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ON NULL SETS OF SOBOLEV–ORLICZ CAPACITIES

JANI JOENSUU

Abstract. This paper considers sufficient conditions for a Young
function of type tpϕ(t), with p greater than one, so that certain

Sobolev–Orlicz capacities have the same null sets. Examples of
such Young functions are given too.

1. Introduction

In [2], the authors studied Sobolev–Orlicz capacities, in particular, the null
sets of these capacities. As an application, they proved vanishing exponential
integrability results in [3]. It was shown in [2, Theorem 2.3 and Corollary 2.6,
p. 1160] that if a Young function Φ : [0, ∞) → [0, ∞) is defined by Φ(t) =
tp log(e+ t)θ , with p ∈ (1, ∞) and θ ∈ [0, p − 1], then capacities Bα,Φ and Pα,Φ

have the same null sets in a fixed ball Bn(0,R0), when α = n/p. The capacities
Bα,Φ and Pα,Φ, with α = n/p, are defined for all subsets of Bn(0,R0) by

Bα,Φ(E) = inf
{∫

Bn(0,R0)

Φ(f(x))dx
∣∣∣f nonnegative, (Gα ∗ f)(x) ≥ 1 on E

}
and

Pα,Φ(E) = inf
{

‖f ‖LΦ(Bn(0,R0))
|f nonnegative, (Gα ∗ f)(x) ≥ 1 on E

}
.

Here, ‖ · ‖LΦ(Bn(0,R0))
is the Luxemburg norm, and Gα is the Bessel kernel

for α > 0, and Gα ∗ f is the convolution of Gα and f . The purpose of this
note is to generalize this result to the case when a Young function Φ is of type
tpϕ(t), where ϕ is a more general function than the function log(e + t)θ. The
conditions for Φ are given in Section 6.

We call capacities Pα,Φ and Bα,Φ Sobolev–Orlicz capacities, since it follows
from [4, Remark 3.11, p. 243] that if a Young function Φ and its complemen-
tary Young function satisfy Δ2-condition, and k is a positive integer, then
a function u : R

n → R belongs to the Sobolev–Orlicz space W k,Φ(Rn) if and
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only if u belongs to the Orlicz potential space Lk,Φ(Rn). For any positive
integer k, the Sobolev–Orlicz space W k,Φ(Rn) is defined to be the set of func-
tions u : R

n → R such that u and its weak derivatives up to order k belong to
the Orlicz space LΦ(Rn). The Orlicz potential space Lα,Φ(Rn) is defined for
α > 0 by

Lα,Φ(Rn) = {u : R
n → R|u = Gα ∗ f, f ∈ LΦ(Rn)}.

We are going to show in Theorem 8.1 that if Φ satisfies the conditions
given in 6.1, and p ∈ (1, ∞), and E is a subset of a fixed ball Bn(0,R0), and
α = n/p, then there is a positive constant C, depending on n, p, R0, and ϕ,
such that

Bα,Φ(E) ≤ Cϕ(Pα,Φ(E))Pα,Φ(E)p.

Further, if Pα,Φ(E) > 0, then

C−1Pα,Φ(E)p

[
ϕ

(
1

Pα,Φ(E)

)]−1

≤ Bα,Φ(E).

As a consequence of Theorem 8.1, we prove in Corollary 8.2 that the ca-
pacities Pα,Φ and Bα,Φ have the same null sets in Bn(0,R0).

In order to prove the inequality Bα,Φ(E) ≤ Cϕ(Pα,Φ(E))Pα,Φ(E)p of The-
orem 8.1, we are going to show in Theorem 7.6 that for every function f from
the Orlicz space LΦ(Ω) there exists a positive constant C, which does not
depend on f , such that

(1.1) C−1‖f ‖LΦ(Ω) ≤
(∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

)1/p

≤ C‖f ‖LΦ(Ω).

For the definition of f ∗ and Orlicz spaces, we refer to Definition 3.2 and Sec-
tion 5, respectively. One essential part of the proof for inequalities (1.1) is the
following Hardy’s inequality: if p ∈ (1, ∞) and tpϕ(t) satisfies the conditions
in 6.1, then[∫ 1

0

(
ϕ( 1

t )
1/p

t

∫ t

0

f ∗(s)
)p

dt

]1/p

≤ p

p − 1

[∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

]1/p

.

We prove this Hardy’s inequality in Lemma 7.2.
This paper is organized as follows. In Section 2, we give notation. The defi-

nitions and basic properties of the decreasing rearrangement and the maximal
function are recalled in Section 3. Sections 4 and 5 are devoted to Banach func-
tion spaces and Orlicz spaces, respectively. The definitions of Sobolev–Orlicz
capacities are given in Section 6. We prove inequalities (1.1) in Section 7.
The proofs for Theorem 8.1 and Corollary 8.2 are given in Section 8, along
with some examples, which show that our results are more general than the
ones of Adams and Hurri-Syrjänen [2].
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2. Notation

In this paper, the letter C will denote a positive constant, not necessarily
the same in different occurrences. If, for two quantities Q1 and Q2, there
exists a positive constant C such that C−1Q2 ≤ Q1 ≤ CQ2, then we write
Q1 ∼ Q2. If Q1 and Q2 are two norms such that Q1 ∼ Q2, then we say that
Q1 and Q2 are equivalent. We will work in R

n with the Euclidean metric. If
x ∈ R

n and r > 0,
Bn(x, r) = {y ∈ R

n : |x − y| < r}
is the ball with center x and radius r.

