us see

that these integral lines of Y0 are geodesics in N . Equivalently, we have to
verify that Y is orthogonal to ∇α̇α̇.

0 =
d

dt
g(α̇, Y0(α)) =

d

dt
g(α̇, Y (α)) = g(∇α̇α̇, Y ) + g(α̇, ∇α̇Y ) = g(∇α̇α̇, Y ),

where ∇α̇Y = 0 because Y is parallel along M . Since α is geodesic in M , ∇α̇α̇
is orthogonal to M . Thus, the latter equality implies that 0 = g(∇α̇α̇, Y ) =
g(∇α̇α̇, Y1). To finish, let us observe that TN = TM ⊕ 〈Y1〉, because Y
transversal to the hypersurface M . So, ∇α̇α̇ = 0. Therefore, the integral
lines of Y0 (the tangent component of Y ) are geodesics in N . �

In [5], we proved this result when the ambient is an Euclidean space with
its standard metric. The similar result is contained in [6] and [7] for the case
of helix surfaces in H

2 × R and S
2 × R, respectively. So, this first theorem

says that these helix surfaces are foliated by geodesics in its ambient, H
2 × R

or S
2 × R.

More comments and examples about extrinsic parallel vector fields
and helix submanifolds.

Remark 2.1. Let us analyze what happens when Y ∈ X0(N,M) is tangent
or orthogonal to M . Let ∇M be the Riemannian induced connection on M .
Let II x : TxM × TxM −→ TxM ⊥ be the second fundamental form of M ⊂ N
at x ∈ M . Finally, let ∇ ⊥ be the induced normal connection on TM ⊥.

First, let us see the case when M has codimension one. Let us assume that
Y : M −→ TN is a parallel vector field along M . If Y is tangent to M (i.e.,
Y ∈ X(M)), then Y is a parallel vector field on M . If Y is orthogonal to M ,
then it is parallel with respect to the normal connection ∇⊥ on TM ⊥. Let
us observe that the converse assertions are false. But they are true if we add
some extra conditions.
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Let X : M −→ TM be a parallel vector field on M (i.e., ∇MX = 0) and
let us assume that for every x ∈ M , X(x) is in the relative nullity of II x

(i.e. II x(X(x), ·) = 0). Then X is parallel along M , i.e., ∇W Z = 0 for every
W ∈ TxM .

Now, let us see what happens when Z : M −→ TM ⊥ satisfies ∇⊥Z = 0
(i.e., Z is normal parallel), and for every x ∈ M , g(Z(x), II x(·, ·)) = 0. Then
Z is parallel along M . These properties can be proved by using the Gauss
and Weingarten’s formulas. The extra conditions are sufficient and necessary
for T and Z be parallel vector fields along M .

These observations tell us that to be a parallel vector field along a sub-
manifold is a strong condition. This is supported also by the next property,
whose proof is standard.

Let M ⊂ N be a Riemannian submanifold of codimension r. Let Xj :
M −→ TN , j = 1, . . . , r, be parallel vector fields along M such that, for every
x ∈ M, {X1(x), . . . ,Xr(x)} is a basis of TxM ⊥. Then M is a totally geodesic
submanifold of N .

Proposition 2.1. If M is a compact helix of N = R × M2 with respect to
X = ∂t, then X is orthogonal to M .

Proof. Since M is compact, the projection π1 of M into R is compact so
the set π1(M) ⊂ R has a maximum denoted by t0. Let x ∈ M be such that
π1(x) = t0. It is standard to see that t0 × M2 = π−1

1 (t0) is tangent to M in
x. We deduce from this that TxM ⊂ Tx(t0 × M2). Let us observe that X is
orthogonal to t0 × M2, then, X is orthogonal to M at x. Since M is a helix,
X is orthogonal to M . �

In general, a compact helix submanifold M , with respect to a global parallel
vector field X on N , is not necessarily orthogonal to X : Let N = S

1 × S
1 × S

1

be the standard 3-dimensional flat torus. Let us take M := S
1 × S

1 × {t}, and
let Y be any global parallel vector field of N nonorthogonal to M .

Example 2.1. Let us consider a connected hypersurface M in N = R
n+1.

