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A CLASS OF SURFACES IN H
2 × R ASSOCIATED TO

HARMONIC FUNCTIONS AND A RELATION
BETWEEN CMC-1/2 AND FLAT SURFACES

WALTERSON FERREIRA AND PEDRO ROITMAN

Abstract. We introduce a geometric motivated method to con-
struct immersions into H

2 × R from a smooth function ϕ defined

on an open set of the unit disc, and study the relation between

the geometry of the immersion in terms of partial differential

equations for ϕ. We give two applications of the method. First,

we introduce the class of surfaces generated by harmonic func-
tions and show that they have properties analogous to minimal

surfaces in R
3. We also exhibit an explicit local relation between

CMC 1/2 and flat surfaces in H
2 × R.

Introduction

In the past few years, there has been a considerable amount of work on
surfaces in the so-called Thurston’s model geometries, see for instance [2], [3],
[5], [10], [11], and references therein. The present work is devoted to some
aspects of surface theory in one such geometry, namely, the three dimensional
Riemannian manifold H

2 × R. That is, the product space (with the product
metric) where the factors are H

2, the hyperbolic plane, and the real line R.
Our work is based on a natural geometric question involving a H

2 valued
map introduced in [5] for oriented surfaces in H

2 × R for which the projection
onto the first factor is not singular. We shall call this map the Fernandez–Mira
map, or FM map for short.

Fernandez and Mira showed, among other things, that the FM map is
harmonic for surfaces with constant mean curvature equal to 1/2, and devised
a method to construct such surfaces starting with a harmonic map. Recently
[6], they used it to solve the Bernstein problem for minimal surfaces in the
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Heisenberg space. Thus, the FM map seems to be an important notion to
understand the geometry of surfaces in H

2 × R and in Heisenberg space.
The FM map resembles the hyperbolic Gauss map for surfaces in hyperbolic

three space, H
3. As in the case of surfaces in H

3, the choice of an orientation
for an immersed surface turns out to be important in the definition of the FM
map. In other words, different orientations induce different maps that are not
trivially related.

Thus, for an oriented immersed surface S, we have two H
2 valued maps,

denoted here by G+ and G−, see Section 1 for the definition.
The starting point of our work was the following basic question.
Let Ω ⊂ H

2 be an open set. How does one characterize and construct ex-
amples of smooth maps w : Ω → H

2 such that there exists an oriented surface
S in H

2 × R with the following property: ∀z ∈ Ω, ∀p ∈ S, z = G−(p) and
w(z) = G+(p)?

In other words, we ask what maps w can be viewed as a composition of the
FM maps: w = G+ ◦ G−1

− . To our knowledge, this type of question was first
considered, in the context of hyperbolic geometry for hyperbolic Gauss maps,
by Bianchi. He showed, for instance, that flat surfaces are characterized by the
composition of Gauss maps being holomorphic [4]. The authors have studied
this composition of Gauss maps in detail for hypersurfaces in n-dimensional
hyperbolic space [7]. This previous experience motivated the present work.

We show how the local answer to this question furnishes a new geometric
method to generate immersions into H

2 × R starting with a smooth real valued
function ϕ : Ω → R, where Ω ⊂ H

2 is an open set. We call this method to
generate immersions the FM-composition method.

We present two applications of FM-composition. First, we show that if the
function ϕ is harmonic, then the associated immersion satisfies the following
relation

(1) 2H + ν2 − 2K− + 1 = 0,

where H is the mean curvature (for a chosen orientation), ν2 is minus the
sectional curvature with respect to the vectors that span the tangent plane
and K− is roughly the ratio between the area elements of the surface and of
H

2 (at corresponding points via the pullback under G−). For a definition of
K−, see Section 1.

The class of surfaces satisfying (1) has some interesting properties, such
as variational characterization, associated family and a Schwarz’s reflection
principle, that reminds us of minimal surfaces in R

3. In particular, this class
of surfaces is relevant in the study of Bonnet families in H

2 × R, as a nontrivial
example of surfaces admitting a smooth 1-parameter isometric deformation
such that the mean curvature is preserved along the deformation. We shall
discuss the above properties in detail and present some examples.



SURFACES IN H
2 × R 1125

As a second application, we present an explicit local relation between con-
stant mean curvature equal to 1/2 and flat surfaces in H

2 × R. This relation is
roughly the following. If we consider a smooth real valued function ϕ : Ω → R

as before, then we may use it to generate a surface by FM-composition. But
it is also natural to consider the graph of ϕ. It turns out that the PDE for ϕ
associated to H = −1/2 for surfaces generated by FM-composition is the same
PDE we get for flat surfaces generated as graphs. We remark that the sign of
the mean curvature is not essential in the above discussion. An argument to
show this is the one used in [5] to justify that the choice of sign of the mean
curvature. Essentially, they argue that if the mean curvature is −1/2 for their
canonical choice of orientation, then by “reflection” with respect to a horizon-
tal hyperbolic plane (an orientation reversing ambient isometry) the reflected
surface has mean curvature 1/2 with respect to the canonical orientation.

This work is organized as follows. In Section 1, we establish notation
and recall the definition of FM maps, we also briefly discuss the invariants
associated with these maps.

In Section 2, we give the answer to the question posed above, which al-
lows us to consider the method to generate immersions that is discussed in
Section 3. In Section 4, we exhibit expressions for the fundamental forms of
the immersions generated by FM-composition. Finally, Section 5 is devoted
to the two applications mentioned above.

1. Preliminaries

1.1. Notation and FM maps. In this work, we shall use two models of
H

2 × R. The first model identifies H
2 × R with a submanifold of Lorentzian

space L
4. More precisely, we consider L

4, that is, x = (x0, x1, x2, x3) ∈ R
4,

endowed with the quadratic form 〈x,x〉 = −x2
0 + x2

1 + x2
2 + x2

3, and H
2 × R =

{x ∈ L
4 | −x2

0 + x2
1 + x2

2 = −1, x0 > 0}. The second model, which we call
the cylinder model, identifies H

2 × R with the subset of R
3, given by D × R,

where D is the unit disc centered at the origin in R
2 with coordinates (y1, y2),

endowed with the metric ds2 = 4
(1−y2

1 −y2
2)2

(dy2
1 + dy2

2) + dy2
3 .

