
Illinois Journal of Mathematics
Volume 52, Number 4, Winter 2008, Pages 1325–1353
S 0019-2082

LIPSCHITZ GEOMETRY OF CURVES AND SURFACES
DEFINABLE IN O-MINIMAL STRUCTURES

LEV BIRBRAIR

Abstract. The paper is devoted to the generalization of the the-
ory of Hoelder Complexes, i.e., Lipschitz classification of germs

of semialgebraic surfaces, for the definable surfaces in o-minimal

structures. The theory is based on the Rosenlicht valuations on

the corresponding Hardy fields. We obtain a complete answer for

the case of polynomially bounded o-minimal structures and for
the case of isolated singularities for general o-minimal structures.

1. Introduction

Metric geometry of singular spaces can be divided into two wide parts.
The first one works with invariants under isometries. Investigations of Bröcker
and Bernig (see [6], [7]) and others are devoted to the different notions of
curvature on singular definable spaces.

Another part of this direction is related to bi-Lipschitz invariants. Bi-
Lipschitz equivalence classes of singular spaces are wider than the classes of
isometric singular spaces. That is why one can expect to have a complete
solution of the problem of Lipschitz classification. This problem appears nat-
urally in Singularity Theory and in classical Differential Geometry. Mostowski
[13] studied a question of “tameness” of this problem for complex algebraic
sets. He proved that, for any finite dimensional analytic family, the set of
equivalence classes (according to a bi-Lipschitz equivalence) is finite. Later,
this result was generalized by Parusinski to semialgebraic and subanalytic
sets [15]. However, these finiteness results are “existence theorems” and do
not give any key to resolve a classification problem. Recently, Valette [16]
extended these results to polynomially bounded o-minimal structures.
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For germs of semialgebraic and subanalytic curves (one-dimensional semi-
algebraic and subanalytic sets), the problem of bi-Lipschitz classification was
completely solved in [3]. The main result of [3] is that a Lipschitz equiva-
lence class of a curve is totally determined by orders of contact of all pairs
of branches. The paper [1] is devoted to a bi-Lipschitz classification of 2-di-
mensional semialgebraic or subanalytic sets. The problem is studied with
respect to an intrinsic (inner) metric. The inner distance between two points
on a semialgebraic set is defined as a minimal length of a rectifiable curve
on the set connecting these points. This viewpoint is more usual in differ-
ential geometry than in classical singularity theory. The paper [1] gives a
complete bi-Lipschitz invariant—so-called Hölder Complex. Hölder Complex
is a canonical local triangulation equipped with some rational numbers asso-
ciated to each 2-dimensional simplex. These numbers characterize the orders
of contact of one-dimensional faces of these simplices near a singular point.
In particular, it is proved that if x0 is an isolated singular point of a 2-
dimensional semialgebraic set X with a connected link then the germ of X at
x0 is bi-Lipschitz equivalent to a β-horn (a revolution surface of the graph of
the function xβ). This result was recently rediscovered by Grieser [10]. In [4],
the number β is computed for quasihomogeneous and semiquasihomogeneous
singularities.

All results described above are devoted to a special class of singular spaces:
semialgebraic and subanalytic sets. The following question looks natural:
What happens in a more general situation? In this paper, we consider a
more general class of singular spaces: definable sets in o-minimal structures.
Topological properties of these sets are similar to a semialgebraic case. What
one can say about metric properties? Note, that the results of Mostowski are
not true for general o-minimal structures. To see it, consider the following set:
X = X1 ∪ X2 where X1 = {(x1, x2, x3) ∈ R

3, x1 > 0, x2 > 0, x3 = xx2
1 },X2 =

{(x1, x2, x3) ∈ R
3, x1 > 0, x2 > 0, x3 = 0}. The family of sections of this set

by planes x2 = const has infinitely many equivalence classes according to a
bi-Lipschitz equivalence.

The main goal of the present paper is to show that a question of Lipschitz
classification also makes sense in o-minimal case (even in the case when the
set of equivalence classes is not countable).

In [1] and [3] (see also [2]), orders of contact of semialgebraic (subanalytic)
arcs were measured by some rational numbers. These numbers are first ex-
ponents of Puiseux decomposition of corresponding distance functions. Note,
that these Puiseux exponents can be considered as elements of a value group
of a canonical valuation on a Hardy field of germs of semialgebraic func-
tions. In a general case, one can also consider a Hardy field of definable func-
tions and take a value group of the corresponding Rosenlicht valuation (see
[14]). Actually, this idea does not work directly. If an o-minimal structure
is not polynomially bounded, then the canonical valuation does not create
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a bi-Lipschitz invariant (see Section 3). That is why we define a notion of
quasivaluation.

Let A be an o-minimal structure. Let KA be a Hardy field of germs of
definable in A functions φ : (0, ε) → R. Let GA ⊂ KA be a group of local
homeomorphisms near 0. Let LipA ⊂ GA be a subgroup of bi-Lipschitz home-
omorphisms.

Proposition (Corollary 3.7). LipA is a normal subgroup of GA if and
only if A is polynomially bounded.

We denote by H̃ the set of left cosets in GA with respect to LipA. Observe
that H̃ is an ordered set. Let G+

A be a subset of GA of the functions φ : (0, ε) →
R such that limt→0 φ′(t) �= ∞. A canonical projection P : G+

A → H̃ is called
quasi-valuation. The term “quasi-valuation” has the following motivation. Let
v : KA → H be a Rosenlicht valuation on KA. Then for any pair ψ1, ψ2 ∈ G+

A,
we have the following: if v(ψ1) = v(ψ2), then P (ψ1) = P (ψ2). Moreover, if A
is polynomially bounded then cosets are totally determined by the valuation v.

Section 4 is devoted to a relation between quasi-valuations and Lipschitz
geometry of some special definable sets. Namely, we consider φ-semicusps
Cφ = {(x1, x2) ∈ R

2|x1 ≥ 0, x2 = 0} ∪ {(x1, x2) ∈ R
2|x1 ≥ 0, x2 = φ(x1)} and

φ-triangles Tφ = {(x1, x2) ∈ R
2|x1 ≥ 0,0 ≤ x2 ≤ φ(x1)} with φ ∈ G+

A. We show
that two semicusps Cφ1 and Cφ2 are bi-Lipschitz equivalent (with respect to
the Euclidean metric in R

2) if and only if P (φ1) = P (φ2). The same result
is also true for Tφ1 and Tφ2 . Note, that the sets Tφ1 and Tφ2 are normally
embedded, i.e., the intrinsic and the Euclidean metrics are Lipschitz equivalent
(see [5]). The results of this section are important for further investigations.

We generalize, in Section 5, the results of [3] for definable curves. We as-
sociate to a germ of a definable curve two combinatorial objects: Valuation
Semicomplex and Quasi-valuation Semicomplex. In order to construct these
complexes, we take all pairs of the branches of a given curve. Let (γi, γj) be a
pair of branches. We can suppose that γi and γj are parameterized by a dis-
tance to a singular point. Set φij = ‖γi − γj ‖. Taking αij = v(φij) we obtain
a valuation semicomplex and taking α̃ij = P (φij) we obtain a quasi-valuation
semicomplex. We prove that a quasi-valuation semicomplex is a bi-Lipschitz
invariant and an isomorphism of valuation semicomplexes is a criterion of a
bi-Lipschitz equivalence. In this section, the bi-Lipschitz equivalence is consid-
ered with respect to the Euclidean metric. If all the distance functions φij are
nonflat, in particular, if the o-minimal structure A is polynomially bounded,
then two semicomplexes (valuation and quasi-valuation) are isomorphic and
each of them gives a complete bi-Lipschitz invariant.

Sections 6, 7, 8, and 9 are devoted to the investigation of intrinsic Lipschitz
geometry of definable surfaces. In Section 8, we study isolated singularities.
The main result of this section is so-called Horn theorem.
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Let φ ∈ G+
A be a germ of a definable in A function. A φ-horn Wφ is a set

defined as follows:

Wφ =
{
(x1, x2, y) ∈ R

3|y ≥ 0,
√

x2
1 + x2

2 = φ(y)
}
.

We prove that any germ of a definable in A surface with isolated singular
point with a connected link is bi-Lipschitz equivalent with respect to the
intrinsic metric to a φ-horn, for some φ ∈ G+

A. Moreover, φ1-horn and φ2-
horn are bi-Lipschitz equivalent if and only if P (φ1) = P (φ2). This result
generalizes a horn theorem from [1]. Grieser [9] obtained a related result
investigating a problem of classification of riemannian metrics with isolated
singularities up to quasi-isometry.

Sections 6, 7, and 9 are devoted to nonisolated singularities. We intro-
duce the notion of Quasi-valuation Complex. It is a generalization, for the
o-minimal case, of Hölder Complexes developed in [1]. Quasi-valuation Com-
plex can be defined as a finite graph Γ with a function β : EΓ → H̃ where EΓ

is the set of edges of Γ and H̃ is an ordered set related to the notion of quasi-
valuation. This graph Γ carries a topological information about a singular
point. The function β is responsible for a metric information: “intrinsic or-
ders of contact” of one-dimensional faces of simplices of a triangulation near
a singular point. We show that a Canonical quasi-valuation Complex is a
bi-Lipschitz invariant and a complete bi-Lipschitz invariant in a nonflat case.

2. Basic notations

2.1. Hardy field of definable functions. Let A be an o-minimal struc-
ture. Consider the set of all germs of definable in A functions φ : (0, ε) → R.
The usual operations of addition and multiplication of functions provide a
structure of a field on this set. We denote this field by KA. Clearly, KA is
totally ordered, and for each φ ∈ KA, we have: φ′ ∈ KA. Thus, KA is a Hardy
field.

Let H be an ordered group (called a value group). A valuation v : KA −
{0} → H is called a Rosenlicht valuation if v(f) > v(g) when limt→0

f(t)
g(t) = 0.

The Rosenlicht valuation is canonical in the following sense. Let v1 : KA −
{0} → H1 be another Rosenlicht valuation. Then there exists an order-
preserving embedding j : H → H1 such that v1(φ) = j(v(φ)). We will use
the notation

φ1 � φ2; if v(φ1) = v(φ2).