Let Y ∈ X(N) be a constant vector field. If M is a helix submanifold of N ,
then:

(a) M is contained in a hyperplane (orthogonal to Y ) of N when Y is
orthogonal to M ,

(b) M is not compact (otherwise, Y would be orthogonal to M ),
(c) M is orientable (nor(Y ) induces an orientation),
(d) M has zero Gauss–Kronecker curvature (the Gauss map of M is sin-

gular).
If M ⊂ R

n+1 is not a hypersurface, but is compact, we can conclude that M
is contained in a hyperplane orthogonal to Y .

To finish this section, let me ask the following natural question.
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First, we need to consider the following property: Let us take N = R
3 and

let v ∈ N be a nonzero vector. If M2 ⊂ N is a complete minimal surface which
is a helix with respect to Y = v, then M is a plane.

Proof: By Example 2.1, M has zero Gauss–Kronecker curvature, but in
dimension 2 it is the Gaussian curvature. Since M is minimal, it easy to see
that M is a plane.

The latter argument is not valid if N = R
n+1, with n ≥ 3: In R

4, there are
minimal hypersurfaces with zero Gauss–Kronecker curvature (see [11]), like
M3 = M ′ × R, where M ′ is minimal in R

3.

Question 2.1. If Mn ⊂ Nn+1 is minimal and a helix submanifold, is it a
totally geodesic submanifold of N?

3. Shadow boundary and helix

The next definition was used by Choe. In [4], he gives the definition of
shadow boundary of Riemannian submanifolds calling it horizon. He used
this concept to study the stability index of complete minimal surfaces in R

3.
Blaschke used the name of shadow boundaries for the case of convex ana-

lytic surfaces in R
3.

Definition 3.1. Let M be a Riemannian immersed submanifold of N ,
and let Y : M −→ TN be a parallel vector field along M (i.e. Y ∈ X0(N,M)).
The shadow boundary of M with respect to Y is the following subset of M .

(2) S∂(M,Y ) = {x ∈ M | Y (x) ∈ TxM }.

The shadow boundary is a natural subset of M , it is the locus where the
extrinsic vector field Y is tangent to M . In general, this subset S∂(M,Y ) ⊂ M
is closed, so, if M is compact it is also compact. This subset, S∂(M,Y ), is
not always a submanifold of M . It may be empty (when Y is nowhere tangent
to M ), or equal to M (when Y is anywhere tangent to M ). See Example 3.1
below for other property of shadow boundaries.

Finally, when N = R
n, any constant vector field Y on N is parallel along

any submanifold. In this context, if M is a compact submanifold, the shadow
boundary of M is nonempty, with respect to any such vector field Y .

The second fundamental form of M ⊂ N at x ∈ M is a symmetric bilinear
tensor, which we denote by II x : TxM × TxM −→ TxM ⊥. So II x is a bilinear
application for every x ∈ M .

Let Y be a parallel vector field along M . Let x ∈ M be a point such that
Y (x) ∈ TxM . Then we can consider the following linear application:

II (Y (x), ·) : TxM −→ TxM ⊥.

If this transformation is surjective, we will say that II (Y (x), ·) is surjective.
In particular, if codM = 1, the latter condition is equivalent to II (Y (x), ·) �= 0.
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Theorem 3.1. Let M be a submanifold of dimension n and codimension
k in N , with n ≥ k. Let Y be a parallel vector field along M . If II (Y (y), ·) is
surjective for every y ∈ S∂(M,Y ), then S∂(M,Y ) is a submanifold of dimen-
sion n − k in M .

Proof. Let ∇ be the covariant derivative of N . Let us take p ∈ S∂(M,Y ),
and let U ⊂ M be a open neighborhood of p. Our goal is to verify that
S∂(M,Y ) ∩ U is a submanifold of M .

Let ξj : U −→ TU ⊥, j = 1, . . . , k, be a basis of orthonormal vector fields (U
is such that there exist these vector fields). Let us consider the next function
F : U −→ R

k, given by

F (x) = (g(Y (x), ξ1(x)), . . . , g(Y (x), ξk(x))).

It is clear that F −1(0) = S∂(M,Y ) ∩ U . We are going to prove that 0 ∈ R
k is

a regular value of F . We need verify that for every x ∈ S∂(M,Y ) ∩ U , F∗x :
TxM −→ R

k is surjective. Let (y1, . . . , yn) be local coordinates in U . Let us
calculate the next derivatives in these coordinates, ∂F

∂yl
= ( ∂

∂yl
g(Y (x), ξ1(x)),

. . . , ∂
∂yl

g(Y (x), ξk(x))), for every 1 ≤ l ≤ n. Since Y is parallel,

∂

∂yl
g(Y (x), ξj(x)) = g(∇∂yl

Y, ξj) + g(Y, ∇∂yl
ξj) = g(Y, ∇∂yl

ξj).