Let ψ : M → H
2 × R ⊂ L4 be an immersion of an abstract smooth surface

M into H
2 × R. In the Lorentzian model, we write ψ(p) = (N(p), h(p)), with

N(p) ∈ H
2 = {x ∈ L

4 | −x2
0 + x2

1 + x2
2 = −1, x0 > 0, x3 = 0}, and h(p) ∈ R.

We also consider η : M → S3
1 , where S3

1 = {x ∈ L
4 | −x2

0 +x2
1 +x2

2 +x2
3 = 1},

such that 〈η, η〉 = 1, 〈η,N 〉 = 0 and 〈dψ, η〉 = 0, and write η = (N̂ , ν), where
ν ∈ R. In this way, N and η span the normal bundle of ψ.

In all that follows, we shall assume that the immersion ψ is nonvertical,
meaning that ν 	= 0.

Without loss of generality, we shall consider ν > 0 and ψ with the orienta-
tion given by the unit normal field η.
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Now, we recall the definition of the FM map, introduced in [5]. Consider
first

ξ± =
1
ν

(N ± η).

It is easy to check that 〈ξ±, ξ± 〉 = 0. We define the positive and negative FM
maps, denoted respectively by G+ and G−, by the following

ξ± = (G±, ±1).

In this way, G± are both H
2 valued maps.

We shall call G+ the positive FM map and G− the negative FM map of
the immersion ψ.

We note that the isometry group of H
2 × R is the product of the isometry

group of H
2 with R. Thus, an isometry of H

2 can also be considered as an
ambient isometry of H

2 × R in a natural way. We shall adopt this convention
freely without any further comment.

Finally, a few comments about notation. Throughout this work, we shall
use (x, y) coordinates in the unit disc D. The symbols ∇, | · | denote, respec-
tively, the Euclidean gradient and norm. And ∇H is defined by ∇H = Λ

2 ∇,
where Λ = 1 − x2 − y2.

1.2. Invariants associated with the FM maps. We define below two
invariants that are naturally induced by the FM maps.

Definition 1.1. Let ψ : M → H
2 × R be a nonvertical immersion. Let dAH2

be the canonical area element of H
2 and dAM be the area element of M

in the orientation defined by the normal field η = (N̂ , ν), with ν > 0. Let
G± : M → H

2 be the FM maps of M . We define K± by the relation

G∗
±(dAH2) = K±dAM .

We mention two facts to justify the importance of K± as relevant geometric
quantities. First, we note that they’re related to the extrinsic curvature Kext

of ψ by the simple relation

Kext = ν2

(
K+ + K−

2
− 1

)
.

Second, the critical points of the functional∫
M

H dAM ,

for smooth variations with compact support are characterized by

6H = K+ − K−.

For proofs, see [8].
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2. A natural question

We shall now discuss the question mentioned in the Introduction.
Let Ω ⊂ H

2 be an open set. How does one characterize and construct ex-
amples of smooth maps w : Ω → H

2 such that there exists an oriented surface
S in H

2 × R with the following property: ∀z ∈ Ω, ∀p ∈ S, z = G−(p) and
w(z) = G+(p)?

Our goal is to answer this question and then try to relate analytical prop-
erties of the map w with geometric features of the corresponding surface S.
The simple lemma that follows shows what has to be done.

Lemma 2.1. Let ψ : M → H
2 × R be an immersion given by ψ = (N,h),

and η : M → S3
1 be such that η = (N̂ , ν), ν > 0, satisfies 〈η, η〉 = 1, 〈η,N 〉 = 0,

and 〈dψ, η〉 = 0. Let G± : M → H
2 be defined by the equation

(2)
1
ν

(N ± η) = (G±, ±1).

Then

N =
(

ν

2
(G+ + G−),0

)
,

η =
ν

2
(
(G+ − G−),2

)
,

and

ν2 =
2

1 − 〈G+,G− 〉 .

Moreover, the function h : M → R satisfies

(3) dh = − 1
ν

〈dN, N̂ 〉.

Proof. Straightforward computation. �

From Lemma 2.1, we see that if one starts with a map w : Ω ⊂ H
2 → H

2,
and one supposes that there exists a surface S in H

2 × R such that ∀z ∈ Ω
z = G−(p), and w(z) = G+(p), then N , the horizontal part of the immersion,
is determined algebraically and the height function h satisfies (3). Thus, if one
wishes to construct a surface with the above properties, a necessary condition
is that the system (3) is integrable in the classical Frobenius sense.

To simplify things, and understand the integrability condition of (3), we
shall consider z = x + iy as a complex variable in the Poincaré disc model of
H

2 and a map z → w(z) ∈ D. The variable z in the disc model will represent
G− and w(z) will represent G+.
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From the standard change of models (from the disc model to the hyper-
boloid model), we write

G−(z) =
(

1 + |z|2
Λ

,
2Re(z)

Λ
,
2 Im(z)

Λ

)
,

G+(z) =
(

1 + |w|2
Δ

,
2Re(w)

Δ
,
2 Im(w)

Δ

)
,

where

Δ = 1 − |w|2,
Λ = 1 − |z|2.

Now, in local coordinates z = x + iy, (3) can be written in terms of G± as:

hx =
ν

4
(〈G+,x,G− 〉 − 〈G−,x,G+〉),

hy =
ν

4
(〈G+,y,G− 〉 − 〈G−,y,G+〉).

The proposition below shows how w looks like locally.

Proposition 2.2. Let Ω ⊂ D be an open set and ϕ : Ω → R be a smooth
function. Let

(4) ζ =
∇Hϕ√

1 + | ∇Hϕ|2
,

where ∇H = Λ
2 ∇ and ∇, | · | denote, respectively, the Euclidean gradient and

norm. Let

(5) w(z) =
z + ζ(z)
1 + z̄ζ(z)

.