Let Ω be a Lebesgue measurable subset of R
n and let M0(Ω) denote the

real valued Lebesgue measurable functions on Ω that are finite almost every-
where with respect to the Lebesgue measure. We say that a property holds
almost everywhere if it holds almost everywhere with respect to the Lebesgue
measure. Let m denote Lebesgue n-measure. We shall say that a set or a func-
tion is measurable if it is Lebesgue measurable. Let χΩ be the characteristic
function of Ω defined by

χΩ(x) =

{
1, when x ∈ Ω,

0, when x /∈ Ω.

When we integrate a Lebesgue measurable function, we denote Lebesgue n-
measure by dx. Recall that if p ∈ [1, ∞), then a measurable function f : Ω → R

belongs to the Lebesgue space Lp(Ω) if and only if

‖f ‖Lp(Ω) :=
(∫

Ω

|f(x)|p dx

)1/p

< ∞.

We define the Bessel kernel Gα for x ∈ R
n and α > 0 by

Gα(x) =
1

(4π)α/2

1
Γ(α/2)

∫ ∞

0

t
α−n

2 e− π|x|2
t − t

4π
dt

t
,

where Γ is the function Γ(s) =
∫ ∞
0

e−tts−1 dt. It follows that Gα is positive,
Gα belongs to L1(Rn), and if 0 < α < n, then Gα(x) ∼ |x|α−n in a fixed ball
Bn(0,R0). For these and some other properties of the Bessel kernel, we refer
to [1, pp. 9–11].

3. Decreasing rearrangement and maximal function

In the following, we are going to recall the definition of the decreasing
rearrangement of a measurable, almost everywhere finite function.

Definition 3.1. Suppose that a function f belongs to M0(Ω). Distribu-
tion function of f is the function mf : [0, ∞) → [0, ∞] defined by

mf (λ) = m
(

{x ∈ Ω : |f(x)| > λ}
)
.
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Definition 3.2. The decreasing rearrangement of f ∈ M0(Ω) is the func-
tion f ∗ : [0, ∞) → [0, ∞] defined by

f ∗(t) = inf{λ : mf (λ) ≤ t}.

We use the convention inf ∅ = ∞. Suppose that f and g belong to M0(Ω).
Then f ∗ is nonnegative, decreasing, and rightcontinuous on [0, ∞). If |g| ≤ |f |
almost everywhere on Ω, then g∗ ≤ f ∗. We have (af)∗ = |a|f ∗ for all a ∈ R

and (|f |p)∗ = (f ∗)p for all p ∈ (0, ∞). Moreover, if (fn)∞
n=1 is such that every

fn belongs to M0(Ω) and |fn| ↗ |f |, then f ∗
n ↗ f ∗. The proofs of these and

some other properties of the decreasing rearrangement may be found in [5,
Proposition 1.7, p. 41].

Definition 3.3. Suppose that f belongs to M0(Ω). Then f ∗ ∗ : (0, ∞) →
[0, ∞] is the maximal function of f ∗ defined by

f ∗ ∗(t) =
1
t

∫ t

0

f ∗(s)ds.

We have collected some properties of the maximal function in the following
proposition.

Proposition 3.4. Suppose that functions f and g belong to M0(Ω). Let
(fn)∞

n=1 be such that each fn belongs to M0(Ω). Then f ∗ ∗ is nonnegative,
decreasing, and continuous on (0, ∞). Moreover:

(1) f ∗ ∗ ≡ 0 if and only if f = 0 almost everywhere;
(2) f ∗ ≤ f ∗ ∗;
(3) if |g| ≤ |f | almost everywhere then g∗ ∗ ≤ f ∗ ∗;
(4) (cf)∗ ∗ = |c|f ∗ ∗ for all c ∈ R;
(5) (f + g)∗ ∗(t) ≤ f ∗ ∗(t) + g∗ ∗(t) for all t > 0;
(6) if |fn| ↗ |f |, then f ∗ ∗

n ↗ f ∗ ∗.

These properties are shown in [5, Proposition 3.2, p. 52], except for the
property (5), which is shown in [5, Theorem 3.4, p. 55].

4. Banach function spaces

Although we are interested in Orlicz spaces, it turns out to be useful to
study a more general setting, namely Banach function spaces. The following
definition is from [6, Definition 3.1.1, p. 64].

Definition 4.1. A mapping ρ : M0(Ω) → [0, ∞] is a Banach function norm
if all functions f and g in M0(Ω) have the following properties:

(1) ρ(f) = 0 if and only if f = 0 almost everywhere; ρ(af) = aρ(f) for all
a ≥ 0, and ρ(f + g) ≤ ρ(f) + ρ(g);

(2) if 0 ≤ g ≤ f almost everywhere, then ρ(g) ≤ ρ(f);
(3) if (fn)∞

n=1 is a sequence of nonnegative functions such that each func-
tion fn belongs to M0(Ω) and fn ↗ f almost everywhere, then ρ(fn) ↗ ρ(f);
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(4) if E is a measurable subset of Ω, and m(E) < ∞, then ρ(χE) < ∞;
(5) if E is a measurable subset of Ω, and m(E) < ∞, and f is nonnega-

tive, then there exists a positive constant C, possibly depending on E, such
that ∫

E

f(x)dx ≤ Cρ(f).