Let us apply Weingarten’s formula, which says that ∇∂yl
ξj = −Aξj (∂yl) +

∇⊥
∂yl

ξj . In conclusion,

∂

∂yl
g(Y (x), ξj(x)) = g(Y, −Aξj (∂yl)) = −g(II (Y,∂yl), ξj(x)),

for every x ∈ S∂(M,Y ), 1 ≤ j ≤ k, and 1 ≤ l ≤ n.
Now, we are ready to see that the next matrix

(F∗x)jl = −(g(II (Y,∂yl), ξj(x)))

has rank k. Let us assume that the row vectors are linearly dependent, i.e.,
we have the following condition

∑k
j=1 ajg(II (Y,∂yl), ξj(x)) = 0, for every 1 ≤

l ≤ n, and where aj ∈ R are constants. We can rewrite this expression as

g

(
II (Y,∂yl),

k∑
j=1

ajξj(x)

)
= 0,

for every 1 ≤ l ≤ n. Since II (Y, ·) is surjective,
∑k

j=1 ajξj(x) = 0, therefore
aj = 0. Which proves that 0 regular value of F . Then we can conclude that
F −1(0) ∩ U is a submanifold U of dimension n − k. �

A special case of Theorem 3.1 is when dimN = 2dimM . The conclusion
in this situation is that S∂(M,Y ) is a discrete subset of M . So, if M were
compact, S∂(M,Y ) would be a finite set of points in M .
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In [13], we proved that when Mn ⊂ R
n+1 has nowhere zero Gauss–Kronec-

ker curvature, then for every v ∈ R
n+1, S∂(M,v) is a submanifold of M of

codimension one.
In the particular case of surfaces in R

3, the smoothness of the shadow
boundary is investigated in [9].

We need to recall the next basic concept of submanifolds. Let L ⊂ N be a
Riemannian submanifold. Let us take x ∈ L, then L is called a totally geodesic
submanifold of N , at the point x, if every geodesic γ of L through x satisfies

∇γ̇ γ̇|x = 0.
In her work on Affine Differential Geometry [14], Schwenk used conditions

similar to those in first part of the next theorem. The second part was the
original motivation to consider helix submanifolds in this work.

Theorem 3.2. Let Mn ⊂ Nn+k (n ≥ 2) be a submanifold of codimension
k (k ≥ 0). Let L be a hypersurface of M , which is nowhere totally geodesic of
N , and let us take Y ∈ X0(N,M). If Y is orthogonal to L, then L ⊂ S∂(M,Y )
if and only if L is a totally geodesic submanifold of M . If L ⊂ S∂(M,Y ) is a
totally geodesic submanifold of M and Y is not orthogonal to L, then L is a
helix submanifold of N with respect to Y .

Proof. (=⇒) Let us take x ∈ L, since dim(TxL⊥ ∩ TxM) = 1 and by hypoth-
esis, Y (x) ∈ TxL⊥ ∩ TxM , we obtain that 〈Y (x)〉 = TxL⊥ ∩ TxM . Therefore,
we have the following equality for every x ∈ L,

(3) TxM = TxL ⊕ (TxL⊥ ∩ TxM) = TxL ⊕ 〈Y (x)〉.

Let γ ⊂ L be a geodesic and let x ∈ γ be any point. Hence, ∇γ̇ γ̇ is or-
thogonal to L, i.e., ∇γ̇ γ̇ ∈ TxL⊥. Let us prove that γ is a geodesic of M . By
equality (3), we just have to verify that ∇γ̇ γ̇ is orthogonal to Y (x): We know
that g(Y (γ(t)), γ̇) = 0, this implies that

g(Y (γ(t)), ∇γ̇ γ̇) + g(∇γ̇Y (γ(t)), γ̇) =
d

dt
g(Y (γ(t)), γ̇) = 0.