2.2. Inner (intrinsic) metric on definable sets. Let X ⊂ R
n be a con-

nected definable in A set. We define an intrinsic distance d�(x1, x2) between
two points x1, x2 ∈ X in the following way. Set d�(x1, x2) = inf �(γ) where
γ : [0,1] → X be a rectifiable curve such that γ(0) = x1, γ(1) = x2 and �(γ) be
a length of the curve γ. By Definable Triangulation Theorem (see [17]), the
distance d� is well defined.
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2.3. Bi-Lipschitz equivalence. Let X1,X2 be two metric spaces. A map
F : X1 → X2 is called bi-Lipschitz if F and F −1 are Lipschitz homeomor-
phisms. A definable in A subset X ⊂ R

n can be considered as a metric space.
There are two natural metrics on X : Euclidean metric d(x1, x2) = ‖x1 − x2‖
and an intrinsic metric d� defined above. Two connected definable sets X1,X2

are called bi-Lipschitz equivalent (isomorphic) with respect to the Euclidean
metric if there exists a bi-Lipschitz (with respect to the Euclidean metric)
map F : X1 → X2. The sets X1,X2 are called bi-Lipschitz equivalent with
respect to the inner (intrinsic) metric if there exists a map F : X1 → X2

bi-Lipschitz with respect to the inner metric. The sets X1,X2 are called bi-
Lipschitz equivalent (with respect to the Euclidean or to the inner metric) in
A if a bi-Lipschitz map F is definable in A.

3. Germs of definable homeomorphisms

Let A be an o-minimal structure over R and let KA be a Hardy field of
germs at 0 ∈ R of definable in A functions φ : (0, ε) → R. Let GA ⊂ KA be
the subset of KA defined as follows:

GA =
{

φ ∈ KA, φ > 0 and lim
t→0

φ(t) = 0
}
.

Each function φ from GA can be extended to [0, ε) putting φ(0) = 0. The el-
ements of GA are germs of definable homeomorphisms φ : [0, ε1) → [0, ε2).
They form a group where the group operation is a composition. Let LipA be
the subgroup of GA of the germs of bi-Lipschitz homeomorphisms. Observe
that LipA can be defined as follows: LipA = {φ ∈ GA, v(φ) = v(Id)}, where
v : KA → H is a Rosenlicht valuation and H is a value group of v.

Definition 1. Two homeomorphisms φ1 and φ2 of GA are called
R-Lipschitz equivalent if φ−1

1 φ2 ∈ LipA. If φ1φ
−1
2 ∈ LipA, the homeomor-

phisms φ1 and φ2 are called L-Lipschitz equivalent. Homeomorphisms φ1

and φ2 are called RL-Lipschitz equivalent if φ1 = l1φ2l
−1
2 , for some bi-Lipschitz

homeomorphisms l1, l2 ∈ LipA.

Let G+
A ⊂ GA be a subset defined as follows: G+

A = {φ ∈ GA, v(φ) ≥ v(Id)}.
Let G−

A = {φ ∈ GA, v(φ) ≤ v(Id)}. Clearly, GA = G−
A ∪ G+

A and LipA = G−
A ∩

G+
A.

Proposition 3.1.
(1) If φ ∈ G+

A, then φ−1 ∈ G−
A .

(2) If φ1 and φ2 are L-Lipschitz equivalent or R-Lipschitz equivalent and φ1 ∈
G+

A, then φ2 ∈ G+
A.

(3) Homeomorphisms φ1 and φ2 are R-Lipschitz equivalent if and only if φ−1
1

and φ−1
2 are L-Lipschitz equivalent.

The proof is straightforward.
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Proposition 3.2. Let A be a polynomially bounded o-minimal structure.
Let φ1, φ2 ∈ GA. Then the following assertions are equivalent.
(1) φ1, φ2 are R-Lipschitz equivalent.
(2) φ1, φ2 are L-Lipschitz equivalent.
(3) v(φ1) = v(φ2).

Proof. Let v(φ1) = v(φ2) = α. Then by the results of van den Dries and
Miller [18], φ1 � tα, φ2 � tα, φ1

−1 � t
1
α and φ2

−1 � t
1
α . Thus,

φ1
−1φ2 � t and φ2

−1φ1 � t.

We obtained that φ−1
1 φ2 ∈ LipA and φ1φ

−1
2 ∈ LipA.

Assume that v(φ1) = α1, v(φ2) = α2 and α1 �= α2. Hence,

φ1
−1φ2 � t

α2
α1 and φ2

−1φ1 � t
α1
α2 .

It means that φ−1
1 φ2 /∈ LipA and φ1φ

−1
2 /∈ LipA. �

Proposition 3.3. Let A be an o-minimal structure (not necessary polyno-
mially bounded). Let φ1, φ2 ∈ G+

A. Then φ1 and φ2 are L-Lipschitz equivalent
if and only if v(φ1) = v(φ2).

Proof. Suppose that v(φ1) = v(φ2). Then φ1φ
−1
2 � t. Let φ1 be L-Lipschitz

equivalent to φ2. Thus, there exist two positive constants K̃1 and K̃2 such
that

K̃1 < (φ1(φ−1
2 (s)))′ < K̃2.

Hence,

K̃1 <
φ′

1(φ
−1
2 (s))

φ′
2(φ

−1
2 (s))

< K̃2.

Thus, φ′
1

φ′
2

is bounded away from 0 and infinity. By L’hospital rule, it is also

true for φ1
φ2

. It means that v(φ1) = v(φ2). �

Proposition 3.4. Let φ1, φ2 ∈ G+
A and let v(φ1) = v(φ2). Then φ1 and φ2

are R-Lipschitz equivalent.

To prove this proposition we need the following lemma.

Lemma 3.5. For all φ ∈ G+
A and for all K > 0, the germs φ and Kφ are

R-Lipschitz equivalent.

Proof. The property is clear if v(φ) = v(Id). Suppose that v(φ) > v(Id).
Consider the case K > 1. Since φ′ is a monotone function and φ′(0) = 0, we
obtain (

φ(Kx) − Kφ(x)
)′ = K

(
φ′(Kx) − φ′(x)

)
> 0,

for x > 0. Thus,
φ(x) ≤ Kφ(x) ≤ φ(Kx).
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Since φ is a monotone function, we obtain

φ−1(φ(x)) ≤ φ−1(Kφ(x)) ≤ φ−1(φ(Kx)).

Finally,
x ≤ φ−1(Kφ(x)) ≤ Kx.

Hence, φ−1(Kφ(x)) ∈ LipA.
The same arguments give the proof for K < 1. �
Proof of Proposition 3.4. Since v(φ1) = v(φ2), there exist two constants

K1,K2 > 0 such that

K1φ2(t) ≤ φ1(t) ≤ K2φ2(t).

Since φ−1
2 is a monotone function, we obtain

φ−1
2 (K1φ2(t)) ≤ φ−1

2 (φ1(t)) ≤ φ−1
2 (K2φ2(t)).

Therefore, φ−1
2 φ1 ∈ LipA because, by Lemma 3.5, φ−1

2 (K1φ2) ∈ LipA and
φ−1

2 (K2φ2) ∈ LipA. �
Remark. The inverse statement for R-Lipschitz equivalence is wrong.

Let A be an exponential o-minimal structure. Then, by [12], the function
ex is definable in A. Thus, φ1 = e− 1

x and φ2 = e− 1
2x belong to G+

A. Clearly,
φ1 and φ2 are R-Lipschitz equivalent but v(φ1) �= v(φ2).

Corollary 3.6. If φ1, φ2 ∈ G+
A and φ1, φ2 are RL-Lipschitz equivalent

then they are R-Lipschitz equivalent.

Proof. Since φ1 and φ2 are RL-Lipschitz equivalent, there exists � ∈ LipA

such that φ1 and φ2� are L-Lipschitz equivalent. Then by Proposition 3.3,
v(φ1) = v(φ2�), and by Proposition 3.4, φ1 and φ2� are R-Lipschitz equivalent.
Hence, φ1 and φ2 are R-Lipschitz equivalent. �

Corollary 3.7. LipA is a normal subgroup in GA if and only if A is a
polynomially bounded o-minimal structure.

Proof. If A is a polynomially bounded then the equivalence classes by
R-Lipschitz equivalence and by L-Lipschitz equivalence are the same. Thus,
LipA be normal. Let LipA is normal. Let A be an exponential structure.
Then there exist two functions φ1 and φ2 (see the Remark) such that they
are R-Lipschitz equivalent but not L-Lipschitz equivalent. �

Proposition 3.8. Let φ1, φ2, φ3 ∈ G+
A be the germs of definable functions

such that, for t �= 0, φ1(t) < φ2(t) < φ3(t). Let φ1 and φ3 be R-Lipschitz equiv-
alent. Then φ1 and φ2 are R-Lipschitz equivalent.

Proof. Since φ1 and φ2 are germs of definable homeomorphisms, we have
that φ2 = φ1�̃, φ3 = φ1�, for some definable homeomorphisms � and �̃. Since
φ1 and φ3 are R-Lipschitz equivalent, � ∈ LipA. Clearly, t < �̃(t) < �(t). Thus,
�̃ ∈ LipA. �
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Let H̃ be the set of left co-sets of G+
A with respect to LipA. Let P : G+

A →
H̃ be the canonical projection. We can define a natural order in H̃ in the
following way. Let h1, h2 ∈ H̃, h1 �= h2. Set h2 > h1 if there exist φ1 ∈ h1 and
φ2 ∈ h2 such that, for t �= 0, φ1(t) > φ2(t). By Proposition 3.8, this order is
well defined and H̃ is totally ordered. Let H+ = v(G+

A).

Theorem 3.9. There exists a map v̄ : H+ → H̃ such that
(1) For each η1, η2 ∈ H+ such that η1 > η2, one has: v̄(η1) ≥ v̄(η2).
(2) The diagram

G+
A

v−→ H+

P ↘ ↙ v̄

H̃

is commutative.

Proof. Let η ∈ H+, let φ ∈ v−1(η). Define v̄(η) = P (φ). By Proposition 3.4,
the map v̄ is well defined. By the definition of the order in H̃ , the map v̄
satisfies the condition (1). �

The map P : G+
A → H̃ is called Quasi-valuation map. If A is polynomially

bounded then H̃ can be identified with H+ and P is the restriction of a
valuation v to G+

A.

Corollary 3.10. Let φ1, φ2 ∈ G+
A. Then P (φ1+φ2) = min{P (φ1), P (φ2)}.

Proof. Since φ1, φ2 ∈ G+
A, then v(φ1 + φ2) = min{v(φ1), v(φ2)}. By The-

orem 3.9, P (φ1 + φ2) = v̄(v(φ1 + φ2)) = v̄(min{v(φ1), v(φ2)}) = min{P (φ1),
P (φ2)}. �

A function φ ∈ G+
A is called flat if dnφ

(dt)n |t=0 = 0, for all n ≥ 1, n ∈ Z. A func-
tion φ is called nonflat if it is not flat. The following result shows that for
nonflat functions, a quasi-valuation is equivalent to a valuation.