Definition 4.2. Let ρ be a Banach function norm. The collection X =
X(ρ) of all functions f in M0(Ω) for which ρ(|f |) < ∞ is called a Banach
function space. For each f ∈ X , we define

‖f ‖X = ρ(|f |).

A Banach function space X is a linear space and it is shown in [6, Theo-
rem 3.1.3, p. 65] that (X, ‖ · ‖X) is a Banach space.

5. Orlicz spaces

The following definition is from [6, Definition 3.4.9, p. 96].

Definition 5.1. A function Φ : [0, ∞) → [0, ∞) is a Young function if it is
continuous, strictly increasing, and convex, and it satisfies

lim
t→0+

Φ(t)
t

= lim
t→∞

t

Φ(t)
= 0.

It can be shown that

Φ(t) =
∫ t

0

φ(s)ds

for some nondecreasing, rightcontinuous function φ : [0, ∞) → [0, ∞).

Definition 5.2. Let Φ be a Young function. Its complementary Young
function Ψ : [0, ∞) → [0, ∞) is defined by

Ψ(t) =
∫ t

0

ψ(s)ds,

where ψ(s) = sup{r|φ(r) ≤ s} for s ≥ 0.

Let Ω be a measurable subset of R
n and let Φ : [0, ∞) → [0, ∞) be a Young

function. The Orlicz class is defined by

L̃Φ(Ω) =
{

f : Ω → R

∣∣∣f measurable,
∫

Ω

Φ(|f(x)|)dx < ∞
}

.

Note that in general L̃Φ(Ω) is not a linear space. For example, let Φ(t) = et

and Ω =]0,1[; then the function

u(t) = − 1
2

log t ∈ L̃Φ(Ω),
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but
2u(t) = − log t /∈ L̃Φ(Ω).

Definition 5.3. Let Φ : [0, ∞) → [0, ∞) be a Young function. Suppose
that Ω is a measurable subset of R

n, and f belongs to M0(Ω). Then the
Luxemburg norm is defined by

‖f ‖LΦ(Ω) = inf
{

k > 0 :
∫

Ω

Φ
(

|f(x)|
k

)
dx ≤ 1

}
.

It is shown in [6, Theorem 3.4.16, p. 99] that the Luxemburg norm is a
Banach function norm. Hence, the collection of functions which belong to
M0(Ω) and satisfy ‖f ‖LΦ(Ω) < ∞ is a Banach function space. We are now
able to define Orlicz spaces.

Definition 5.4. Let Φ be a Young function and let Ω be a measurable
subset of R

n. The Orlicz space LΦ(Ω) is the Banach function space of all
functions f ∈ M0(Ω) that satisfy ‖f ‖LΦ(Ω) < ∞.

We say that a Young function Φ : [0, ∞) → [0, ∞) satisfies Δ2-condition, if
there exists a positive constant C such that

Φ(2t) ≤ CΦ(t) for all t ≥ 0.

Note that a Young function Φ satisfies Δ2-condition if and only if for each
l > 1 there is a constant C(l) greater than one such that Φ(lt) ≤ C(l)Φ(t) for
all t ≥ 0.

Remark 5.5. If a Young function Φ satisfies Δ2-condition, then L̃Φ(Ω) is
a linear space and L̃Φ(Ω) = LΦ(Ω).

It is usually difficult to calculate a complementary Young function. The
following result, shown in [7, Theorem 4.3, p. 26], makes it sometimes easier
to see whether a complementary Young function satisfies Δ2-condition.

Proposition 5.6. Suppose that a Young function Φ has a strictly increas-
ing continuous derivative. Then the complementary Young function Ψ satis-
fies Δ2-condition if and only if there exists a real number β such that

tΦ′(t)
Φ(t)

> β > 1 for all t > 0.

We need the next lemma in the proof of Theorem 8.1.

Lemma 5.7. Let Φ be a Young function, which satisfies Δ2-condition. Sup-
pose that f belongs to LΦ(Ω), and ‖f ‖LΦ(Ω) > 0. Then∫

Ω

Φ
(

|f(x)|
‖f ‖LΦ(Ω)

)
dx = 1.
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Proof. Let us show that
∫
Ω

Φ( |f(x)|
‖f ‖LΦ

)dx ≤ 1. Let (kn)∞
n=1 be a sequence of

positive numbers such that kn ↘ ‖f ‖LΦ . By Fatou’s lemma

∫
Ω

Φ
(

|f(x)|
‖f ‖LΦ

)
dx =

∫
Ω

lim inf
n→∞

Φ
(

|f(x)|
kn

)
dx

≤ lim inf
n→∞

∫
Ω

Φ
(

|f(x)|
kn

)
dx ≤ 1.