Then ∇γ̇ γ̇ is orthogonal to M , so γ is a geodesic of M .
(⇐=) In this implication, we will assume that k = 1. We have to see that

Y (x) ∈ TxM , for every x ∈ L. Since L is not a totally geodesic submanifold
of N at x, there exists a geodesic γ of L through x with ∇γ̇ γ̇|x �= 0. By
hypothesis, γ is also a geodesic of M . So, ∇γ̇ γ̇ ∈ (TγM)⊥. Let us prove
that Y (x) is orthogonal to ∇γ̇ γ̇. For this, let us observe that g(γ̇, Y (x)) = 0.
Therefore,

g(Y (γ(t)), ∇γ̇ γ̇) + g(∇γ̇Y (γ(t)), γ̇) =
d

dt
g(Y (γ(t)), γ̇) = 0.

But ∇γ̇Y (γ(t)) = 0, because Y is parallel along L. Since M is of codimension
one, g(Y (γ(t)), ∇γ̇ γ̇) = 0 implies that Y (x) ∈ TxM .
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Finally, let us prove the second part of the theorem. If Y (x) ∈ TxL, for
every x ∈ L, then L is a helix. Otherwise, there exist p ∈ L such that Y (p) /∈
TpL. So,

(4) TpL ⊕ 〈Y (p)〉 ⊂ TpM.

We are going to verify that the angle between TxL and Y (x) is constant,
for every x in L. Let γ be any geodesic of L from p to x, hence, it is also
geodesic of M . Now, let us consider the parallel transport τ in M , along γ,
from p to x. Therefore, τ : TpM −→ TxM is an isometry. So, τ transforms
the latter equation (4), in TxL ⊕ 〈Y (x)〉 ⊂ TxM . Since the parallel transport
is an isometry, the angle between TxL and Y (x) is equal to the angle between
TpL and Y (p). �

In Theorem 3.2, the condition that L is not totally geodesic in N at any
point is important to prove that L ⊂ S∂(M,Y ). We can see this with the next
example: N = R

n, M a hyperplane, L a linear subspace of codimension one
in M . Finally, let Y = v be any constant vector field orthogonal to M . In
this example, the relation L ⊂ S∂(M,Y ) is false.

Example 3.1. Let us consider the next property of shadow boundaries,
which could be useful to study the shadow of higher codimensional subman-
ifolds. Let M be the Riemannian product M1 × M2, of two submanifolds
M1 ⊂ N1 and M2 ⊂ N2. Let us take Y = (Y1, Y2) where Yj ∈ X0(Nj ,Mj).
Then

S∂(M,Y ) = S∂(M1, Y1) × S∂(M2, Y2).

Let us apply this to the submanifold M = S1 × S1 ⊂ R
2 × S2. We can see

that the only possibilities for S∂(M,Y ) are S1 × S1, {p, −p} × S1 or ∅, where
p ∈ S1.

4. Minimal shadow boundaries

We need the next lemma, which is due to Chen, see [2].
Let us recall that the mean curvature vector of a Riemannian submanifold

L of N , is the trace of the second fundamental form of L ⊂ N . When this
vector field is constant zero, we say that L is minimal in N .

Lemma 4.1 (Chen’s lemma). Let Ln be a submanifold of Ms, where M
is a submanifold of Nm. Then L is minimal in M if and only if the mean
curvature vector field of L ⊂ N is orthogonal to M .

Lemma 4.2. Let Mn ⊂ N be a Riemannian immersed submanifold and let
Ln−1 ⊂ M be a submanifold such that L ⊂ S∂(M,Y ), where Y is parallel along
M and transverse to L. Let H be the mean curvature vector field of L ⊂ N .
Then L is minimal in M if and only if g(H,Y ) = 0.
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Proof. By hypothesis Y (x) ∈ TxM for every x ∈ L. By Lemma 4.1, if L is
minimal in M then H is orthogonal to M . So H(x) is orthogonal to Y (x),
i.e., g(H,Y ) = 0.

Now, let us assume that g(H,Y ) = 0. By definition, H is orthogonal to L.
To apply Lemma 4.1, we need prove that H is orthogonal to M . Since Y is
transversal to L, TxM = TxL ⊕ 〈Y (x)〉 for every x ∈ L. Now it is clear that
H is orthogonal to M . Then L is minimal in M . �

We will say that a Riemannian submanifold L ⊂ N has exhaustive mean
curvature vector at the point p ∈ L, if TpL ⊂ Vp, where Vp is the vector sub-
space of TpN generated by the following set: vectors in TpN that are obtained
by the parallel transport in N of the mean curvature vectors H(x) (for every
x ∈ L), along curves in L from x to p. For example, a closed hypersurface L of
an Euclidean ambient satisfies this condition, at any point, because the par-
allel transport in such ambient is just a translation, and the mean curvature
vector of a compact L is nonconstant zero.