Theorem 3.11. Let φ1 ∈ G+
A be a nonflat function. Let φ2 ∈ G+

A be another
function such that P (φ1) = P (φ2). Then v(φ1) = v(φ2).

To prove the theorem we need the following

Lemma 3.12. Let φ ∈ G+
A be a nonflat function. Then for every r > 0, we

have v(φ(t)) = v(φ(rt)).

Proof. Without loss of generality, we can suppose that r > 1. Let k be a
number such that, for i < k, we have diφ

(dt)i |t=0 = 0 and dkφ
(dt)k |t=0 �= 0. We

have two possibilities: dkφ
(dt)k |t=0 = ∞ or dkφ

(dt)k |t=0 = M where M �= ∞. If
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dkφ
(dt)k |t=0 = M using L’Hospital rule we obtain

lim
t→0

φ(t)
φ(rt)

=
1
rk

lim
t→0

φ(k)(t)
φ(k)(rt)

=
1
rk

.

Thus, v(φ(t)) = v(φ(rt)).
Consider the second case: dkφ

(dt)k |t=0 = ∞. We have:

lim
t→0

φ(t)
φ(rt)

=
1

rk−1
lim
t→0

φ(k−1)(t)
φ(k−1)(rt)

.

Since φ(k−1)(0) = 0 and φ(k−1)(t) is a monotone function we obtain that

lim
t→0

φ(t)
φ(rt)

≤ 1
rk−1

.

On the other hand, since limt→0φ
(k)(t) = ∞ and φ(k)(t) is a monotone function

we obtain that

lim
t→0

φ(t)
φ(rt)

=
1
rk

lim
t→0

φ(k)(t)
φ(k)(rt)

≥ 1
rk

.

Hence, v(φ(t)) = v(φ(rt)). The lemma is proved. �

Proof of Theorem 3.11. Let P (φ1) = P (φ2). It means that φ2(t) = φ1(l(t))
where l ∈ LipA. Thus, there exists a couple of constants r1, r2 > 0 such that
r1t < l(t) < r2t. Since φ1 is an increasing function we have

φ1(r1t) ≤ φ2(t) ≤ φ1(r2t).

Since φ1 is a nonflat function, by Lemma 3.12, v(φ1(r1t)) = v(φ1(r2t)) =
v(φ1(t)). Hence, v(φ1) = v(φ2). �

Proposition 3.13. Let φ is a flat function. Then for all r > 0, r �= 1, we
have v(φ(rt)) �= v(φ(t)).

Proof. Suppose that r < 1. We have

lim
t→0

φ(rt)
φ(t)

= rk lim
t→0

φ(k)(rt)
φ(k)(t)

.

Since φ(k)(rt) < φ(k)(t), we obtain

lim
t→0

φ(rt)
φ(t)

≤ rk.

This inequality is true for all k. Thus, v(φ(rt)) > v(φ(t)). �
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4. Germs of definable sets in R
2

Here (in this section), a bi-Lipschitz equivalence is considered with respect
to the Euclidean metric.

Let φ ∈ G+
A be a germ of a definable homeomorphism. A φ-semicusp Cφ is

a germ at (0,0) of a 1-dimensional subset in R
2 defined as follows:

Cφ = {(x1, x2)|x1 ≥ 0, x2 = 0} ∪ {(x1, x2)|x1 ≥ 0, x2 = φ(x1)}.

Theorem 4.1. Two semicusps are bi-Lipschitz equivalent in A if and
only if the germs of corresponding definable homeomorphisms φ1 and φ2 are
R-Lipschitz equivalent.

To prove this theorem we need two lemmas.

Lemma 4.2. Let φ1, φ2 ∈ G+
A. Let Cφ1 and Cφ2 be bi-Lipschitz equiva-

lent in A. Suppose that φ1, φ2 /∈ LipA. Let F : Cφ1 → Cφ2 be a definable
bi-Lipschitz map. Then F ((0,0)) = (0,0).

Proof. Suppose that F ((0,0)) = a ∈ Cφ2 , a �= (0,0). Consider two points x =
(t,0) and y = (t, φ1(t)) sufficiently close to (0,0). Since Cφ2 is a
1-dimensional smooth manifold near the point a there exist two constants
K1 and K2 such that

K1t ≤ d(F (x), F (y)) ≤ K2t.

But d(x, y) = φ1(t). Thus, φ1(t) ∈ LipA. This is a contradiction. �

Lemma 4.3. Let F : Cφ1 → Cφ2 be a definable bi-Lipschitz map. Then there
exists another definable bi-Lipschitz map F̃ : Cφ1 → Cφ2 such that the image
of the graph of φ1 by F̃ belongs to the graph of φ2 and the image of the positive
x1-axis by F̃ belongs to itself.

Proof. Let Cφ be a φ-semicusp. Let Fφ : Cφ → Cφ be the map defined as
follows: Fφ(x1, x2) = (x1, −(x2 − φ(x1))). Fφ is a definable bi-Lipschitz map
because φ ∈ G+

A. Clearly, the image of the graph of φ by Fφ belongs to the
positive x1-axis and the image of the positive x1-axis by Fφ belongs to the
graph of φ. Let F : Cφ1 → Cφ2 be a bi-Lipschitz map such that the conclusion
of the lemma do not hold. By the preceding lemma, F (0,0) = (0,0). Set
F̃ = Fφ2 ◦ F . Then F̃ is a bi-Lipschitz map satisfying the conclusion of the
lemma. �

Proof of Theorem 4.1. Let Cφ1 and Cφ2 be bi-Lipschitz equivalent in A.
Note that φ ∈ LipA if and only if Cφ is a Lipschitz submanifold. Thus, if Cφ1

and Cφ2 are bi-Lipschitz equivalent then φ1, φ2 ∈ LipA or φ1, φ2 /∈ LipA.
Assume that φ1, φ2 /∈ LipA. Let F̃ : Cφ1 → Cφ2 be a bi-Lipschitz map

satisfying the conclusion of Lemma 4.3. Then for (t, φ1(t)) ∈ γ1
φ1

, we have:
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F̃ (t, φ1(t)) = (h(t), φ2(h(t))), for some definable bi-Lipschitz map h : [0, ε) →
[0, ∞). Let us prove that the map F : Cφ1 → Cφ2 constructed as follows:

(1) F (t, φ1(t)) = F̃ (t, φ1(t)), F (t,0) = (h(t),0)

is also a definable bi-Lipschitz map. Let x = (t,0) and let y = (t, φ1(t)) be
two points on Cφ1 . Then F (x) = (h(t),0), F (y) = (h(t), φ2(h(t))) and F̃ (x) =
(h̃(t),0), for some definable bi-Lipschitz map h̃. Since F̃ is a bi-Lipschitz map,
there exists K1 > 0 such that

d(y,x) ≥ K1d(F̃ (y), F̃ (x)) = K1d((h(t), φ2(h(t))), (h̃(t),0))
≥ K1d((h(t), φ2(h(t))), (h(t),0)) = K1d(F (y), F (x)).

On the other hand, there exists K2 > 0 such that

d(F (y), F (x)) ≥ K2d(F̃ −1(F (y)), F̃ −1(F (x))) = K2d(y, F̃ −1(F (x)))

= K2d((t, φ1(t)), (h̃−1(h(t)),0)) ≥ K2φ1(t) = K2d(y,x).

This proves that F is bi-Lipschitz. The map F : Cφ1 → Cφ2 can be presented
in the following form: F (x1, x2) = (h(x1), l(x2)). Thus, φ2 = lφ1h

−1. Since
F is a bi-Lipschitz map, and since the maps h and l are definable in A, we
obtain that the maps h and l are bi-Lipschitz. It means that φ1 and φ2 are
RL-Lipschitz equivalent. By the results of Section 3 (Corollary 3.6), they are
R-Lipschitz equivalent.

If φ1, φ2 ∈ LipA, then φ1 and φ2 are R-Lipschitz equivalent because LipA

is a group.
Let φ1 and φ2 be R-Lipschitz equivalent: φ1 = φ2�. Let us define a map

F : R
2 → R

2 in the following way:

(2) F (x1, x2) =

{
(x1, x2), if x1 < 0,

(l(x1), x2), if x1 ≥ 0.

F is a bi-Lipschitz map because l ∈ LipA. Clearly, F (Cφ1) = Cφ2 . The the-
orem is proved. �

Corollary 4.4. Two semicusps Cφ1 and Cφ2 are bi-Lipschitz equivalent
in A if and only if P (φ1) = P (φ2) where P : G+

A → H̃ is the quasi-valuation.

Definition 2. Let φ ∈ G+
A and let Tφ = {x = (x1, x2)|x1 ≥ 0,0 ≤ x2 ≤

φ(x1)}. A germ of the set Tφ is called φ-triangle. In other words, Tφ is a set
bounded by Cφ.

Proposition 4.5. Tφ1 and Tφ2 are bi-Lipschitz equivalent in A (with re-
spect to both inner and Euclidean metrics) if and only if P (φ1) = P (φ2).

Proof. If Tφ1 is bi-Lipschitz equivalent to Tφ2 then Cφ1 is bi-Lipschitz
equivalent to Cφ2 . Thus, P (φ1) = P (φ2) by Corollary 4.4.
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Let P (φ1) = P (φ2). Then φ1 and φ2 are R-Lipschitz equivalent. It means
that there exists l ∈ LipA such that φ1(t) = φ2(l(t)). Consider the map F
defined in the end of the proof of Theorem 4.1. Clearly, F is a definable
bi-Lipschitz map and F (Cφ1) = Cφ2 . Observe that Tφ1 =

⋃
0≤α≤1 Cαφ1 and

Tφ2 =
⋃

0≤α≤1 Cαφ2 . For each α ∈ [0,1], we have that αφ1(t) = αφ2(l(t)).
Hence, F (Tφ1) = Tφ2 . �

Proposition 4.6. Let Ψ : Tφ1 → Tφ2 be a Lipschitz homeomorphism with
Ψ(0,0) = (0,0) and let there exists a positive constant C such that, for each
x ∈ Tφ1 , we have:

Cd(x, (0,0)) ≤ d(Ψ(x), (0,0)).

Then P (φ2) ≥ P (φ1).