Let us show that
∫
Ω

Φ( |f(x)|
‖f ‖LΦ(Ω)

)dx ≥ 1. Since Φ satisfies Δ2-condition, for

each number l greater than one there is a constant C(l) depending on l such
that Φ(lt) ≤ C(l)Φ(t) for all t ≥ 0. Note that since Φ is continuous, C(l) ↘ 1
as l ↘ 1. If there existed l > 1 such that∫

Ω

Φ
(

|f(x)|
‖f ‖LΦ(Ω)

)
dx <

1
C(l)

,

then

1 > C(l)
∫

Ω

Φ
(

|f(x)|
‖f ‖LΦ(Ω)

)
dx ≥

∫
Ω

Φ
(

l
|f(x)|

‖f ‖LΦ(Ω)

)
dx

=
∫

Ω

Φ
(

|f(x)|
1
l ‖f ‖LΦ(Ω)

)
dx.

Since 1
l ‖f ‖LΦ(Ω) < ‖f ‖LΦ(Ω), the above inequality contradicts with the fact

that ‖f ‖LΦ(Ω) = inf{k > 0 :
∫
Ω

Φ( |f(x)|
k )dx ≤ 1}. Thus,

∫
Ω

Φ
(

|f(x)|
‖f ‖LΦ(Ω)

)
dx ≥ 1

C(l)
for all l > 1.

Therefore, ∫
Ω

Φ
(

|f(x)|
‖f ‖LΦ(Ω)

)
dx ≥ 1. �

The following result is useful. The proof may be found in [6, Corollary 3.2.8,
p. 75].

Proposition 5.8. Let Φ : [0, ∞) → [0, ∞) be continuous, strictly increas-
ing, and such that Φ(0) = 0. If f ∈ M0(Ω), then

∫
Ω

Φ(|f(x)|)dx =
∫ m(Ω)

0

Φ(f ∗(t))dt.
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6. Capacities

In this section, we introduce the capacities we are going to study.

Conditions for Φ 6.1. Let ϕ : [0, ∞) → [1, ∞) be an increasing function
such that for some positive constant C

(6.1) ϕ(t2) ≤ Cϕ(t) for all t ∈ [0, ∞),

and there exists a positive number ε less than one such that

(6.2)
∫ 1

0

t−εϕ

(
1
t

)
dt < ∞.

Further, suppose that p ∈ (1, ∞) and let Φ : [0, ∞) → [0, ∞), Φ(t) = tpϕ(t)
be a Young function such that its complementary Young function satisfies
Δ2-condition.

Note that if Φ is of the above type, then Φ satisfies Δ2-condition. Moreover,
it follows from (6.1) that there is a positive constant C such that

(6.3) ϕ(st) ≤ Cϕ(s)ϕ(t) for all s, t ∈ [0, ∞).

Definition 6.2. Suppose that a function Φ satisfies the conditions in 6.1.
Fix positive R0 and let E be any subset of Bn(0,R0). Suppose that α = n/p.
We define

Bα,Φ(E) = inf
{∫

Bn(0,R0)

Φ(f(x))dx
∣∣∣f nonnegative, (Gα ∗ f)(x) ≥ 1 on E

}

and

Pα,Φ(E) = inf
{

‖f ‖LΦ(Bn(0,R0))
|f nonnegative, (Gα ∗ f)(x) ≥ 1 on E

}
.

Here, inf ∅ = ∞.

Since Φ satisfies Δ2-condition, Remark 5.5 implies that ‖f ‖LΦ(Bn(0,R0))

and
∫

Bn(0,R0)
Φ(f(x))dx are finite if and only if f ∈ LΦ(Bn(0,R0)). Hence,

we may take the infimum in Definition 6.2 over all functions belonging to the
set

{f ∈ LΦ(Bn(0,R0))|f is nonnegative, (Gα ∗ f)(x) ≥ 1 on E}.

We have collected the basic properties of the capacities Pα,Φ and Bα,Φ in
the next proposition. Since these properties are shown in [1, pp. 25–26] for
Lp-capacities and the proofs are similar, we omit the proof.

Proposition 6.3. The capacities Pα,Φ and Bα,Φ have the following prop-
erties:

(1) Pα,Φ(∅) = 0 and Bα,Φ(∅) = 0;
(2) if E1 and E2 are subsets of Bn(0,R0), and E1 ⊂ E2, then Pα,Φ(E1) ≤

Pα,Φ(E2) and Bα,Φ(E1) ≤ Bα,Φ(E2);
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(3) if (Ei)∞
i=1 is a sequence of sets such that

⋃∞
i=1 Ei is a subset of Bn(0,

R0), then

Pα,Φ

( ∞⋃
i=1

Ei

)
≤

∞∑
i=1

Pα,Φ(Ei) and Bα,Φ

( ∞⋃
i=1

Ei

)
≤

∞∑
i=1

Bα,Φ(Ei);

(4) if E is a subset of Bn(0,R0), then

Pα,Φ(E) = inf{ Pα,Φ(U)|U is open, E ⊂ U }

and
Bα,Φ(E) = inf{ Bα,Φ(U)|U is open, E ⊂ U }.

7. A new norm in LΦ(Ω)

In the rest of this paper, we suppose that the function Φ : [0, ∞) → [0, ∞),
Φ(t) = tpϕ(t) satisfies the conditions in 6.1. In this section, we assume that
Ω has finite measure. For simplicity, let m(Ω) = 1. We shall show that if
f ∈ LΦ(Ω), then (∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

)1/p

∼ ‖f ‖LΦ(Ω).