Theorem 4.1. Let M ⊂ N be a Riemannian immersed submanifold and
let us take Y ∈ X0(N,M). Let L ⊂ S∂(M,Y ) be a transversal helix hypersur-
face of M with respect to Y , and let us assume that L has exhaustive mean
curvature vector in N . If L is minimal in M , then L is a totally geodesic in
M .

Proof. Let H be the mean curvature vector field of L ⊂ N . Let p ∈ L be
a point such that the mean curvature vector H , of L ⊂ N , is exhaustive at
p. Let Vp be the vector subspace of TpN generated by the next set: vectors
obtained by parallel transport, in N , of the mean curvature vectors H(x) of
L ⊂ N , with x ∈ L. The parallel transport is along curves contained in L from
x to the point p.

The main goal will be to see that Y is orthogonal to L. It is important to
use the equation TpL ⊂ Vp, which follows by definition of an exhaustive mean
curvature vector. Then the initial step is to prove that Y is orthogonal to Vp.
We can apply Lemma 4.2 (L is minimal in M ) to deduce that 〈H(q), Y (q)〉 = 0,
for every q ∈ L, i.e., Y (q) is orthogonal to H(q).

The vector field Y is invariant under parallel transport in N along curves
contained in M , and in particular, along curves in L. Therefore, Y (p) is
orthogonal to Vp. Since TpL ⊂ Vp, Y (p) is orthogonal to TpL. But L is a
helix with respect to Y , so the angle between TM and Y is constant, i.e.,
Y (q) is orthogonal to TqL, for every q ∈ L.

Finally, we can apply first part of Theorem 3.2, which says that if L ⊂
S∂(M,Y ) and Y is orthogonal to L, then L is a totally geodesic submanifold
of M . �

Example 4.1. We are going to construct a hypersurface M of N = R
n+2,

which contains a minimal submanifold in some shadow boundary.
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Let Ln ⊂ R
n+2 be a submanifold and let Y = v ∈ R

n+2 − {0} be a vector
such that:

• v is transverse to L : v /∈ TxL for every x ∈ L,
• 〈H,v〉 = 0, where H is the mean curvature vector field of L ⊂ N .

• Lε,v = {y = x + tv ∈ R
n+2 | x ∈ L, |t| < ε} is a submanifold, where ε = ε(x)

denotes a positive smooth function of L.
Then L is a minimal submanifold of M := Lε,v . If L is compact, ε can be a
constant function. Proof: this is consequence of Lemma 4.2. We should verify
the hypothesis of such theorem. By hypothesis, the mean curvature vector of
L ⊂ N is orthogonal to Y . Finally, since M = Lε,v is a “ruled” neighborhood
of L in direction v, S∂(M,v) = Lε,v = M , and then L ⊂ S∂(M,v).

We want to finish with the following question. Let M be a compact hy-
persurface of N = R

n+1 transversal to a constant vector field Y on N . Let
us assume that L is a hypersurface in M , such that L ⊂ S∂(M,Y ) and L is
contained in a hyperplane H of N (so L is a hypersurface of H). But every
closed hypersurface L of H has exhaustive mean curvature vector in H . So
there exists p ∈ L and a subspace Vp ⊂ TpH such that TpL ⊂ Vp (where Vp is
as in the definition of exhaustive mean curvature vector). Since H is totally
geodesic in N , the parallel transport in H of vectors w in TH coincides with
the parallel transport of w in N . By the same reason, the mean curvature
vector of L ⊂ H coincides with the mean curvature vector of L ⊂ N . Then
L has exhaustive mean curvature vector in N . By the latter theorem, if L
is minimal in M , L is totally geodesic in M . Our final question will be im-
portant, in which L is not contained in a hyperplane or with a nonexhaustive
mean curvature vector.

Question 4.1. Does a closed hypersurface in R
n+1 with some minimal

and nontotally geodesic shadow boundary L exist?
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