Proof. By the assumption of the proposition, we obtain that

φ2

(
C

2
t

)
≤ d(Ψ(t,0),Ψ(t, φ1(t))).

Since Ψ is a Lipschitz map, we have:

d(Ψ(t,0),Ψ(t, φ1(t))) ≤ Kd((t,0), (t, φ1(t))) = Kφ1(t),

for some constant K. Finally, we obtain: φ2(C
2 t) ≤ Kφ1(t). Since P (φ(t)) =

P (φ(C
2 t)), and by Lemma 3.5, P (φ) = P (Kφ), for all φ ∈ G+

A, we have:
P (φ2) ≥ P (φ1). The proposition is proved. �

Proposition 4.7. Let φ ∈ G+
A be a flat function. Let Ψ : Cφ(t) → Cφ(kt) be

a map such that one of the following conditions holds:
(1) There exists s < 1 such that d(Ψ(t,0), (0,0)) < s

k t, t > 0.
(2) There exists s > 1 such that d(Ψ(t,0), (0,0)) > s

k t, t > 0.
Then the map Ψ is not bi-Lipschitz.

Proof. Consider the first case: d(Ψ(t,0), (0,0)) < s
k t, for some s < 1. Sup-

pose that the map Ψ is bi-Lipschitz. Using the same arguments as in the proof
of Theorem 4.1, one can construct a bi-Lipschitz map Ψ̃ : Cφ(t) → Cφ(kt) such
that Ψ̃(t,0) = (ψ(t),0) and Ψ̃(t, φ(t)) = (ψ(t), φ(kψ(t)). Since ψ(t) < s

k t, we
obtain that φ(kψ(t)) < φ(st). By Proposition 3.13, one has v(φ(t)) < v(φ(st)).
It means that the map Ψ̃ cannot be bi-Lipschitz.

If Ψ satisfies the condition (2) the proof is similar to the first case. �

Proposition 4.8.
(1) Two semicusps Cφ1 and Cφ2 are bi-Lipschitz equivalent if and only if they

are bi-Lipschitz equivalent in A.
(2) Definable in A triangles Tφ1 and Tφ2 are bi-Lipschitz equivalent if and

only if they are bi-Lipschitz equivalent in A.
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Proof. We are going to prove the first part. The second part can be proved
in the same way. Note, that it is enough to prove that if there exists a bi-
Lipschitz map Φ : Cφ1 → Cφ2 then P (φ1) = P (φ2). Consider a pair of points
(t,0) and (t, φ1(t)). Let Φ((t,0)) = (t1,0) and Φ((t, φ1(t))) = (t2, φ2(t2)). Let
ρ(t) = min{t1, t2}. Since Φ is a bi-Lipschitz map, there exists a constant
K1 > 0 such that ρ(t) > K1t. By the same reason, there exists a constant
K2 > 0 such that d(Φ(t,0),Φ(t, φ1(t))) ≤ K2φ1(t). Finally, we obtain that
K2φ1(t) ≥ φ2(K1t). Hence, P (φ1) ≤ P (φ2).

Considering the map Φ−1 we obtain that P (φ2) ≤ P (φ1). �

5. Germs of definable curves in R
n

As in Section 4, we consider here a bi-Lipschitz equivalence with respect
to the Euclidean metric.

We call a definable in A set of dimension 1 a definable in A curve. Let
X ⊂ R

n be a definable in A curve and let x0 ∈ X . By [17], there exists
a neighborhood Ux0 of x0 in R

n such that X ∩ Ux0 =
⋃k

i=1 Xi satisfies the
following conditions:
(1) For all i, Xi is definable in A.
(2) There exists a definable in A homeomorphism hi : [0, ε) → Xi such that

hi(0) = x0.
(3) For i �= j,Xi ∩ Xj = x0.
(4) There exists a number r0, such that for all 0 < r ≤ r0, we have: #(Xi ∩

Sn−1
x0,r ) = 1 (here Sn−1

x0,r is the sphere centered at x0 of radius r).
The subsets Xi are called the branches of X at x0.

Let X be a germ at x0 of a definable curve with two branches X1 and X2.
Let xi(t) be a point on Xi (where i = 1,2) such that ‖xi(t) − x0‖ = t. We
define a test function τX as follows: τX(t) = ‖x1(t) − x2(t)‖. Observe that
τX ∈ G+

A.

Theorem 5.1. Let X ⊂ R
n, Y ⊂ R

m be two definable in A curves. Let us
suppose that X has two branches at x0 ∈ X and Y has two branches at y0 ∈ Y .
Then the germs of X at x0 and of Y at y0 are bi-Lipschitz equivalent with
respect to the Euclidean metric if and only if P (τX) = P (τY ) where P is the
quasi-valuation in G+

A.

In order to prove the theorem, we need some preliminary results. Observe
that a φ-semicusp can be considered as a set described above, i.e., a definable
curve with exactly two branches. Let τCφ

be the test function for Cφ.

Lemma 5.2. Let v be a Rosenlicht valuation in KA and let Cφ be a φ-
semicusp. Then v(τCφ

) = v(φ).

Proof. Let v(φ) > v(Id). Suppose that v(φ) < v(τCφ
). Consider the trian-

gle with vertices A(t),B(t) and C(t) where A(t) = (t,0),B(t) = (t, φ(t)) and
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C(t) is the intersection of the graph of φ with a circle centered at (0,0) of
radius t. Since φ′(t) tends to 0 when t tends to 0, the angle at the vertex
B(t) has to tend to π/2. On the other hand, ‖B(t) − C(t)‖ � ‖A(t) − B(t)‖.

Suppose that v(τCφ
) < v(φ). Consider again the triangle A(t),B(t),C(t)

defined above. Since ‖A(t) − C(t)‖ � ‖A(t) − B(t)‖, the angle at the vertex
A(t) tends to π

2 when t tends to 0. It means that the angle at the vertex A(t)
in the triangle (0,0),A(t),C(t) must tend to 0. But it is impossible because
‖A(t)‖ = ‖C(t)‖.

If v(φ) = v(Id), the statement is trivial. �

Let X ⊂ R
n and Y ⊂ R

m be two definable in A curves. Assume that X have
exactly two branches at x0 ∈ X and let Y have exactly two branches at y0 ∈ Y .
We define xi(t) ∈ Xi and yi(t) ∈ Yi (here i = 1,2 and Xi, Yi are corresponding
branches of X and Y ) as above: ‖xi(t) − x0‖ = t and ‖yi(t) − y0‖ = t. Observe
that for a sufficiently small t, these points are well defined. Let Φ : (X,x0) →
(Y, y0) be the map defined as follows: Φ(xi(t)) = yi(t)(i = 1,2).

Lemma 5.3. Assume that v(τX) = v(τY ). Then Φ is a definable bi-Lipschitz
map.

Proof. Without loss of generality, we can suppose that X ∩ Y = ∅. Let us
define a function r(x) in the following way:

r(x) =

{
‖x − x0‖, if x ∈ X,

‖x − y0‖, if x ∈ Y.

Since r(x) is a definable function, we conclude that Φ is a definable map. Let
x1, x2 be two points sufficiently close to x0 such that x1 ∈ X1 and x2 ∈ X2.
Suppose that r(x1) ≤ r(x2). Let x3 ∈ X2 be the point such that r(x3) = r(x1).
Since X and Y are definable sets, the branches are sufficiently close to their
tangent vectors at x0 and y0 (see [18]).

We can suppose that the angles at the vertex x3 of the triangle (x1, x2, x3)
and at the vertex Φ(x3) of the triangle (Φ(x1),Φ(x2),Φ(x3)) tend to some
values θ1 > 0 and θ2 > 0. These values θ1 and θ2 depend only on angles
between the tangent vectors of branches. (For example, if X1 and X2 have the
same tangent vector then θ1 = π/2.) Thus, there exist two positive constants
K1 and K2 such that

K1 max{ |r(x1) − r(x2)|, τX(r(x1))} ≤ ‖x1 − x2‖,

K2 max{ |r(x1) − r(x2)|, τX(r(x1))} ≥ ‖x1 − x2‖

and

K1 max{|r(Φ(x1)) − r(Φ(x2))|, τY (r(Φ(x1)))} ≤ ‖Φ(x1) − Φ(x2)‖,

K2 max{|r(Φ(x1)) − r(Φ(x2))|, τY (r(Φ(x1)))} ≥ ‖Φ(x1) − Φ(x2)‖.
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Since v(τX) = v(τY ), there exist two positive constants M1 and M2 such
that M1τX(r(x1)) ≤ τY (r(x1)) ≤ M2τX(r(x1)). By the definition of the map
Φ, we have r(xi) = r(Φ(xi)) (i = 1,2,3). Thus, the above inequalities imply
that Φ is a bi-Lipschitz map. �

Proof of Theorem 5.1. By Lemma 5.2 and by Lemma 5.3, a set X satis-
fying the conditions of the theorem is bi-Lipschitz equivalent in A to τX -
semicusp CτX

. By Corollary 4.4, two semicusps CτX
and CτY

are bi-Lipschitz
equivalent in A if and only if P (τX) = P (τY ). By Theorem 4.8, bi-Lipschitz
equivalence of the semicusps is equivalent to bi-Lipschitz equivalence in A. �

Definition 3. A complete finite graph Γ with a function α : EΓ → H+

(where H+ is a subset of the value group H defined as follows: H+ = v(G+
A))

is called a valuation semicomplex if α satisfies the “isosceles” condition: for
all a1, a2, a3 ∈ VΓ, the following is hold: if α(a1, a2) ≤ α(a2, a3) ≤ α(a1, a3),
then α(a1, a2) = α(a2, a3).

Definition 4. A complete finite graph Γ̃ with a function α̃ : EΓ̃ → H̃

(where H̃ is an ordered set associated with the quasi-valuation P : G+
A → H̃)

is called a quasi-valuation semicomplex if α̃ satisfies the “isosceles” condition.

Let (X,x0) be the germ at x0 ∈ X of a definable in A curve. We associate a
valuation semicomplex (Γ, α) to (X,x0) in the following way. The branches Xi

of X correspond to the vertices ai of Γ. Let Xij = Xi ∪ Xj . Set α(ai, aj) =
v(τXij ). We associate a quasi-valuation semicomplex (Γ̃, α̃) to (X,x0) in a
similar way: set Γ̃ = Γ and α̃(ai, aj) = P (τXij ).

Proposition 5.4.
(1) (Γ, α) is a valuation semicomplex.
(2) (Γ̃, α̃) is a quasi-valuation semicomplex.