Proposition 7.1. Suppose that a function f belongs to M0(Ω). Then the
function f belongs to LΦ(Ω) if and only if

(7.1)
(∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

)1/p

< ∞.

Proof. Since Φ is a Young function and Φ satisfies Δ2-condition, it follows
from Remark 5.5 that f ∈ LΦ(Ω) if and only if

∫
Ω

Φ(|f(x)|)dx < ∞.
Assume that (7.1) holds. Let us first show that f belongs to L1(Ω). Since∫

Ω
|f(x)|p dx =

∫ 1

0
f ∗(t)p dt by Proposition 5.8, and ϕ( 1

t ) ≥ 1 for all t ∈ (0,1),
we have ∫

Ω

|f(x)|p dx =
∫ 1

0

f ∗(t)p dt ≤
∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt < ∞.

It follows from Hölder’s inequality that∫
Ω

|f(x)| dx ≤ m(Ω)
p−1

p

(∫
Ω

|f(x)|p dx

)1/p

.

Thus, f belongs to L1(Ω).
If t ∈ (0,1), then

f ∗(t) ≤ f ∗ ∗(t) =
1
t

∫ t

0

f ∗(s)ds ≤ 1
t

∫ 1

0

f ∗(s)ds =
‖f ‖L1(Ω)

t
.
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Further, ϕ is increasing, ϕ(st) ≤ Cϕ(s)ϕ(t) for all s, t ∈ [0, ∞), and, by Propo-
sition 5.8,

∫
Ω

Φ(|f(x)|)dx =
∫ 1

0
Φ(f ∗(t))dt. Hence, we obtain∫

Ω

|f(x)|pϕ(|f(x)|)dx =
∫ 1

0

f ∗(t)pϕ(f ∗(t))dt

≤
∫ 1

0

f ∗(t)pϕ

( ‖f ‖L1(Ω)

t

)
dt

≤ Cϕ
(

‖f ‖L1(Ω)

)∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt < ∞.

Therefore, f belongs to LΦ(Ω).
Suppose then that f belongs to LΦ(Ω). It follows from Proposition 5.8

that ∫ 1

0

f ∗(t)pϕ(f ∗(t))dt < ∞.

Since Φ satisfies the conditions in 6.1, there is a positive number ε less than
one such that

∫ 1

0
t−εϕ( 1

t )dt < ∞. Let us set

G = {t ∈ [0,1]|f ∗(t)p > t−ε}
and F = [0,1]\G. Note that either G or F may be empty.

Since f ∗(t) > t− ε
p ≥ 1 on G, we have f ∗(t)

p
ε ≤ f ∗(t)2

k

on G for some posi-
tive integer k. It follows from (6.1) that ϕ(f ∗(t)

p
ε ) ≤ ϕ(f ∗(t)2

k

) ≤ Cϕ(f ∗(t))
on G. Moreover, f ∗(t)

p
ε > t−1 on G, and f ∗(t)p ≤ t−ε on F . Hence,∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt ≤

∫
G

f ∗(t)pϕ(f ∗(t)
p
ε )dt +

∫
F

t−εϕ

(
1
t

)
dt

≤ C

∫
G

f ∗(t)pϕ(f ∗(t))dt +
∫

F

t−εϕ

(
1
t

)
dt

≤ C

∫ 1

0

f ∗(t)pϕ(f ∗(t))dt +
∫ 1

0

t−εϕ

(
1
t

)
dt

< ∞.

Thus, the proof is complete. �

The difficulty with (7.1) is that it defines only a quasinorm in LΦ(Ω). We
shall show that we obtain a norm in LΦ(Ω), if we replace f ∗ by f ∗ ∗. Moreover,
we shall prove that this norm is equivalent to the quasinorm in (7.1). The
following Hardy’s inequality is essential to us.

Lemma 7.2. Suppose that a function f belongs to M0(Ω). Then for all
p ∈ (1, ∞)

(7.2)
(∫ 1

0

f ∗ ∗(t)pϕ

(
1
t

)
dt

)1/p

≤ p

p − 1

(∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

)1/p

.
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Proof. It follows from [8, Theorem 1, p. 32] that if there is a positive
constant B such that

(7.3)
(∫ 1

t

s−pϕ

(
1
s

)
ds

) 1
p
(∫ t

0

ϕ

(
1
s

)− 1
p−1

ds

) p−1
p

≤ B

for all t ∈ (0,1), then(∫ 1

0

f ∗ ∗(t)pϕ

(
1
t

)
dt

)1/p

≤ C

(∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

)1/p

,

where C is a positive constant such that

C ≤ p
1
p

(
p

p − 1

) p−1
p

B.

Since

p
1
p

(
p

p − 1

) p−1
p 1

(p − 1)
1
p

=
p

p − 1
,

we need only show that inequality (7.3) holds with B = (p − 1)− 1
p .

Since s �→ ϕ( 1
s ) is decreasing,(∫ 1

t

s−pϕ

(
1
s

)
ds

) 1
p

≤
(

ϕ

(
1
t

)∫ 1

t

s−p ds

) 1
p

≤ ϕ

(
1
t

) 1
p t

1−p
p

(p − 1)
1
p

.