Then if we define

G−(z) =
(

1 + |z|2
Λ

,
2Re(z)

Λ
,
2 Im(z)

Λ

)
,

G+(z) =
(

1 + |w|2
Δ

,
2Re(w)

Δ
,
2 Im(w)

Δ

)
,

and ν > 0, such that

(6) ν2 =
2

1 − 〈G+,G− 〉 ,

the system (3) is integrable.
Conversely, if (3) is integrable, there exists a smooth function ϕ defined

on a simply-connected open set such that the above relations are verified. In
terms of the function ϕ, the solution of (3) is given by

(7) h = −
√

1 + | ∇Hϕ|2 − ϕ + c,

where c ∈ R.
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Proof. It is a long computation, we will indicate the main steps. The first
derivatives of G± are given by

G−,x =
2
Λ2

(
2Re(z),Re(z2 + 1),Re[i(1 − z2)]

)
,(8)

G−,y =
2
Λ2

(
2 Im(z), Im(z2 + 1), Im[i(1 − z2)]

)
,(9)

G+,x =
2

Δ2

(
2Re(ww̄x),Re

(
(1 + w2)w̄x

)
,Re

(
[i(1 − w2)]w̄x

))
,(10)

G+,y =
2

Δ2

(
2Re(ww̄y),Re

(
(1 + w2)w̄y

)
,Re

(
[i(1 − w2)]w̄y

))
.(11)

Now, we list some inner products

〈G+,x,G− 〉 =
4

ΛΔ2
Re

(
w̄x[(z − w)(1 − z̄w)]

)
,

〈G+,y,G− 〉 =
4

ΛΔ2
Re

(
w̄y[(z − w)(1 − z̄w)]

)
,

〈G−,x,G+〉 =
4

ΔΛ2
Re[(w − z)(1 − zw̄)],

〈G−,y,G+〉 =
4

ΔΛ2
Im[(w − z)(1 − zw̄)],

〈G+,G− 〉 = 1 − 2
ΛΔ

|1 − zw|2.

And using (6), we obtain

ν =
Λ1/2Δ1/2

|1 − z̄w| .

To abbreviate, we define

A = 1 − z̄w,

B = w − z.

Thus, we may rewrite (3) as

hx = − ν

Λ2Δ2

(
ΔRe(ĀB) + ΛRe(ĀB̄wx)

)
,

hy = − ν

Λ2Δ2

(
ΔIm(ĀB) + ΛRe(ĀB̄wy)

)
.

Now, suppose that

w(z) =
z + ζ(z)
1 + z̄ζ(z)

,

where ζ(z) = u(z) + iv(z) is a complex valued function such that |ζ(z)| < 1.
This assures that |w(z)| < 1.
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In terms of ζ, after some computations, we have, for instance

Re(ĀB) =
uΛ2

|1 + z̄ζ|2 ,

Δ =
Λ(1 − |ζ|2)

|1 + z̄ζ|2 ,

A =
Λ

1 + z̄ζ
,

ν =
√

1 − u2 − v2.

If we write

hx = T1 + T2,

where

T1 =
−ν Re(ĀB)

Λ2Δ
,

and

T2 =
−ν Re(ĀB̄wx)

ΛΔ2
,

after some manipulation we obtain

T1 = − u

Λ(1 − |ζ|2)1/2
,

T2 = − uux + vvx

(1 − u2 − v2)3/2
− u

(1 − x2 − y2)(1 − u2 − v2)1/2
.

Thus,

hx = − ∂

∂x
[(1 − u2 − v2)−1/2] − 2u

(1 − x2 − y2)(1 − u2 − v2)1/2
,

and, in the same way, we have

hy = − ∂

∂y
[(1 − u2 − v2)−1/2] − 2v

(1 − x2 − y2)(1 − u2 − v2)1/2
.

Therefore, system (3) is integrable if and only if the one form

ω =
2

Λ(1 − |ζ|2)1/2
(udx + v dy),

is closed.
For a simply connected open set, we may write ω = dϕ, where ϕ is an

arbitrary smooth function.
The expression for ζ in terms of ∇Hϕ is simply:

ζ =
∇Hϕ√

1 + | ∇Hϕ|2
.
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To check that ϕ can really be an arbitrary smooth function, note that |ζ| is
given by

|ζ| =
| ∇Hϕ|√

1 + | ∇Hϕ|2
< 1,

so that |w| < 1 and everything makes sense.
It is then easy to check that h is given in terms of ϕ by the following

expression

h = −
√

1 + | ∇Hϕ|2 − ϕ + c,

where c is an arbitrary real constant. �

3. FM composition

The result in the previous section suggests a method to construct maps
into H

2 × R starting from a smooth function ϕ : Ω ⊂ D → R defined on an
open set. More precisely, from ϕ we define ζ and w using expressions (4), (5),
and, from these, we define the horizontal part of the map. The vertical part,
or height function, is defined in terms of ϕ by (7). Of course, the interesting
case is when the above cited map is actually an immersion.

To abbreviate, we shall call the above procedure the FM-composition
method.

For future reference, we list below some expressions relative to a surface
generated by FM-composition.

A straightforward computation shows that the expression of the immersion
is given, in the cylinder model, by

y1(z) =
Λ((1 − y2 + x2)ϕx

2 + xyϕy) + 2xΣ
Λ + Σ(x2 + y2) + Λ(xϕx + yϕy) + Σ

,(12)

y2(z) =
Λ((1 − x2 + y2)ϕy

2 + xyϕx) + 2yΣ
Λ + Σ(x2 + y2) + Λ(xϕx + yϕy) + Σ

,

y3(z) = −Σ − ϕ,

where Σ =
√

1 + | ∇Hϕ|2.
The coordinates of the horizontal part of the immersion, in the Lorentzian

model, are

N0 = Λ−1
(
Σ(1 + x2 + y2) + Λ(xϕx + yϕy)

)
,(13)

N1 = Λ−1

(
Λ
2

(
(x2 − y2 + 1)ϕx + 2xyϕy

)
+ 2xΣ

)
,

N2 = Λ−1

(
Λ
2

(
(y2 − x2 + 1)ϕy + 2xyϕx

)
+ 2yΣ

)
.
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Finally, the coordinates of the horizontal part, in the Lorentzian model, of
the unit normal η are

N̂0 = Σ−1

(
Λ
4

(ϕ2
x + ϕ2

y)(x2 + y2 + 1) + Σ(xϕx + yϕy)
)

,(14)

N̂1 = Σ−1

(
x

Λ
2

(ϕ2
x + ϕ2

y) + Σ(x2 − y2 + 1)
ϕx

2
+ Σxyϕy

)
,

N̂2 = Σ−1

(
y
Λ
2

(ϕ2
x + ϕ2

y) + Σ(y2 − x2 + 1)
ϕy

2
+ Σxyϕx

)
.