Proof.
1. We must prove the isosceles property. Let Xi,Xj ,Xk be three branches

of X at x0. Since KA is a Hardy field, we can suppose that τXij ≤ τXik
≤ τXjk

.
Thus, v(τXij ) ≥ v(τXik

) ≥ v(τXjk
). But, τXjk

≤ τXij + τXik
. Since v is a

Rosenlicht valuation, we obtain: v(τXjk
) = min{v(τXij ), v(τXik

)}.
2. The proof of Assertion 2 is the same. �
Definition 5. Two valuation (quasi-valuation) semicomplexes (Γ, α) and

(Γ′, α′) are called isomorphic if there exists an isomorphism f : Γ → Γ′ such
that, for all ai, aj , we have: α(ai, aj) = α′(f(ai), f(aj)).

Let (Γ, α) be a valuation semicomplex. We can define a corresponding
quasi-valuation semicomplex (Γ̃, α̃) in the following way. Set Γ̃ = Γ and set
α̃(ai, aj) = v̄(α(ai, aj)) where v̄ is the map defined in Theorem 3.9. Clearly,
(Γ̃, α̃) is a quasi-valuation semicomplex. The following result shows that a
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quasi-valuation semicomplex is an invariant under bi-Lipschitz maps and an
isomorphism of valuation semicomplexes is a criterion of a bi-Lipschitz equiv-
alence.

Theorem 5.5.
(1) If two germs of definable curves (X,x0) and (Y, y0) are bi-Lipschitz equiv-

alent, then the corresponding quasi-valuation semicomplexes are isomor-
phic.

(2) If the valuation semicomplexes associated to the germs of definable curves
(X,x0) and (Y, y0) are isomorphic, then these germs are bi-Lipschitz equiv-
alent.

Proof.
1. If F : (X,x0) → (Y, y0) is a bi-Lipschitz map, then for all pairs of

branches Xi,Xj , by Theorem 5.1, we have: P (τXij ) = P (τF (Xij)). Hence,
the corresponding quasi-valuation semicomplexes are isomorphic.

2. Let (X,x0) and (Y, y0) be a pair of germs of definable curves such that
the corresponding valuation semicomplexes are isomorphic. Let xi(ε) be a
point on the branch Xi of X such that ‖xi(ε) − x0‖ = ε. Let yi(ε) be a point
on the branch Yi of Y such that ‖yi(ε) − y0‖ = ε. Set Φ(xi(ε)) = yi(ε). By
the same argument, as in the proof of Lemma 5.3, the germ of Φ at x0 is a
germ of a bi-Lipschitz map. �

Remark. A valuation semicomplex, in general, is not a bi-Lipschitz in-
variant. To see it consider the semicusps Cφ1 and Cφ2 with φ1(t) = e−1/t and
φ2(t) = e−1/2t.

The following statement shows that in the nonflat case a quasi-valuation
semicomplex is a complete bi-Lipschitz invariant.

Corollary 5.6. Let (X,x0) and (Y, y0) be the germs of definable in A
curves where A is an o-minimal structure, not necessarily polynomially
bounded. Suppose that all functions τXij and τYij are nonflat at 0. Then
(X,x0) and (Y, y0) are bi-Lipschitz equivalent if and only if the corresponding
valuation (quasi-valuation) semicomplexes are isomorphic.

Proof. By Theorem 3.11, in this case valuation semicomplexes are totally
determined by quasi-valuation semicomplexes. Thus, the statement follows
from Theorem 5.5. �

Theorem 5.7 (Realization theorem for definable curves). Let (Γ, α) be a
valuation semicomplex. Then there exist a definable in A curve X ⊂ R

2 and a
point x0 ∈ X such that (Γ, α) is a valuation semicomplex associated to (X,x0).
The germ (X,x0) is called a realization of (Γ, α).

Proof. Let VΓ be a set of vertices of Γ. We use the induction on �VΓ (the
number of vertices of Γ). For �VΓ = 1, the statement is trivial. Suppose that
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the statement is proved for all Γ such that �VΓ ≤ k. Moreover, suppose that
there exists a realization of (Γ, α) satisfying the following conditions:

(1) x0 = (0,0) ∈ R
2.

(2) Each branch Xi of X at x0 is a graph of a definable in A function
φi : [0, ε) → R such that φi(0) = 0, φi(t) ≥ 0, for t ≥ 0, and φi(t) > φi−1(t),
for t > 0.

Let α0 = max1≤i,j≤k+1 α(ai, aj). We can suppose without loss of generality
that α0 = α(ak, ak+1). Let Γ̃ be a graph obtained from Γ by exclusion of
the vertex ak+1. Let α̃ = α|VΓ̃×VΓ̃

. Let (X̃, (0,0)) be a realization of (Γ̃, α̃)
satisfying the conditions (1) and (2). Let {X̃i} be the branches of X̃ . Let
each X̃i be a graph of a definable function φ̃i : [0, ε) → R. Let ψ ∈ G+

A be
a definable function such that v(ψ) = α0. Set φi = φ̃i, for i = 1,2, . . . , k and
φk+1 = φ̃k + ψ. Then by Lemma 5.2 and straightforward calculations, we
obtain that X =

⋃
graph(φi) is a realization of (Γ, α). �

Corollary 5.8. Let (Γ̃, α̃) be a quasi-valuation semicomplex. Then there
exist a definable in A curve X ⊂ R

2 and a point x0 ∈ X such that (Γ̃, α̃) is a
quasi-valuation semicomplex associated to (X,x0).

Proposition 5.9. Let (X,x0) and (Y, y0) be germs of definable in A curves
such that they have exactly two branches. Suppose that τX and τY are flat
functions such that v(τX) = v(τY ). Let F : (X,x0) → (Y, y0) be a map satis-
fying one of the following conditions:

(1) F (x0) = y0 and there exists 0 < S < 1 such that d(F (x), y0) < Sd(x,x0),
for all x ∈ X .

(2) F (x0) = y0 and there exists S > 1 such that d(F (x), y0) > Sd(x,x0), for
all x ∈ X .

Then the map F is not bi-Lipschitz.

This proposition is a corollary of Theorem 5.1 and Proposition 4.7.

Corollary 5.10. Let φ be a definable in A flat function. Let (X,x0)
and (Y, y0) be germs of definable in A curves such that they have exactly two
branches. Let v(τX) = v(φ(t)) and v(τY ) = v(φ(Kt)), for some K > 0. Let
F : (X,x0) → (Y, y0) with F (x0) = y0 satisfying one of the following condi-
tions:

(1) There exists 0 < S < 1 such that d(F (x), y0) < S
K d(x,x0), for all x ∈ X .

(2) There exists S > 1 such that d(F (x), y0) > S
K d(x,x0), for all x ∈ X .

Then a map F is not bi-Lipschitz.

The following result shows that the quasi-valuation semicomplex is not a
complete bi-Lipschitz invariant.
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Theorem 5.11. Let A be an o-minimal structure which is not polynomially
bounded. Then there exists a pair of germs (X,x0) and (Y, y0) of definable
in A curves which are not bi-Lipschitz equivalent but the corresponding quasi-
valuation semicomplexes are isomorphic.

Proof. Let φ be a definable in A flat function. Let (Γ1, α1) be a valua-
tion semicomplex with vertices a1

1, a
1
2, a

1
3 such that α1(a1

1, a
1
2) = α1(a1

2, a
1
3) =

α1(a1
1, a

1
3) = v(φ(t)). Let (Γ2, α2) be a valuation semicomplex with vertices

a2
1, a

2
2, a

2
3 defined as follows:

α2(a2
1, a

2
2) = α2(a2

1, a
2
3) = v(φ(t)), α2(a2

2, a
2
3) = v

(
φ(t/2)

)
.

Note, that the quasi-valuation semicomplexes corresponding to (Γ1, α1) and
to (Γ2, α2) are isomorphic because P (φ(t)) = P (φ(t/2))

Let (X,x0) be a realization of (Γ1, α1) and let (Y, y0) be a realization of
(Γ2, α2). Suppose that (X,x0) and (Y, y0) are bi-Lipschitz equivalent. Let
F : (X,x0) → (Y, y0) be a corresponding bi-Lipschitz map. Let X1,X2,X3 be
branches of X and let Y1, Y2, Y3 be corresponding branches of Y . The set
X1 ∪ X2 is bi-Lipschitz equivalent to Y1 ∪ Y2. By Proposition 5.9, applied to
this pair of germs, we obtain that d(F (x), y0) < 3

2d(x,x0), for x sufficiently
close to x0. But, by Corollary 5.10 applied to F : X2 ∪ X3 → Y2 ∪ Y3, we
obtain that d(F (x), y0) > 3

2d(x,x0). This is a contradiction. �

6. Quasi-valuation complexes

Let A be an o-minimal structure and let P : G+
A → H̃ be a quasi-valuation

in A. Let Γ be a finite graph and let EΓ be the set of edges of Γ. A pair
(Γ, β) (where β : EΓ → H̃) is called a quasi-valuation complex. Two quasi-
valuation complexes (Γ, β) and (Γ′, β′) are called isomorphic if there exists
an isomorphism i : Γ → Γ′ such that, for each edge g ∈ EΓ, we have β(g) =
β′(i(g)).

A vertex a ∈ VΓ is called a smooth vertex if it is connected with exactly
two vertices and by exactly one edge with each of them. A vertex a ∈ VΓ is
called a loop vertex if it is connected with only one other vertex by two edges.
A graph Γ is called simplified if it has no smooth vertices. A quasi-valuation
complex (Γ, β) is called simplified if Γ is simplified and, for any loop vertex a
and for two edges g1 and g2 connected to a, we have β(g1) = β(g2).

Remark. The Hölder complexes considered in [1] give examples of quasi-
valuation complexes. In this case, since the semi-algebraic structure is polyno-
mially bounded, the quasi-valuation coincides with the canonical Rosenlicht
valuation.

Now, we are going to describe a simplification procedure of the quasi-
valuation complexes. This procedure is essentially the same one as in [1] but
we are going to present it here in order to make our exposition self contained.
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Elimination of a smooth vertex. Let (Γ, β) be a quasi-valuation complex
and let a ∈ VΓ be a smooth vertex. Let g1 and g2 be two edges connected
to a. Let a1 and a2 be two other vertices connected with a. Let us define a
quasi-valuation complex (Γ′, β′) in the following way. Let us cut the union of
g1, g2 and a from Γ and connect the vertices a1 and a2 by a new edge g′. Set
β′(g′) = min(β(g1), β(g2)). For other edges g ∈ EΓ′ , we put β′(g) the same as
it was in (Γ, β).