Since s �→ ϕ( 1
s )− 1

p−1 is increasing,(∫ t

0

ϕ

(
1
s

)− 1
p−1

ds

) p−1
p

≤
(

ϕ

(
1
t

)− 1
p−1

∫ t

0

ds

) p−1
p

= ϕ

(
1
t

)− 1
p

t
p−1

p .

Hence, by combining the above estimates, we have(∫ 1

t

s−pϕ

(
1
s

)
ds

) 1
p
(∫ t

0

ϕ

(
1
s

)− 1
p−1

ds

) p−1
p

≤ 1

(p − 1)
1
p

,

and we obtain inequality (7.2). �

Proposition 7.3. Suppose that a function f belongs to LΦ(Ω). Then both
f ∗(·)ϕ(1

· )1/p and f ∗ ∗(·)ϕ(1
· )1/p belong to Lp(0,1). Further,

(7.4)
(∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

)1/p

∼
(∫ 1

0

f ∗ ∗(t)pϕ

(
1
t

)
dt

)1/p

.

Proof. By Proposition 7.1, we have (
∫ 1

0
f ∗(t)pϕ( 1

t )dt)1/p < ∞, that is
f ∗(·)ϕ(1

· )1/p belongs to Lp(0,1). It follows from Lemma 7.2 that(∫ 1

0

f ∗ ∗(t)pϕ

(
1
t

)
dt

)1/p

≤ p

p − 1

(∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

)1/p

.
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In particular, f ∗ ∗(·)ϕ(1
· )1/p belongs to Lp(0,1).

Since f ∗(t) ≤ f ∗ ∗(t) for all t ∈ (0,1), we have

(7.5)
(∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

)1/p

≤
(∫ 1

0

f ∗ ∗(t)pϕ

(
1
t

)
dt

)1/p

.

Hence, the proof is complete. �

The following lemma is shown in [5, Corollary 1.1.9, p. 7].

Lemma 7.4. If two Banach function spaces consist of the same set of func-
tions, then their norms are equivalent.

We shall show that if f ∗ is replaced by f ∗ ∗ in (7.1), then we obtain a
Banach function norm, which turns out to be a new norm in LΦ(Ω).

Lemma 7.5. The mapping ρ : M0(Ω) → [0, ∞] defined by

ρ(f) =
(∫ 1

0

f ∗ ∗(t)pϕ

(
1
t

)
dt

)1/p

is a Banach function norm.

Proof. The proof consists of straightforward calculations based on the prop-
erties of the maximal function. Here, we prove the triangle inequality ρ(f +
g) ≤ ρ(f) + ρ(g). We may assume that ρ(f) + ρ(g) < ∞. Since functions
f ∗ ∗(·)ϕ(1

· )1/p and g∗ ∗(·)ϕ(1
· )1/p belong to Lp(0,1), we obtain by using prop-

erty (5) of Proposition 3.4 and Minkowski’s inequality,

ρ(f + g) =
(∫ 1

0

[(f + g)∗ ∗(t)]pϕ
(

1
t

)
dt

)1/p

≤
(∫ 1

0

[f ∗ ∗(t) + g∗ ∗(t)]pϕ
(

1
t

)
dt

)1/p

=
(∫ 1

0

[
f ∗ ∗(t)ϕ

(
1
t

)1/p

+ g∗ ∗(t)ϕ
(

1
t

)1/p]p

dt

)1/p

≤
(∫ 1

0

f ∗ ∗(t)pϕ

(
1
t

)
dt

)1/p

+
(∫ 1

0

g∗ ∗(t)pϕ

(
1
t

)
dt

)1/p

= ρ(f) + ρ(g). �

Theorem 7.6. Suppose that a function f belongs to M0(Ω). Then f ∈
LΦ(Ω) if and only if (

∫ 1

0
f ∗ ∗(t)pϕ( 1

t )dt)1/p < ∞. Further, for all f ∈ LΦ(Ω)

(7.6)
(∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

)1/p

∼ ‖f ‖LΦ(Ω).
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Proof. If f ∈ LΦ(Ω), then by Proposition 7.3, (
∫ 1

0
f ∗ ∗(t)pϕ( 1

t )dt)1/p < ∞.
On the other hand, if we suppose that (

∫ 1

0
f ∗ ∗(t)pϕ( 1

t )dt)1/p < ∞, then in-
equality (7.5) yields (

∫ 1

0
f ∗(t)pϕ( 1

t )dt)1/p < ∞. Proposition 7.1 implies f ∈
LΦ(Ω). Thus, we have shown that f ∈ LΦ(Ω) if and only if (

∫ 1

0
f ∗ ∗(t)p ×

ϕ(1
t )dt)1/p < ∞.
Let us prove (7.6). By Lemma 7.5, the collection of functions f ∈ M0(Ω)

which satisfy (
∫ 1

0
f ∗ ∗(t)pϕ( 1

t )dt)1/p < ∞ is a Banach function space. Since
we have shown that f ∈ LΦ(Ω) if and only if (

∫ 1

0
f ∗ ∗(t)pϕ( 1

t )dt)1/p < ∞,
Lemma 7.4 yields (∫ 1

0

f ∗ ∗(t)pϕ

(
1
t

)
dt

)1/p

∼ ‖f ‖LΦ(Ω)

for all f ∈ LΦ(Ω). Hence, (7.6) follows from Proposition 7.3. �

8. Null sets for capacities Pα,Φ and Bα,Φ

Recall that the function Φ : [0, ∞) → [0, ∞), Φ(t) = tpϕ(t), with p ∈ (1, ∞),
satisfies the conditions in 6.1.