The proposition that follows shows that FM-composition has some geomet-
ric meaning, in the sense that it is well behaved with respect to the isometry
group of H

2 × R.

Proposition 3.1. Let Ω ⊂ D be an open set and ϕ : Ω ⊂ D → R be a
smooth function and consider Xϕ(z) = (y1(z), y2(z), y3(z)), given by (12). Let
M : H

2 → H
2 be an isometry of H

2 and let ϕ̃ = ϕ ◦ M −1. Then Xϕ̃ = M(Xϕ).

Proof. The verification that the third coordinate y3 satisfies Xϕ̃ = M(Xϕ)
is immediate. We shall indicate the verification for the first coordinate y1, the
second coordinate y2 can be handled in the same manner.

By composition, it is sufficient to prove for a rotation

Rθ(z) = eiθz,

and a Mobius transformation given by

Ma(z) =
z − a

1 − az
,

where a ∈ R and |a| < 1.
For z̃ = x̃ + iỹ = Rθ(z), we have

x̃ = x cosθ − y sin θ,(15)
ỹ = x sin θ + y cosθ,

and

ϕ̃x̃ = ϕx cosθ − ϕy sinθ,(16)
ϕ̃ỹ = ϕx sin θ + ϕy cosθ.

Let ỹ1 be the first coordinate of Xϕ̃ and Y1 be the first coordinate of Rθ(Xϕ).
We have

ỹ1 =
Λ̃((1 − ỹ2 + x̃2) ϕ̃x̃

2 + x̃ỹϕ̃ỹ) + 2x̃Σ̃

Λ̃ + Σ̃(x̃2 + ỹ2) + Λ̃(x̃ϕ̃x̃ + ỹϕ̃ỹ) + Σ̃
,

Y1 =
((

Λ
(

(1 − y2 + x2)
ϕx

2
+ xyϕy

)
+ 2xΣ

)
cosθ
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−
(

Λ
(

(1 − x2 + y2)
ϕy

2
+ xyϕx

)
+ 2yΣ

)
sinθ

)

×
(
Λ + Σ(x2 + y2) + Λ(xϕx + yϕy) + Σ

)−1
.

After some computation, using (15) and (16), one checks that Y1 = ỹ1.
To verify the statement for Ma a long computation is necessary, we shall

limit ourselves to indicate the main steps. It is convenient to represent Ma as a
linear operator Ma : L3 → L3. The matrix associated to Ma, for the standard
basis of L3, is given by

[Ma] =

⎡
⎢⎣

− a2+1
a2−1

2a
a2−1 0

2a
a2−1 − a2+1

a2−1 0
0 0 1

⎤
⎥⎦ .

Let N = (N0,N1,N2) represent the horizontal part of the immersion Xϕ,

and denote the horizontal part of Ma(Xϕ) by N̆ = Ma(N). The action of
Ma on Xϕ, in the Lorentzian model, is linear and this fact simplifies the
computation. For instance,

N̆0 = − a2 + 1
a2 − 1

N0 +
2a

a2 − 1
N1.

We have to compare N̆ with Ñ , the horizontal part of the immersion Xϕ̃.
Let z̃ = x̃ + iỹ = Ma(z), then

x̃ =
(1 + a2)x − a(1 + x2 + y2)

(1 − ax)2 + a2y2
,(17)

ỹ =
y(1 − a2)

(1 − ax)2 + a2y2
,

and, using the partial derivatives of the above expressions with respect to x
and y, we obtain

ϕ̃x̃ =
1

1 − a2

(
(1 − ax)2 − a2y2

)
ϕx +

2ay

1 − a2
(ax − 1)ϕy,(18)

ϕ̃ỹ =
−2ay

1 − a2
(ax − 1)ϕx +

1
1 − a2

(
(1 − ax)2 − a2y2

)
ϕy.

Substitution of (17) and (18) into the expression for Ñ yields the desired
result. �

4. The fundamental forms

To relate analytical properties of the potential function ϕ : Ω → R and the
geometry of Xϕ, as in Proposition 3.1, we need to compute the first and second
fundamental forms of Xϕ. It turns out that the expressions for the coefficients
of these forms are rather complicated. However, due to Proposition 3.1, it will
be sufficient for our purposes to suppose that 0 ∈ Ω and to compute the value
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of the coefficients at 0.
In the sequel, we shall consider an open set Ω ⊂ D, a smooth map w : Ω → D

given by w(z) =
z + ζ(z)
1 + zζ(z)

, where ζ : Ω → H
2 is a smooth map, and a map

ψ : Ω → H
2 × R given by

(19) ψ =
(

ν

2
(G+ + G−), h

)
,

where

ν2 =
2

1 − 〈G+,G− 〉 , ν > 0,

G−(z) =
(

1 + |z|2
Λ

,
2Re(z)

Λ
,
2 Im(z)

Λ

)
,

G+(z) =
(

1 + |w|2
Δ

,
2Re(w)

Δ
,
2 Im(w)

Δ

)
,

and

Δ = 1 − |w|2,
Λ = 1 − |z|2.

We will also suppose that the function h is a solution of the integrable
system

hx = − ∂

∂x
[(1 − |ζ|2)−1/2] − 2Re(ζ)

Λ(1 − |ζ|2)1/2
,(20)

hy = − ∂

∂y
[(1 − |ζ|2)−1/2] − 2 Im(ζ)

Λ(1 − |ζ|2)1/2
.(21)

When ψ is an immersion, we shall consider the unit normal field η, given by

η =
(

ν

2
(G+ − G−), ν

)
.