Correction near a loop vertex. Let (Γ, β) be a quasi-valuation complex
and let a ∈ VΓ be a loop vertex. Let g1 and g2 be two edges connected
to a. We define a quasi-valuation complex (Γ′, β′) in the following way. Set
Γ′ = Γ. Set β′(g) = β(g), for all edges g �= g1 and g �= g2. Set β′(g1) = β′(g2) =
min(β(g1), β(g2)).

A simplified quasi-valuation complex (Γ′, β′) is called a simplification of
(Γ, β) if it can be obtained from (Γ, β) by a finite sequence of operations
described above.

Theorem 6.1 ([1]). For any quasi-valuation complex (Γ, β), there exists a
simplification. Two simplifications of the same quasi-valuation complex are
isomorphic.

7. Quasi-valuation complexes and definable surfaces

In this section, we study a bi-Lipschitz equivalence with respect to the
inner metric. The word “bi-Lipschitz” means bi-Lipschitz with respect to this
metric.

Let A be an o-minimal structure. Let (Γ, β) be a quasi-valuation complex.

Definition 6. A germ at a point x0 of a definable in A surface X is called
a Geometric Quasi-valuation Complex associated to (Γ, β) if:
1. For some small ε, X ∩ Bx0,ε is homeomorphic to CΓ (here Bx0,ε is a ball

centered at x0 of radius ε and CΓ is a cone over Γ).
2. Let Φ : CΓ → X ∩ Bx0,ε be a homeomorphism and let Φ(a0) = x0 (here a0

is a vertex of CΓ). Let Cg ⊂ CΓ be the subcone of CΓ corresponding to
the edge g. Then there exist a function ψ ∈ G+

A and a definable in A bi-
Lipschitz map Ψ : Φ(Cg) → Tψ such that P (ψ) = β(g) and Ψ(x0) = (0,0).

Let X ⊂ R
n be a definable in A closed surface and let x0 ∈ X . Let {Xi} be a

definable triangulation and simultaneously a pancake decomposition of X . Let
S be a standard simplicial complex corresponding to the triangulation {Xi}.
Let θ : S → X be a definable triangulation map. Let x̃0 = θ−1(x0). Let S̃

be a star of the vertex x̃0, i.e., S̃ contains the simplices of S such that x̃0 is
a vertex of these simplices. A quasi-valuation complex (Γ, β) corresponding
to the germ (X,x0) can be constructed in the following way. Let Γ be a
graph-link of x̃0 in S, i.e., the vertices of Γ are one-dimensional faces of S̃
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and the edges of Γ are two-dimensional faces of S̃. Moreover, two vertices are
connected by an edge if and only if the corresponding one-dimensional faces
belong to the boundary of the corresponding two-dimensional face. Clearly,
S̃ is homeomorphic to the cone over Γ. Let g be an edge of Γ. Let a1 and
a2 be two vertices connected to g. Let s1 and s2 be the one-dimensional
faces corresponding to a1 and a2. Let γ1 = θ(s1) and γ2 = θ(s2). Clearly,
x0 = γ1 ∩ γ2. Let τ be the test function defined, in Section 5, for the pair of
curves γ1 and γ2. Set β(g) = P (τ).

Proposition 7.1. The germ of X at x0 is a Geometric quasi-valuation
Complex associated to (Γ, β).

Proof. Condition 1 of the definition of the Geometric quasi-valuation Com-
plex is satisfied because {Xi} is a triangulation of X .

Let Xj be a simplex of a triangulation {Xi} of X such that x0 is a vertex
of this simplex. If dimXj = 1, then it corresponds to an isolated vertex
in Γ. If dimXj = 2, then the germ of Xj at x0 is bi-Lipschitz equivalent to
a germ at (0,0) of some 2-dimensional definable set Y ⊂ R

2, because Xj is a
pancake (see [11]). The set Y can be obtained from Xj using a projection to
some 2-dimensional subspace of R

n (see [1] for a complete description of this
procedure in a semialgebraic case). Let γ̃1 and γ̃2 be two boundary curves
of Y . Then we can choose a coordinate system in R

2 such that γ̃1 and γ̃2 are
graphs of some definable in A functions: γ̃1 = (x,ψ1(x)), γ̃2 = (x,ψ2(x)). Then
using the same construction as in Section 4 (Theorem 4.1) we can show that
Y is bi-Lipschitz equivalent to a germ at (0,0) of a set Tψ where ψ = ψ1 − ψ2.
By Proposition 4.5 and Theorem 5.5, P (τ) = P (ψ). �

In fact, Proposition 7.1 can be reformulated in the following form.

Theorem 7.2. Let X ⊂ R
n be a definable in A closed surface and let

x0 ∈ X . Then there exists a quasi-valuation complex (Γ, β) such that a germ
of X at x0 is a Geometric quasi-valuation Complex associated to (Γ, β).

Remark. Note that the quasi-valuation complex defined in Theorem 7.2
is not canonical, i.e., depends on the choice of a pancake decomposition. It
becomes canonical if we use the simplification procedure.

Theorem 7.3. Let (Γ, β) be a quasi-valuation complex. Let X be a de-
finable in A set, let x0 ∈ X and let the germ of X at x0 be a Geometric
quasi-valuation Complex associated to (Γ, β). Let (Γ̃, β̃) be the simplification
of (Γ, β). Then the germ of X at x0 is a Geometric quasi-valuation Complex
associated to (Γ̃, β̃).

We need some preliminary results.

Lemma 7.4. Let Y ⊂ R
n be definable set such that there exists a defin-

able bi-Lipschitz map Ψ : Y → Tψ where ψ ∈ G+
A and Ψ(y0) = (0,0), for some
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y0 ∈ Y . Let γ1 and γ2 be curves defined as follows: γ1(t) = Ψ−1((t,0)) and
γ2(t) = Ψ−1((t,ψ(t)). Then there exist φ ∈ G+

A and a definable bi-Lipschitz
map Ψ̃ : Y → Tφ such that P (ψ) = P (φ) and

Ψ̃(y) =

{
(r(y),0), if y ∈ γ2, (3)
(r(y), φ(r(y))), if y ∈ γ1, (4)

where r(y) = ‖y − y0‖.

Proof. Since γ1 is a definable curve, it has a tangent vector at y0, and thus,
the germ at 0 of the function r̃(t) = r(γ1(t)) belongs to LipA.

Let Ψ1 : [0, ∞) × R → [0, ∞) × R be a map defined as follows: Ψ1(x1, x2) =
(r̃(x1), x2). Set Ψ̃1 = Ψ1 ◦ Ψ. Thus, for y ∈ γ1, we obtain Ψ̃1(y) = (r(y),0).
By the construction, Ψ̃1 is a definable bi-Lipschitz map. The image of Tψ

by the map Ψ1 is a set bounded by the straight line x2 = 0 and a graph of
some function φ ∈ G+

A. By the definition of the map Ψ̃1, the germs of φ and ψ
are R-Lipschitz equivalent and, thus, P (φ) = P (ψ). Let θ : [0, ∞) × R →
[0, ∞) × R be the map defined as follows:

θ(x1, x2) = (x1, −x2), θ1(x1, x2) =
(
x1, x2 + φ(x1)

)
.

We define Ψ̃2 : Y → Tφ in the following way:

Ψ̃2 = θ1 ◦ θ ◦ Ψ̃1.

Clearly, Ψ̃2 is a definable bi-Lipschitz map. For y ∈ γ1, we obtain that

Ψ̃2(y) = (r(y), φ(r(y))).(5)

Thus, the condition (4) is satisfied and now we are going to correct the map
Ψ̃2 in order to obtain the condition (3).

Let R(x) = r(Ψ̃−1
2 (x,0)). We will show that

R(x) = x + φ1(x),

for some φ1 ∈ G+
A such that P (φ1(x)) ≥ P (φ(x)).

Since Ψ̃2 is a bi-Lipschitz map, there exists a number K > 0 such that

Kφ(x) = K‖(x,0) − (x,φ(x))‖ ≥ d�(Ψ̃−1
2 (x,0), Ψ̃−1

2 (x,φ(x))).

On the other hand,

d�(Ψ̃−1
2 (x,0), Ψ̃−1

2 (x,φ(x))) ≥ ‖Ψ̃−1
2 (x,0) − Ψ̃−1

2 (x,φ(x))‖
≥ | ‖Ψ̃−1

2 (x,0) − y0‖ − ‖Ψ̃−1
2 (x,φ(x)) − y0‖|.

Using (5), we obtain
‖Ψ̃−1

2 (x,φ(x)) − y0‖ = x

and by the definition of R(x), we have:

‖Ψ̃−1
2 (x,0) − y0‖ = R(x).
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Thus,

Kφ(x) ≥ R(x) − x = φ1(x) and v(φ1(x)) ≥ v(φ(x)).

By the results of Section 3, we obtain

P (φ1(x)) ≥ P (φ(x)).

Suppose now that v(φ(x)) > v(Id). We define a map Ψ3 : Tφ → Tφ in the
following way:

Ψ3(x1, x2)(6)

=

{(
R(x1)

(
1 − x2

φ(x1)

)
+ x1

(
x2

φ(x1)

)
, x2

)
, if (x1, x2) �= (0,0),

(0,0), if (x1, x2) = (0,0).

Let us show that Ψ3 is a bi-Lipschitz map. Computing the derivatives we
obtain

∂Ψ1
3

∂x1
= 1 − dφ1

dx1

(
x2

φ(x1)

)
+

dφ

dx1

(
x2φ1(x1)
φ(x1)2

)
+

dφ1

dx1
.

Since v(φ) > v(Id), then dφ
dx1

and dφ1
dx1

tend to zero when x1 tends to zero.
Thus, for small ε > 0, there exists δ > 0 such that if (x1, x2) ∈ Tφ ∩ B(0,0),δ

then ∂Ψ1
3

∂x1
∈ (1 − ε,1 + ε). Computing ∂Ψ1

3
∂x2

, we obtain

∂Ψ1
3

∂x2
(x1, x2) = − φ1(x1)

φ(x1)
.

Since v(φ1) ≥ v(φ), we have that ∂Ψ1
3

∂x2
is bounded.

Finally, ‖DΨ3‖ is bounded away from 0 and infinity, Ψ3 is homeomorphism
near (0,0), and thus, the germ of Φ3 at (0,0) is a germ of a bi-Lipschitz map.