Theorem 8.1. Let E be a subset of Bn(0,R0). Suppose that α is a positive
real number such that αp = n. Then there is a positive constant C, depending
on n, p, R0 and ϕ, such that

(8.1) Bα,Φ(E) ≤ CPα,Φ(E)pϕ(Pα,Φ(E)).

Further, if Pα,Φ(E) > 0, then

(8.2) C−1Pα,Φ(E)p

[
ϕ

(
1

Pα,Φ(E)

)]−1

≤ Bα,Φ(E).

We set Pα,Φ(E)−1 = 0 in (8.2), if Pα,Φ(E) = ∞.

Proof. We may assume m(Bn(0,R0)) = 1. Since Pα,Φ(E) is finite if and
only if Bα,Φ(E) is finite, we may assume that these capacities are finite. Then
the set

FE = {f ∈ LΦ(Bn(0,R0))|f is nonnegative, (Gα ∗ f)(x) ≥ 1 on E}
is not empty.

Let us prove inequality (8.1). Suppose that a function f belongs to FE .
Let us write

Np :=
∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt

and

Mp :=
∫ 1

0

f ∗(t)pϕ(f ∗(t))dt.
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Then, by Theorem 7.6, Np ∼ ‖f ‖p
LΦ(Bn(0,R0))

, and by Proposition 5.8, Mp =∫
Bn(0,R0)

Φ(f(x))dx.
Since f ∗ is decreasing and t �→ ϕ( 1

t ) is decreasing, we have

f ∗(t)pϕ

(
1
t

)
≤ f ∗(s)pϕ

(
1
s

)
,

whenever 0 < s ≤ t < 1. It follows that for all t ∈ (0,1)

f ∗(t)pϕ

(
1
t

)
t = f ∗(t)pϕ

(
1
t

)∫ t

0

ds ≤
∫ t

0

f ∗(s)pϕ

(
1
s

)
ds

≤
∫ 1

0

f ∗(s)pϕ

(
1
s

)
ds = Np.

The above estimate yields

(8.3) f ∗(t) ≤ N

t1/p
ϕ

(
1
t

)−1/p

for all t ∈ (0,1).

Since t �→ t
p−1

p ϕ( 1
t )

−1/p is increasing on (0,1) and ϕ(1) ≥ 1,

t
p−1

p ϕ

(
1
t

)−1/p

≤ ϕ(1)−1/p ≤ 1 for all t ∈ (0,1).

By inserting inequality (8.3) into the definition of Mp and using the above
inequality and the fact that ϕ(st) ≤ Cϕ(s)ϕ(t) for all s, t ∈ [0, ∞), we obtain

Bα,Φ(E) ≤ Mp =
∫ 1

0

f ∗(t)pϕ(f ∗(t))dt

≤
∫ 1

0

f ∗(t)pϕ

(
N

t1/p
ϕ

(
1
t

)−1/p)
dt

≤ Cϕ(N)
∫ 1

0

f ∗(t)pϕ

(
t− 1

p ϕ

(
1
t

)−1/p)
dt

= Cϕ(N)
∫ 1

0

f ∗(t)pϕ

(
t

p−1
p ϕ

(
1
t

)−1/p 1
t

)
dt

≤ Cϕ(N)
∫ 1

0

f ∗(t)pϕ

(
ϕ(1)−1/p 1

t

)
dt

≤ Cϕ(N)
∫ 1

0

f ∗(t)pϕ

(
1
t

)
dt = Cϕ(N)Np

≤ Cϕ
(

‖f ‖LΦ(Bn(0,R0))

)
‖f ‖p

LΦ(Bn(0,R0))
.

Hence, by taking infimum over all f in FE , we obtain

Bα,Φ(E) ≤ CPα,Φ(E)pϕ(Pα,Φ(E)).
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Next, we shall find a lower bound for Bα,Φ(E). Suppose that E is a subset
of Bn(0,R0) such that Pα,Φ(E) > 0, and f belongs to FE . Then Pα,Φ(E) ≤
‖f ‖LΦ(Bn(0,R0))

. Let us write λ = ‖f ‖LΦ(Bn(0,R0))
. It follows from Lemma 5.7,

and since ϕ(st) ≤ Cϕ(s)ϕ(t) for all s, t ∈ [0, ∞), that

1 =
∫

Bn(0,R0)

Φ
(

f(x)
λ

)
dx =

∫
Bn(0,R0)

(
f(x)

λ

)p

ϕ

(
f(x)

λ

)
dx

= λ−p

∫
Bn(0,R0)

f(x)pϕ

(
f(x)

λ

)
dx

≤ Cλ−pϕ

(
1
λ

)∫
Bn(0,R0)

f(x)pϕ(f(x))dx

= Cλ−pϕ

(
1
λ

)∫
Bn(0,R0)

Φ(f(x))dx.