We shall write ζ = u + iv and note that ν = (1 − |ζ|2)1/2.
We also introduce the following notation: given two complex numbers z

and w, we define z · w = Re(z̄w).

Proposition 4.1. Let Ω ⊂ D be an open set and ψ : Ω → H
2 × R an im-

mersion given by (19). Then

E = 〈ψx, ψx〉 =
1
ν2

(
ν2

x(ν2 + 1)
ν2

− 4uνx

Λν
+

|Λζx + iΛyζ + 2|2
Λ2

)
,

F = 〈ψx, ψy 〉 =
1
ν2

(
νxνy(ν2 + 1)

ν2
− 2(uνy + vνx)

Λν

+
(Λζx + iΛyζ + 2) · (Λζy − iΛxζ + 2i)

Λ2

)
,
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G = 〈ψy, ψy 〉 =
1
ν2

(
ν2

y(ν2 + 1)
ν2

− 4vνy

Λν
+

|Λζy − iΛxζ + 2i|2
Λ2

)
,

e = −〈ψx, ηx〉 = − 1
Λ2ν2

(
Λνx(Λνx − 2uν) + |Λζx + iΛyζ + 1 − ζ2|2 − ν4

)
,

f = −〈ψx, ηy 〉 = − 1
Λ2ν2

(
Λ

(
Λνxνy − ν(vνx + uνy)

)
+ (Λζx + iΛyζ + 1 − ζ2) ·

(
Λζy − iΛxζ + i(1 + ζ2)

))
,

g = −〈ψy, ηy 〉 = − 1
Λ2ν2

(
Λνy(Λνy − 2vν) + |Λζy − iΛxζ + i(1 + ζ2)|2 − ν4

)
.

Proof. Let N = ν
2 (G+ + G−)andN̂ = ν

2 (G+ − G−). Note that

〈dN,dN 〉 =
(dν)2

ν2
+

ν2

4
(〈dG+, dG+〉 + 2〈dG+, dG− 〉 + 〈dG−, dG− 〉),(22)

〈dN,dN̂ 〉 =
ν2

4
(〈dG+, dG+〉 − 〈dG−, dG− 〉).(23)

From (8)–(11), we obtain

〈dG−, dG− 〉 =
4
Λ2

(dx2 + dy2),(24)

〈dG+, dG+〉 =
4

Δ2
(|wx|2 dx2 + 2wx · wy dxdy + |wy |2 dy2),(25)

〈dG+, dG− 〉 =
4

Λ2Δ2

(
wx · (A2 + B2)dx2 +

(
wx · i(A2 − B2)(26)

+ wy · (A2 + B2)
)
dxdy + wy · i(A2 − B2)dy2

)
,

where A = 1 − zw and B = w − z
Substitution of (24)–(26) into (22), (23) (using (20) and (21)) completes

the proof. �

Remark 4.2. The Christoffel symbols for the Poincaré disc model of H
2 are

given by

Γ1
11 = Γ2

12 = −Γ1
22 = − Λx

Λ
and Γ2

22 = Γ1
12 = −Γ2

11 = − Λy

Λ
.

Let ϕ : Ω ⊂ D → R be a smooth function, then the matrix for the Hessian
of ϕ is given by HessH(ϕ) = [hij ], where

h11 =
Λ2

4

(
ϕxx +

Λxϕx

Λ
− Λyϕy

Λ

)
,

h12 =
Λ2

4

(
ϕxy +

Λyϕx

Λ
+

Λxϕy

Λ

)
,

h22 =
Λ2

4

(
ϕyy − Λxϕx

Λ
+

Λyϕy

Λ

)
.
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Proposition 4.3. Let Ω ⊂ D be an open set and ψ : Ω → H
2 × R an im-

mersion given by (19). Suppose that ϕ : Ω → R is a smooth function, such

that ∇Hϕ =
ζ

ν
. Then the matrix associated to the first fundamental form of ψ

is given by

I =
4
Λ2

(
HessH(ϕ) + ΣId

)2
,

where HessH(ϕ) is the Hessian of ϕ with respect to the hyperbolic metric
ds2 = 4

Λ2 |dz|2, Σ =
√

1 + | ∇Hϕ|2 and Id is the 2 × 2 identity matrix.

Proof. From ζ = u + iv = ν∇Hϕ and ν =
1
Σ

, we obtain

|Λζx + iΛyζ + 2|2 =
(

Λ
(

ν
Λ
2

ϕx

)
x

− ν
Λ
2

Λyϕy + 2
)2

(27)

+
(

Λ
(

ν
Λ
2

ϕy

)
x

+ ν
Λ
2

Λyϕx

)2

.

We also have

νx = −ν2Σx,(28)

Σx =
νΛ
4

(
Λx| ∇ϕ|2 + Λ(ϕxϕxx + ϕyϕxy)

)
.(29)

Substitution of (27), (28), and (29) into the expression for E given by Propo-
sition 4.1 yields

(30) E =
Λ2

4

((
ϕxy +

Λyϕx

Λ
+

Λxϕy

Λ

)2

+
(

ϕxx +
Λxϕx

Λ
− Λyϕy

Λ
+

4Σ
Λ2

)2)
.

In the same manner,

F =
Λ2

4

(
ϕxy +

Λyϕx

Λ
+

Λxϕy

Λ

)(
ϕxx + ϕyy +

8Σ
Λ2

)
,(31)

G =
Λ2

4

((
ϕxy +

Λyϕx

Λ
+

Λxϕy

Λ

)2

+
(

ϕyy − Λxϕx

Λ
+

Λyϕy

Λ
+

4Σ
Λ2

)2)
.(32)

Therefore, the proposition follows from (30), (31), and (32). �
Remark 4.4. In Proposition 4.3, we have assumed that ψ is an immersion.
Suppose that we drop this assumption and define a map ψ in the following
manner. Let Ω ⊂ D be an open set and ϕ : Ω → R a smooth function and
define ζ by the expression ∇Hϕ = ζ