Let v(φ) = v(Id). We can suppose that φ(x) < x
3 and dφ

dx < 1
3 , for x suffi-

ciently close to 0. Otherwise, we apply a corresponding linear transformation
L : R

2 → R
2. Then the map Ψ3 : Tφ → Tφ defined in the same way as above is

bi-Lipschitz by the same arguments as in the first part of the proof. Note, that
all the points belonging to the curve (x1, φ(x1)) are the fixed points of Ψ3.

Let us define Ψ̃ : Y → Tφ as follows:

Ψ̃ = Ψ3 ◦ Ψ̃2.

It easy to see that for y ∈ γ1, we obtain Ψ̃(y) = (r(y), φ(r(y))), and for y ∈ γ2,
we have Ψ̃(y) = (r(y),0). The lemma is proved. �

Proof of Theorem 7.3. We can suppose that a simplification (Γ̃, β̃) is ob-
tained from (Γ, β) by using a single operation: an elimination of a smooth
vertex or a correction near a loop vertex.
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Consider the first case. Let a be a smooth vertex and let g1 and g2 be
two edges connected to the vertex a. Let Φ : CΓ → X ∩ Bx0,ε be a homeo-
morphism from the definition of a Geometric quasi-valuation Complex asso-
ciated to (Γ, β) (see Definition 6). Using Lemma 7.4, we can construct de-
finable bi-Lipschitz maps Ψg1 : Φ(Cg1) → Tφ1 and Ψg2 : Φ(Cg2) → Tφ2 such
that P (φ1) = β(g1) and P (φ2) = β(g2). Let θ̃ : Tφ2 → R

2 be a map defined as
follows:

θ̃(x1, x2) =
(
x1, x2 + φ1(x1)

)
.

Let us define a map Ψg : Φ(Cg1) ∪ Φ(Cg2) → Tφ1+φ2 in the following way:

Ψg(x) =

{
Ψg1(x), if x ∈ Φ(Cg1),
θ̃(Ψg2(x)), if x ∈ Φ(Cg2).

This map is definable in A, continuous on Φ(Cg1) ∪ Φ(Cg2) (by Lemma 7.4)
and bi-Lipschitz on Φ(Cg1) and on Φ(Cg2). Hence, it is bi-Lipschitz on
Φ(Cg) = Φ(Cg1) ∪ Φ(Cg2) with respect to the intrinsic metric. Since P is
a quasi-valuation, we obtain that P (φ1 + φ2) = min(P (φ1), P (φ2)). It means
that for some ε > 0, the set X ∩ Bx0,ε is a Geometric quasi-valuation Complex
associated to (Γ̃, β̃).

Consider the second case when (Γ̃, β̃) can be obtained from (Γ, β) using
correction near a loop vertex. Observe that a set Tφ can be considered as a
union of two sets T1 and T2 such that they are bi-Lipschitz equivalent to Tφ.
Namely, T1 = Tφ

2
and T2 = {(x1, x2)| φ(x1)

2 ≤ x2 ≤ φ(x1)}. Let a be a loop
vertex of (Γ, β). Let g1 and g2 be the edges connecting a with another vertex b.
Suppose that β(g2) > β(g1). Let Ψg1 : Φ(Cg1) → Tφ1 and Ψg2 : Φ(Cg2) → Tφ2

be maps constructed in Lemma 7.4. The set Tφ1 can be divided into the sets
T1 and T2 such that T1 and T2 are bi-Lipschitz equivalent to Tφ1 . Now, we can
construct a quasi-valuation Complex (Γ′, β′) such that Γ′ is obtained from Γ by
adding an additional vertex a′ on the edge g1. The edge g1 is decomposed into
new edges g′

1 and g′
2 connecting a′ with a and b correspondingly. Set β(g′

1) =
β(g′

2) = β(g1). Clearly, X ∩ Bx0,ε is a Geometric quasi-valuation Complex
associated to (Γ′, β′). The set Φ(Cg′

1) is defined as Ψ−1
g1

(T2). Then a is a
smooth vertex of (Γ′, β′), and the first part of proof can be applied to this
case. Clearly, (Γ̃, β̃) is a simplification of (Γ′, β′). We obtained that X ∩ Bx0,ε

is a Geometric quasi-valuation Complex associated to (Γ̃, β̃). �

8. Horns. Isolated singularities

Let A be an o-minimal structure and let φ ∈ G+
A be a germ of a definable

in A function. A set Wφ ⊂ R
3 defined as follows:

Wφ =
{
(x1, x2, x3) ∈ R

3, x3 ≥ 0,
√

x2
1 + x2

2 = φ(x3)
}

is called φ-horn.
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Wφ can be obtained as a “surface of revolution” of the graph of φ. It is
easy to see that Wφ is normally embedded in R

3. Each point x = (x1, x2, x3)
belonging to Wφ has natural “polar” coordinates: ρ(x) = x3 and the angle
coordinate η(x) defined as follows: cosη(x) = x1

φ(x3)
, sinη(x) = x2

φ(x3)
.

Theorem 8.1. Wφ1 and Wφ2 are bi-Lipschitz equivalent if and only if
P (φ1) = P (φ2).

Remark. Here, a bi-Lipschitz equivalence can be considered with respect
to the inner or to the Euclidean metric. The both notions are the same
because Wφ is normally embedded in R

3.

Proof of Theorem 8.1. If P (φ1) = P (φ2), then by Corollary 4.4, the semi-
cusps Cφ1 and Cφ2 are bi-Lipschitz equivalent. Hence, one can extend a
bi-Lipschitz map to surfaces obtained by revolution of Cφ1 and Cφ2 .

Let F : Wφ1 → Wφ2 be a bi-Lipschitz map. Let Sε be the set of points
x ∈ Wφ1 such that ρ(x) = ε. Let a(ε) and ã(ε) be two points on F (Sε), such
that for each other pair y, ỹ ∈ F (Sε), we have: ‖y − ỹ‖ ≤ ‖a(ε) − ã(ε)‖. Since
F is a bi-Lipschitz map, there exists a positive constant C1 such that

C1‖x − x̃‖ ≥ ‖a(ε) − ã(ε)‖
where F (x) = a(ε) and F (x̃) = ã(ε). Since x, x̃ ∈ Sε, we obtain that ‖x − x̃‖ ≤
2φ1(ε) and, hence,

2C1φ1(ε) ≥ ‖a(ε) − ã(ε)‖.

Let b(ε) ∈ F (Sε) be a point such that ρ(b(ε)) = miny∈F (Sε) ρ(y). Let b̃(ε) be
a point on F (Sε) such that η(b̃(ε)) = η(b(ε)) + π, i.e. b̃(ε) is an opposite to
b(ε) point on F (Sε). By the definition of a(ε) and ã(ε), we obtain:

‖a(ε) − ã(ε)‖ ≥ ‖b(ε) − b̃(ε)‖.

But
‖b(ε) − b̃(ε)‖ ≥ 2φ2(ρ(b(ε))).

Since F is a bi-Lipschitz map, there exists C2 > 0 such that

ρ(b(ε)) ≥ C2ε.

Using the above inequalities, we obtain:

C1φ1(ε) ≥ φ2(C2ε).

Hence, P (φ1) ≤ P (φ2). Considering the map F −1, we conclude that P (φ1) =
P (φ2). �

Proposition 8.2. Let X be a definable in A set and let x0 ∈ X . Suppose
that X is a union of two definable subsets X1 and X2 such that X1 ∩ X2 =
γ1 ∪ γ2 where γ1 and γ2 are two definable in A curves and γ1 ∩ γ2 = x0. Let
X1 and X2 be bi-Lipschitz equivalent in A to Tψ1 and to Tψ2 correspondingly
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with respect to the inner metric and let the image of x0 by corresponding
bi-Lipschitz maps is a point (0,0) ∈ R

2. Suppose that P (ψ1) ≤ P (ψ2).
Then the germ of X at x0 is bi-Lipschitz equivalent in A with respect to

the inner metric to the germ of the horn Wψ1 at (0,0,0) ∈ R
3.

Proof. Let Ψ1 : X1 → Tψ1 be a definable bi-Lipschitz map. The set Tψ1 can
be decomposed into union of the sets T1 and T2 such that T1 = Tψ1

2
and T2

is a closure of Tψ1 − T1. Note, that T1 and T2 are bi-Lipschitz equivalent
in A to Tψ1 . By Theorem 7.3, we obtain that X2 ∪ Ψ−1

1 (T2) is bi-Lipschitz
equivalent in A to Tψ1 .

Let W1 ⊂ Wψ1 be a subset of Wψ1 defined as follows: W1 = {x ∈ Wψ1 ,
x1 ≥ 0}. Let W2 = {x ∈ Wψ1 , x1 ≤ 0}. Clearly, Wψ1 = W1 ∪ W2 and both
W1 and W2 are bi-Lipschitz equivalent to Tψ1 . By the same arguments as
in the proof of Theorem 7.3, there exists a bi-Lipschitz (with respect to the
inner metric) map Φ1 : X2 ∪ Ψ−1

1 (T2) → W1 such that ‖x − x0‖ = ‖Φ1(x)‖,
for x belonging to the boundary of X2 ∪ Ψ−1

1 (T2). Using the same proce-
dure, we can construct a bi-Lipschitz (with respect to the inner metric) map
Φ2 : Ψ−1

1 (T1) → W2 such that ‖x − x0‖ = ‖Φ2(x)‖, for x belonging to the
boundary of Ψ−1

1 (T1).
Let Φ : X → Wψ1 be a map defined as follows:

Φ(x) =

{
Φ1(x), if x ∈ X2 ∪ Ψ−1

1 (T2),
Φ2(x), if x ∈ Ψ−1

1 (T1).

By construction, Φ is a bi-Lipschitz map. �

Theorem 8.3 (Horn theorem). Let X ⊂ R
n be a definable set. Let x0 ∈ X

be an isolated singular point such that the link of X at x0 is connected. Then
there exists a definable in A function ψ ∈ G+

A such that the germ of X at x0

is bi-Lipschitz equivalent in A with respect to the inner metric to the germ of
Wψ at (0,0,0) ∈ R

3.

Proof. Let (Γ, β) be a quasi-valuation complex corresponding to (X,x0).
Clearly, that a simplification (Γ̃, β̃) of (Γ, β) must have the following form:
the graph Γ̃ contains only two vertices a1 and a2 connected by two edges
g1 and g2 and β̃(g1) = β̃(g2). By Theorem 7.3, (X,x0) is a Geometric quasi-
valuation Complex associated to (Γ̃, β̃). Let ψ be a function such that P (ψ) =
β(g1) − β(g2). Then by Proposition 8.2, the germ of X at x0 is bi-Lipschitz
equivalent to the germ Wψ at (0,0,0) ∈ R

3. �

The main result of this section is the following.