Hence, there exists a positive constant C such that

C ≤ λ−pϕ

(
1
λ

)∫
Bn(0,R0)

Φ(f(x))dx,

which yields

(8.4) C
λp

ϕ( 1
λ )

≤
∫

Bn(0,R0)

Φ(f(x))dx.

Since λ ≥ Pα,Φ(E) > 0 and ϕ is increasing, we have

ϕ

(
1
λ

)
≤ ϕ

(
1

Pα,Φ(E)

)
.

Further, by combining the above estimate with inequality (8.4),

C
Pα,Φ(E)p

ϕ( 1
Pα,Φ(E) )

≤ C
λp

ϕ( 1
λ )

≤
∫

Bn(0,R0)

Φ(f(x))dx,

and by taking infimum over all functions in FE ,

C
Pα,Φ(E)p

ϕ( 1
Pα,Φ(E) )

≤ Bα,Φ(E).

The proof is complete. �

Corollary 8.2. The capacities Bα,Φ and Pα,Φ have the same null sets.

Proof. Let E be a subset of Bn(0,R0). If Pα,Φ(E) = 0, then it follows from
inequality (8.1) that Bα,Φ(E) = 0.

Suppose that Bα,Φ(E) = 0. By Proposition 6.3,

Bα,Φ(E) = inf{ Bα,Φ(U)|U is open, E ⊂ U }.
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Let ε > 0. Then there is an open set U such that Bα,Φ(E) < Bα,Φ(U) <
Bα,Φ(E) + ε. Since

0 < Bα,Φ(U) ≤ Cϕ(Pα,Φ(U))Pα,Φ(U)p,

we have Pα,Φ(U) > 0. It follows from inequality (8.2) that

C−1Pα,Φ(U)p

[
ϕ

(
1

Pα,Φ(U)

)]−1

≤ Bα,Φ(U) < Bα,Φ(E) + ε = ε.

Since Pα,Φ(E) ≤ Pα,Φ(U), we obtain Pα,Φ(E) = 0. �

The following example shows that [2, Corollary 2.6, p. 1160] is a special
case of our Corollary 8.2.

Example 8.3. Let p ∈ (1, ∞) and θ ∈ [0, p − 1]. Suppose that αp = n. Then
the Young function Φ(t) = tp(log(e+ t))θ is an example of a function such that
the capacities Pα,Φ and Bα,Φ have the same null sets.

We also show that there are other functions Φ, for which Pα,Φ and Bα,Φ

have the same null sets.

Example 8.4. Suppose that p ∈ (1, ∞), and θ ∈ [0, ∞), and γ ∈ [0,1]. Let
us show that for a Young function Φ(t) = tp(log(e + t))θe(log log(e+t))γ

the
capacities Pα,Φ and Bα,Φ have the same null sets, when α = n/p. We need
only check that the function Φ satisfies the conditions in 6.1. Let us write
ϕ(t) = (log(e + t))θe(log log(e+t))γ

. Let us first show that ϕ(t2) ≤ Cϕ(t) for all
t ∈ [0, ∞). Since (a + b)γ ≤ aγ + bγ for all γ ∈ [0,1] and a, b ≥ 0, we have

ϕ(t2) =
(
log(e + t2)

)θ
e(log log(e+t2))γ ≤

(
log

(
(e + t)2

))θ
e(log log((e+t)2))γ

=
(
2 log(e + t)

)θ
e(log[2 log(e+t)])γ

= 2θ
(
log(e + t)

)θ
e(log 2+log log(e+t))γ

≤ 2θ
(
log(e + t)

)θ
e(log 2)γ+(log log(e+t))γ

= 2θe(log 2)γ

ϕ(t).

Let ε ∈ (0,1). We shall show that∫ 1

0

t−εϕ

(
1
t

)
dt < ∞.

It suffices to show that
∫ r

0
t−εϕ( 1

t )dt < ∞ for some r ∈ (0,1).
Let us set δ = (1 − ε)/2. Then δ ∈ (0, 1

2 ). Since

lim
t→0

t−δ

ϕ( 1
t )

= ∞,

there exists r ∈ (0,1) such that

ϕ

(
1
t

)
≤ t−δ for all t ∈ (0, r).
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The above inequality yields∫ r

0

t−εϕ

(
1
t

)
dt ≤

∫ r

0

t−ε · t−δ dt =
∫ r

0

t−ε · t− (1−ε)
2 =

∫ r

0

t− 1+ε
2 dt < ∞,

since (1 + ε)/2 ∈ (1/2,1).
Let us check that the complementary Young function to Φ satisfies Δ2-

condition. Since

Φ′(t) = ptp−1ϕ(t) + tpϕ′(t) ∼ tp−1ϕ(t),

we obtain that Φ′ is continuous and strictly increasing. Further,

t
Φ′(t)
Φ(t)

=
ptpϕ(t) + tp+1ϕ′(t)

tpϕ(t)
= p +

tϕ′(t)
ϕ(t)

≥ p > 1 for all t > 0.

Thus, it follows from Proposition 5.6 that the complementary Young function
to Φ satisfies Δ2-condition. Therefore, we have shown that Φ satisfies the
conditions in 6.1.
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