ν , where ν = (1 − |ζ|2)1/2. Finally, we define
ψ : Ω → H

2 × R as the map given by (19). Then it follows from computations
as in Proposition 4.3 that ψ, defined in the above manner, is an immersion at
z ∈ Ω if and only if

det
(
HessH(ϕ) + ΣId

)
= det

(
(HessH(ϕ)) + Σ(�Hϕ + Σ)

)
	= 0,

at z, where �H denotes the Laplacian in the hyperbolic metric.
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Lemma 4.5. Let Ω ⊂ D be an open set such that 0 ∈ Ω, and ψ : Ω → H
2 × R

the map given by (19). Suppose that ψ is an immersion and that there is a

smooth function ϕ : Ω → R such that ∇Hϕ =
ζ

ν
. Then the coefficients of the

first and second fundamental forms at z = 0 are given by

E =
1
4
(
(ϕxx + 4Σ)2 + ϕ2

xy

)
,

F =
1
4
(ϕxx + ϕyy + 8Σ)ϕxy,

G =
1
4
(
(ϕyy + 4Σ)2 + ϕ2

xy

)
.

e = − 1
4Σ2

(
(ϕyϕxx − ϕxϕxy)2

4
+ ϕ2

xx + ϕ2
xy

)
(33)

+
1
Σ

(
ϕxϕyϕxy

2
−

ϕ2
yϕxx

2
− ϕxx

)
− ϕ2

y,

f =
1

4Σ2

((
ϕ2

xy + ϕxxϕyy

4
+ Σ(ϕxx + ϕyy) + 4Σ2

)
ϕxϕy(34)

−
((

1 +
ϕ2

x

4

)
ϕyy +

(
1 +

ϕ2
y

4

)
ϕxx + 4Σ3

)
ϕxy

)
,

g = − 1
4Σ2

(
(ϕxϕyy − ϕyϕxy)2

4
+ ϕ2

yy + ϕ2
xy

)
(35)

+
1
Σ

(
ϕxϕyϕxy

2
− ϕ2

xϕyy

2
− ϕyy

)
− ϕ2

x.

Proof. The coefficients of the first fundamental form are obtained by direct
substitution. From Proposition 4.1, it follows that for z = 0 we have

(36) ν2e = −νx(νx − 2uν) + ν4 −
(
(ux + v2 − u2 + 1)2 + (vx − 2uv)2

)
.

Substitution of u = ν ϕx

2 , v = ν
ϕy

2 and

νx = −ν2Σx, Σx =
ν

4
(ϕxϕxx + ϕyϕyx),

into (36) yields, after a long computation, that e is given by (33). In the same
manner, one shows that f and g are given by (34) and (35). �

Proposition 4.6. Let Ω ⊂ D be a connected open set and ψ : Ω → H
2 × R

the map given by (19). Suppose that ψ is an immersion and that there is a
smooth function ϕ : Ω → R such that ∇Hϕ = ζ

ν . Then

(a) ψ has mean curvature H = − 1
2 if and only if ϕ satisfies

(37) det(HessH(ϕ)) = Σ2.
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(b) ψ satisfies the relation

(38) 2H + ν2 − 2K− + 1 = 0,

where K− = 4ε
Λ2

√
EG−F 2 , ε = 1 if det(HessH(ϕ) + ΣId) > 0 and ε = −1 if

det(HessH(ϕ) + ΣId) < 0, if only if ϕ is a harmonic function.

Proof. Let z ∈ Ω. Note that (37) and harmonicity are invariants by com-
position with Mobius automorphisms of the disc. Thus, by Proposition 3.1,
without loss of generality, we may suppose that z = 0. From Lemma 4.5, at
z = 0, we have

EG − F 2 =
(

ϕxxϕyy − ϕ2
xy

4
+ Σ(ϕxx + ϕyy) + 4Σ2

)2

,(39)

2H + 1 =
eG − 2fF + gE + EG − F 2

EG − F 2

=
4Σ2 − 4det(HessH(ϕ))

εΣ2
√

EG − F 2
.

To prove (b), we note that it follows from Lemma 4.5 that

(40) det(HessH(ϕ)) =
ε

√
EG − F 2

4
− Σ�Hϕ − Σ2.

Thus, combining (39) and (40) we finish the proof. �

5. Applications

5.1. A class of surfaces associated to harmonic functions. As a first
application of the results in the previous section, we introduce and study some
aspects of a class of surfaces that are critical points of the following functional∫

S

K− tan2 θ dA,

where S is a nonvertical surface with upward orientation, K− as in Defin-
ition 1.1, and θ the angle between the unit normal η and the unit Killing
vector field in the vertical direction.

It can be shown a surface is a critical point of the above functional, for
smooth variations with compact support, if and only if (1) is satisfied, for a
proof see [8].

Thus, by Proposition (4.6), we can use FM-composition to construct ex-
plicit examples of surfaces that satisfy (1) and to study their properties.

Since our goal here is to show an application of FM-composition, we shall
limit ourselves in this subsection to consider surfaces that satisfy (1) and are
generated by FM-composition. To be precise, we shall consider in this sub-
section immersions Xϕ : Ω → H

2 × R, generated by FM-composition, where
Ω is an open set ϕ : Ω → R is a harmonic function.
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The drawback of our method is that it can only be applied locally to sur-
faces for which G− is an immersion. We believe, however, that this is just a
technical difficulty, and that the results below are also valid without assuming
that G− is an immersion.

5.1.1. Associated family. The theorem below shows that for the class of sur-
faces we are considering there is a notion of associated family similar to the
usual notion for minimal surfaces in R

3.

Theorem 5.1. Let Ω ⊂ D be a simply-connected open set and ϕ : Ω → R be
a harmonic function. Suppose that Xϕ : Ω → H

2 × R is an immersion given
by (12). Let ϕ∗ be a harmonic function conjugate to ϕ and ϕt = cos(t)ϕ +
sin(t)ϕ∗, t ∈ R. Then the family Xϕt : Ω → H

2 × R associated to ϕt, are
immersions. Furthermore, the elements of this family are locally isometric
and have the same mean curvature at corresponding points.