Theorem 8.4 (Classification theorem for definable surfaces with isolated
singularities). Let X be a definable in A surface and let x0 ∈ X be an isolated
singular point. Then:
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1. There exists a finite family of definable in A functions ψ1 < ψ2 < · · · < ψk

such that the germ of X at x0 is bi-Lipschitz equivalent in A with respect
to the inner metric to the germ of Wψ1 ∪ Wψ2 ∪ · · · ∪ Wψk

at (0,0,0) ∈ R
3.

2. The sets Wψ1 ∪ Wψ2 ∪ · · · ∪ Wψk
and Wψ̃1

∪ Wψ̃2
∪ · · · ∪ Wψ̃k

are bi-Lipschitz
equivalent with respect to the inner metric if and only if P (ψi) = P (ψ̃i),
for i = 1, . . . , k.

Remark. The functions ψ1, ψ2, . . . , ψk defined in the theorem are not
unique, but the collection of values P (ψ1), P (ψ2), . . . , P (ψk) is unique and
gives a complete bi-Lipschitz invariant for this type of singularities.

Proof of Theorem 8.4. 1. Using general properties of length-spaces (see
[8]), one can observe that if Y and Z be length-spaces such that Y = Y1 ∪ Y2,
Z = Z1 ∪ Z2,#{Y1 ∩ Y2} = 1,#{Z1 ∩ Z2} = 1, Y1 is bi-Lipschitz equivalent with
respect to the inner metric to Z1 and Y2 is bi-Lipschitz equivalent with respect
to the inner metric to Z2 then Y is bi-Lipschitz equivalent to Z.

Let X be a definable surface and let x0 ∈ X be a singular point. Then X can
be decomposed into a union of surfaces X1,X2, . . . ,Xk such that

⋂k
i=1Xi = x0

and the link of each Xi at x0 is connected. By Theorem 8.3, each Xi is bi-
Lipschitz equivalent to Wψi , for some ψi ∈ G+

A. By the observation from the
beginning of the proof, we obtain the part 1.

The part 2 is a direct corollary of Theorem 8.1. �

Corollary 8.5. Let (X,x0) and (X ′, x′
0) be germs of definable surfaces

with isolated singular points x0 ∈ X and x′
0 ∈ X ′. Suppose that there exists

a bi-Lipschitz (with respect to the inner metric) map F : (X,x0) → (X ′, x′
0).

Then there exists a definable in A bi-Lipschitz (with respect to the inner met-
ric) map G : (X,x0) → (X ′, x′

0).

Observe that Theorem 8.1 is proved for any bi-Lipschitz map and all the
maps constructed in the proofs of Theorem 8.3 and Theorem 8.4 are definable
in A.

9. Canonical quasi-valuation Complex

Definition 7. Let A be an o-minimal structure and let X ⊂ R
n be a

definable in A surface such that x0 ∈ X . Let (Γ, β) be a quasi-valuation Com-
plex such that (X,x0) is a Geometric quasi-valuation Complex associated to
(Γ, β). Let (Γ̃, β̃) be a simplification of (Γ, β). Then (Γ̃, β̃) is called a Canon-
ical quasi-valuation Complex of X at x0.

Theorem 9.1. Let X,X ′ be definable in A surfaces such that x0 ∈ X,
x′

0 ∈ X ′. Then:
1. A Canonical quasi-valuation Complex of X at x0 is well defined up to an

isomorphism.
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2. If germ of X ′ at x′
0 is bi-Lipschitz equivalent with respect to the inner met-

ric to the germ of X at x0, then their Canonical quasi-valuation Complexes
are isomorphic.

Proof. Note that the Statement 1 is a direct corollary of the Statement 2
because the identity map is bi-Lipschitz. Let (Γ, β) be a Canonical quasi-
valuation Complex of X at x0 and let (Γ′, β′) be a Canonical quasi-valuation
Complex of X ′ at x′

0. Let Φ : CΓ → X ∩ Bx0,ε and Φ′ : CΓ′ → X ′ ∩ Bx′
0,ε′

be the corresponding homeomorphisms. Let F : (X,x0) → (X ′, x′
0) be a bi-

Lipschitz map. Since Γ and Γ′ do not have smooth vertices, F induces an
isomorphism i between Γ and Γ′. Let g be an edge of Γ connecting vertices
a1 and a2. Suppose that a1 and a2 are not loop vertices. Let g′ = i(g). Let
Ψg : Φ(Cg) → Tφ and Ψ′

g′ : Φ′(Cg′) → Tφ′ be the corresponding bi-Lipschitz
maps described in the definition of Geometric quasi-valuation Complex (see
Section 7). By the construction, the map Ψ′

g′ ◦ F ◦ Ψ−1
g : Tφ → Tφ′ is a bi-

Lipschitz map. Thus, by Proposition 4.5 and Theorem 4.8, we obtain P (φ) =
P (φ′).

Let a ∈ VΓ be a loop vertex. Let g1 and g2 be edges connecting a to another
vertex a1. Let Γ1 be a subgraph of Γ such that VΓ1 = {a, a1} and EΓ1 =
{g1, g2}. By Proposition 8.2, we have that Φ(CΓ1) is bi-Lipschitz equivalent
to φ-horn Wφ where φ ∈ β(g1). By Theorem 8.1, we obtain that F (Φ(CΓ1)) is
bi-Lipschitz equivalent to Wφ′ and P (φ) = P (φ′). Since (Γ′, β′) is a simplified
quasi-valuation complex, i(Γ1) is a graph Γ′

1 (a subgraph of Γ′) with vertices
a′, a′

1 and the edges g′
1, g

′
2. By Theorem 8.1, we have: β(g′

1) = β(g′
2) = β(g1) =

β(g2). The theorem is proved. �

The following result shows that Canonical quasi-valuation Complex is not
a complete bi-Lipschitz invariant, for o-minimal structures not polynomially
bounded.

Theorem 9.2. Let A be an o-minimal structure which is not polynomi-
ally bounded. Then there exists a pair of germs of definable in A surfaces
(X,x0) ⊂ R

3 and (Y, y0) ⊂ R
3 such that the corresponding Canonical quasi-

valuation Complexes are isomorphic but the germs (X,x0) and (Y, y0) are not
bi-Lipschitz equivalent.

Proof. Let φ be a definable in A flat function. Let (Γ, β) be the following
quasi-valuation complex:

VΓ = {a0, a1, a2, a3}, EΓ = {(a0, a1), (a0, a2), (a0, a3)}
and β(a0, a1) = β(a0, a2) = β(a0, a3) = P (φ).

Let (X,x0) be a realization of (Γ, β) constructed as follows. Let V1, V2, V3

be three planes in R
3 such that V1 ∩ V2 ∩ V3 = {(x1, x2, x3) ∈ R

3|x1 ∈ R,
x2 = x3 = 0}. Let T1, T2, T3 be three copies of Tφ on these planes such that
T1 ∩ T2 ∩ T3 = {(x1, x2, x3) ∈ R

3|x1 ≥ 0, x2 = x3 = 0}. Set X = T1 ∪ T2 ∪ T3.
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Clearly, (X, (0,0,0)) is a realization of (Γ, β). Let T ′
3 ⊂ V3 be a copy of Tφ( t

2 )

on the plane V3. Set Y = T1 ∪ T2 ∪ T ′
3. Clearly, (Y, (0,0,0)) is another realiza-

tion of (Γ, β). By the same arguments as in the proof of Theorem 5.11, the
sets (Y, (0,0,0)) and (X, (0,0,0)) are not bi-Lipschitz equivalent. �

Definition 8. A germ (X,x0) of a definable surface is called totally non-
flat if the Canonical quasi-valuation Complex (Γ, β) satisfies the following
condition: for every edge g ∈ EΓ, there exists a nonflat germ ψ ∈ G+

A such
that P (ψ) = β(g).

Remark. If A is polynomially bounded, then every germ of every definable
in A surface is totally nonflat.

Theorem 9.3. Let A be an o-minimal structure. Let (X,x0) and (Y, y0) be
two germs of definable in A totally nonflat surfaces. Then the germs (X,x0)
and (Y, y0) are bi-Lipschitz equivalent with respect to the inner metric if and
only if the corresponding Canonical quasi-valuation Complexes are isomor-
phic.

Proof. Let (Γ1, β1) and (Γ2, β2) be Canonical quasi-valuation Complexes
associated to (X,x0) and (Y, y0), correspondingly. Let {Xj } and {Yj } be
triangulations of X and Y corresponding to (Γ1, β1) and (Γ2, β2). Let X̄
be a simplex of the triangulation {Xj } or of the triangulation {Yj }. Let γ1

and γ2 be boundary curves of X̄ . Then by the same arguments as in the proof
of Lemma 7.4, we obtain that there exists a definable bi-Lipschitz (with re-
spect to the inner metric) map Ψ̃X̄ : X̄ → T̃φ (here T̃φ = {(x1, x2) ∈ R

2|x1 ≥ 0,
−φ(x1) ≤ x2 ≤ φ(x1)}) such that

Ψ̃X̄(x) =

{
(r1(x), φ(r1(x))), for x ∈ γ1,

(r2(x), −φ(r2(x))), for x ∈ γ2,
(�)

where r1(x) = ‖x − x0‖ or r2(x) = ‖x − y0‖.
Let i : (Γ1, β1) → (Γ2, β2) be an isomorphism. Let Ȳ ∈ {Xj } be a sim-

plex of the triangulation {Xj } corresponding to some edge g ∈ Γ1. Let
i(Ȳ ) be a simplex of {Yj } corresponding to i(g). Now, we can define a
map Ψ : (X,x0) → (Y, y0) independently on each simplex Ȳ ∈ {Xj }. Let
Ψ = Ψ̃−1

i(Ȳ )
◦ Ψ̃Ȳ . Since φ is a nonflat function, we obtain that Ψ is bi-Lipschitz

on each simplex Ȳ ∈ {Xj }. Since Ψ is well defined and continuous on bound-
ary curves, we conclude that Ψ is a definable bi-Lipschitz map on X . �

Hence, the Canonical quasi-valuation complex is a complete bi-Lipschitz in-
variant for totally nonflat surfaces. In particular, it is a complete bi-Lipschitz
invariant for all definable surfaces in polynomially bounded o-minimal struc-
tures.
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