Proof. Let z ∈ Ω. We shall show that the statement is true at z. By
Proposition 3.1, without loss of generality, we may suppose z = 0. At z = 0,
the coefficients of the first fundamental form of ψt are, by Lemma 4.5, given
by

Et =
1
4
(
(ϕt,xx + 4Σ)2 + ϕ2

t,xy

)
,

Ft = 2Σϕt,xy,

Gt =
1
4
(
(−ϕt,xx + 4Σ)2 + ϕ2

t,xy

)
.

Thus,

EtGt − F 2
t =

(
ϕ2

t,xx + ϕ2
t,xy

4
− 4Σ2

)2

=
(

ϕ2
xx + ϕ2

xy

4
− 4Σ2

)2

= EG − F 2.

Therefore, by Proposition 4.6, if Ht is the mean curvature of ψt, then Xϕt

satisfies

2Ht + ν2
t − 2(K−)t + 1 = 0.

But, since νt = ν, (K−)t = K−, it follows that Ht does not depend on t.
Now, we prove that the elements of the family are locally isometric. Sup-

pose initially that 0 ∈ Ω and consider an open disc D0 centered at 0 and
contained in Ω. By Proposition 4.3, the first fundamental forms of the family
Xϕt are given by

It =
4
Λ2

(
HessH(ϕt) + ΣtId

)2
,
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Since ϕx = ϕ∗
y and ϕy = −ϕ∗

x, the Hessian matrix of ϕ is given by

HessH(ϕ) =
[
a b
b −a

]
,

where

a =
Λ2

4

(
ϕxx +

Λxϕx

Λ
− Λyϕy

Λ

)
,

b =
Λ2

4

(
ϕxy +

Λyϕx

Λ
+

Λxϕy

Λ

)
.

It is easy to check that Σt = Σ0 and

HessH(ϕt) = RtHessH(ϕ)
where

Rt =
[
cos(t) − sin(t)
sin(t) cos(t)

]
.

On the other hand, by considering the change of variables defined on D0 by

u = cos(θ)x − sin(θ)y,

v = sin(θ)x + cos(θ)y,

it follows easily that, Ĥ , the Hessian of ϕ in the coordinates u and v, is given
by

Ĥ = R2θHessH(ϕ).
Thus, for θ = t/2 the immersions Xϕt and Xϕ0 ◦ R −t

2
have the same coef-

ficients of the first fundamental form defined on D0. Therefore, we have an
isometry between Xϕt(D0) and Xϕ0(D0), for each t ∈ [0,2π].

Finally, let z ∈ Ω, and consider an isometry of H
2 M : H2 → H2 such that

M(z) = 0. Note that, by Proposition 3.1, the immersion Xϕ̂t associated to
ϕ̂t = ϕt ◦ M −1 is congruent to Xϕt . In this way, we reduce the general case
to the one treated above, where z = 0. �
Remark 5.2. Theorem 5.1 shows that in H

2 × R there are non-trivial exam-
ples of a smooth one-parameter family of surfaces that are locally isometric
and have the same mean curvature at corresponding points. This should be
compared with the recent result in [9] on the Bonnet problem, where a clas-
sification of a one-parameter family of surfaces that are locally isometric and
have the same principal curvatures at corresponding points was given.

Remark 5.3. For some choices of the harmonic function ϕ, the elements of
the family ψt are congruent. But this is not true in general. For instance, if we
consider ϕ(z) = Re(z2), the elements of the associated family are congruent.
On the other hand, elements of the associated family in the first example of
Section 5.1.3 are not congruent.
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5.1.2. Schwarz’s reflection principle. We now show that a reflection principle,
analogous to Schwarz’s principle for minimal surfaces in Euclidean space, is
valid for surfaces generated by harmonic functions via FM-composition.

Remark 5.4. Note that ψ : Ω → H
2 × R, where Ω is an open set of D, given

by (19) is represented in the cylinder model of H
2 × R by

ψ =
(

N1

1 + N0
,

N2

1 + N0
, h

)
,

where N = ν
2 (G+ + G−) = (N0,N1,N2). In the same manner, η, the unit

vector orthogonal to ψ in H
2 × R, is given by

η =
(

N̂1(1 + N0) − N1N̂0

(1 + N0)2
,
N̂2(1 + N0) − N2N̂0

(1 + N0)2
, ν

)
,

where N̂ = ν
2 (G+ − G−) = (N̂0, N̂1, N̂2).

Proposition 5.5 (Schwarz reflection). Let Ω ⊂ D be an open set and ϕ :
Ω → R be a harmonic function. Let ψ : Ω → H2 × R be an immersion, given
by (19), associated to ϕ. Suppose that a vertical plane P intersects ψ(Ω)
orthogonally. Then there exists an extension of ψ(Ω), say S, satisfying (1),
and symmetric with respect to P.

Proof. Consider the cylinder model H
2 × R. Up to an ambient isometry we

may suppose that P = {(y1, y2, y3) ∈ H
2 × R;y2 = 0}. Suppose further that Ω

is symmetric with respect to the y1 axis.
If we write η = (η1, η2, ν), and use (14), then η2 is given by

(41) η2 =
N̂2(1 + N0) − N2N̂0

(1 + N0)2
.

Note also that if we write ψ = (Y1, Y2, h), and use (13), the expressions for Y1

and Y2 are

Y1 =
1
d

(
Λ

(
(x2 − y2 + 1)

ϕx

2
+ xyϕy

)
+ 2xΣ

)
,(42)

Y2 =
1
d

(
Λ

(
(y2 − x2 + 1)

ϕy

2
+ xyϕx

)
+ 2yΣ

)
,(43)

where d = Σ(1 + x2 + y2) + Λ(xϕx + yϕy + 1).
Now, along, ψ(Ω) ∩ P, we have Y2 = η2 = 0, and from (43), (41), and (14),

we obtain

0 = Σ
(

Λ
(

(y2 − x2 + 1)
ϕy

2
+ xyϕx

)
+ 2yΣ

)

− Λ
(

Σ(y2 − x2 + 1)
ϕy

2
+ xyΣϕx +

Λy

2
(ϕ2

x + ϕ2
y)

)

= 2y.



1142 W. FERREIRA AND P. ROITMAN

Substitution of y = 0 into (43) yields ϕy(x,0) = 0 and, therefore, it fol-
lows from the classical Schwarz’s reflection principle for harmonic functions
that ϕ(x, −y) = ϕ(x, y). From (42) and (43), we conclude that ψ(x, −y) =
(Y1(x, y), −Y2(x, y), h(x, y)), and we have symmetry with respect to P .

Finally, if Ω is not symmetric with respect to the y1 axis, we may reflect
Ω in this axis and consider a new harmonic function defined on the union of
Ω and it’s reflection. This new harmonic function provides the extension S,
having P as a symmetry plane. �

Remark 5.6. A stronger version of Schwarz’s reflection can be proved by
looking at the P.D.E. for a graph that satisfies (1). This P.D.E. is elliptic,
[8], with analytic coefficients, so it’s solutions are also analytic. Schwarz’s
principle follows from this fact and a symmetry of the equation with respect
to reflection relative to a coordinate axis.

5.1.3. Examples. Figure 1 shows elements of the associated family generated
by

ϕt = cos(t)ln(
√

x2 + y2) + sin(t) arctan(y/x).

Figure 2 shows a piece of the surface associated to

Re
(

1
z3

+ z3

)
.

Figure 1. The sequence illustrates an example of an asso-
ciated family.

Figure 2. The surface associated to Re( 1
z3 + z3).
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5.2. Relation between flat and CMC-1/2 surfaces. As we said in the
Introduction, the map G+ is harmonic for surfaces in H

2 × R with mean
curvature 1

2 . It is also true that flat surfaces in H
2 × R have a harmonic

horizontal projection, when viewed as Riemann surfaces with the conformal
structure induced by the second fundamental form, [1]. In both cases, there is
a harmonic H

2 valued map, and one can imagine a relation between these two
classes of surfaces. The FM-composition provides such relation in an explicit
and simple way.

Let Ω ⊂ H
2 be an open set and consider a smooth function ϕ : Ω → R.

A natural way to generate a surface from ϕ is to consider it’s graph: Γϕ =
{(z,ϕ(z)) ∈ H

2 × R | z ∈ Ω}. In this work, we have presented the FM-composi-
tion, which is another way to generate a surface starting with ϕ. It turns out
that there are geometric relations between these surfaces.

Proposition 5.7. Let Ω ⊂ D be an open set and ψ : Ω → H
2 × R an im-

mersion given by (19). Suppose there is a smooth function ϕ : Ω → R such
that ∇Hϕ = ζ

ν and let Γϕ ⊂ H
2 × R be the graph of ϕ. Then ψ has mean

curvature H = −1/2 if and only if Γϕ has zero intrinsic curvature.

Proof. In the Lorentzian model, a natural parametrization for Γϕ is given
by

Φ(x, y) = (N(x, y), ϕ(x, y)), (x, y) ∈ Ω,

where N(x, y) = (1+x2+y2

Λ , 2x
Λ , 2y

Λ ), and Λ(x, y) = 1 − x2 − y2.
The unit vector field orthogonal to Φ is given by

η =
1√

1 + | ∇Hϕ|2

(
− Λ2

4
(ϕxNx + ϕyNy),1

)
,

where ∇Hϕ is the gradient of ϕ in the metric ds2
H .

Note that

(44) 〈Nx,Nx〉 = 〈Ny,Ny 〉 = 4Λ−2 and 〈Nx,Ny 〉 = 0.

Thus, the coefficients of the first fundamental form of Φ are

EΦ =
4
Λ2

+ ϕ2
x,

FΦ = ϕxϕy,

GΦ =
4
Λ2

+ ϕ2
y.
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Using (44), we obtain the following expressions for the coefficients of the
second fundamental form of Φ.

eΦ = 〈η,Φxx〉 =
1√

1 + | ∇Hϕ|2

(
ϕxx +

Λxϕx

Λ
− Λyϕy

Λ

)
,

fΦ = 〈η,Φxy 〉 =
1√

1 + | ∇Hϕ|2

(
ϕxy +

Λyϕx

Λ
+

Λxϕy

Λ

)
,

gΦ = 〈η,Φyy 〉 =
1√

1 + | ∇Hϕ|2

(
ϕyy − Λxϕx

Λ
+

Λyϕy

Λ

)
.

Thus, the matrix of the second fundamental form of Φ is given by

II Φ =
4

Λ2
√

1 + | ∇Hϕ|2
HessH(ϕ).

The sectional curvature Ksec of H
2 × R with respect to the plane generated

by Φx e Φy is given by

Ksec = − 1
Σ2

= − 1
1 + | ∇H ϕ̂|2 ,

see [3]. We shall denote by Kint and Kext, respectively, the intrinsic and
extrinsic curvatures of Φ. Gauss’s equation is

Kint +
1

Σ2
= Kext,

thus, Kint = 0 if and only if Kext = 1/Σ2.
Let A = I−1

Φ II Φ be the shape operator of Φ. We have

Kext = detA =
det(HessH(ϕ))

Σ4

It follows that Kext = 1/Σ2 if and only if det(HessH(ϕ)) = Σ2. And, by
Proposition 4.6, this happens if and only if ψ has constant mean curvature
H = −1/2. �
Remark 5.8. Proposition 5.7 can be related to the comments in the begin-
ning of this section in the following way. The domain Ω can naturally be
viewed as a Riemann surface in two different ways. The first one by using the
conformal structure induced by the first fundamental form of the immersion
given by (19). The second one by using the conformal structure induced by
the second fundamental form of Γϕ. A simple computation shows that, un-
der the conditions of Proposition 5.7, the two conformal structures actually
coincide.

Thus, the identity map on Ω, which represents locally the map G− in the
first situation, and the horizontal projection in the second, is a harmonic
map defined on Ω, viewed as a Riemann surface with the conformal structure
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discussed above. So one harmonic map defined on Ω, can be interpreted in two
different manners: the map G− for CMC −1/2 surfaces and the horizontal
projection for flat surfaces.

Acknowledgment. The second author thanks Harold Rosenberg for inspir-
ing conversations about surfaces in Thurston’s geometries.
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