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THE RESIDUAL FINITENESS OF ASCENDING
HNN-EXTENSIONS OF CERTAIN SOLUBLE GROUPS

A. H. RHEMTULLA AND M. SHIRVANI

To the memory of Reinhold Baer on the 100th anniversary of his birth

Abstract. If G is a group with an injective endomorphism φ, then

the HNN-extension Gφ = 〈G, t : t−1gt = gφ for all g ∈ G〉 is called
the ascending HNN-extension of G determined by φ. We prove that
Gφ is residually finite when G is either finitely generated abelian-by-
polycyclic-by-finite or reduced soluble-by-finite minimax. We also pro-

vide an example of a 3-generator residually finite soluble group G of
derived length 3 with a non-residually-finite ascending HNN-extension.

1. Introduction

Let G be a group with an injective endomorphism φ, and consider the
HNN-extension

Gφ = 〈G, t : t−1gt = gφ for all g ∈ G〉.
The problems of the Hopficity and the residual finiteness of Gφ, for vari-
ous classes of finitely generated groups G, have been the subject of renewed
interest in recent years (see [2] and [4] for background and comprehensive
bibliographies). When G is polycyclic-by-finite, Baumslag and Bieri [1] have
shown that the ascending HNN-extension Gφ is residually finite (a new proof
of this was recently given by Hsu and Wise [4] using entirely different tech-
niques). In this paper, we show that this result can be extended to larger
classes of soluble groups, but not to all. To be precise, our main results are
as follows.

Theorem 1.1. Let G be a finitely-generated abelian-by-polycyclic-by-finite
group, and let φ be an injective endomorphism of G. Then Gφ is residually
finite.
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The residual finiteness of the base group G was proved by Roseblade [8].
The following shows that the result does not generalize to all finitely generated
residually finite soluble groups.

Theorem 1.2. There exists a 3-generator residually-finite soluble group G
of derived length 3, and a monomorphism φ : G→ G, such that the ascending
HNN-extension Gφ is not residually finite.

In the positive direction, we have the following result (which generalizes the
result for a polycyclic base group in a direction different from Theorem 1.1).

Theorem 1.3. Let G be a finitely generated, residually finite, soluble-
by-finite group of finite Prüfer rank. Then Gφ is residually finite for every
injective endomorphism φ of G.

This is a consequence of the following more general result. We thank Derek
Robinson for suggesting the result and supplying its proof.

Theorem 1.4. Let Gφ be an ascending HNN-extension of a reduced soluble-
by-finite minimax group G. Then Gφ is again a reduced and soluble-by-finite
minimax group, and as such it is residually finite.

Recall that “reduced” means that there are no non-trivial radicable sub-
groups and is equivalent to residually finite for soluble groups of finite rank (see
[5, p. 170]). Since a finitely generated soluble group with finite Prüfer rank is
minimax [6], Theorem 1.4 implies Theorem 1.3. On the other hand, one can-
not extend the theorem to groups of finite Prüfer rank because of the simple
example Gφ = 〈G, t | gt = 2g, g ∈ G〉, where G = {m/n | m,n ∈ Z, n odd}.

Unlike the groups in Theorems 1.1 and 1.4, the counterexample in Theo-
rem 1.2 is not polycyclic-by-finite modulo its Fitting subgroup. This prompts
the following question.

Question. Is every ascending HNN-extension of a finitely generated,
residually finite, nilpotent-by-polycyclic-by-finite group G residually finite?

An affirmative answer would, in particular, imply that every ascending
HNN-extension Gφ of a finitely generated soluble linear group G is residually
finite.

The paper is organized as follows. In Section 2, necessary and sufficient
conditions for the residual finiteness of a general HNN-extensionGφ are stated,
and the relationship between the normal subgroups of G and those of Gφ is
elucidated. Theorems 1.1–1.4 are proved in Section 3.
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2. Generalities

Given a pair (G,φ) consisting of a group G and an injective endomorphism
φ of G, define the following:

X(G,φ) = {N / G : Nφ ⊆ N},
Y (G,φ) = {N / G : Nφ = N ∩Gφ},
Yf (G,φ) = {N ∈ Y (G,φ) : |G : N | <∞},

R(G,φ) =
⋂

P∈Yf (G,φ)

P.

Clearly X(G,φ) and Y (G,φ) are closed under arbitrary intersections. In
particular, R(G,φ) ∈ Y (G,φ).

Theorem 2.1. The HNN-extension Gφ = 〈G, t : t−1gt = gφ for all g ∈
G〉 is residually finite if and only if R(G,φ) = 1.

Proof. It is well-known (and trivial to verify) that P ∈ Yf (G,φ) if and only
if P = G ∩Q for some Q /f Gφ. The result follows from this, and the simple
fact that HNN-extensions with a finite base group are residually finite. �

If N ∈ X(G,φ), then φN denotes the endomorphism induced on G/N by
φ. Clearly, φN is injective if and only if N ∈ Y (G,φ). The next two results
are formal exercises.

Lemma 2.2. Let N ∈ Y (G,φ). Then:
(a) X(G/N, φN ) = {M/N : M ∈ X(G,φ) and M ⊇ N}, and for ∗ =

blank or f , we have Y∗(G/N, φN ) = {M/N : M ∈ Y∗(G,φ) and
M ⊇ N}.

(b) R(G/N, φN ) ⊇ R(G,φ)N/N . In particular, if (G/N)φN is residually
finite, then R(G,φ) ⊆ N .

(c) If R(G,φ) 6= 1 and N ⊆ R(G,φ), then R(G/N, φN ) = R(G,φ)/N .
�

Lemma 2.3. For any M/G, define a sequence of subgroups Mi by Miφ
i =

M ∩Gφi for all i ≥ 0. Then:
(a) Mi / G for all i.
(b) Mi+1φ = Mi ∩Gφ for all i.
(c) If M ⊆ N ∈ Y (G,φ), then Mi ⊆ N for all i. �

Lemma 2.4. Let M ∈ X(G,φ), and set M̃ =
⋃
i≥0Mi. Then:

(a) Mi ⊆Mi+1 for all i, so M̃ is a normal subgroup of G.
(b) M̃ ∈ Y (G,φ).
(c) If L 6 G with Lφ = L ∩Gφ, then M ⊆ L implies that M̃ ⊆ L.
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(d) M̃ = Mj for some j if and only if M̃φj ⊆M .

Proof. By definition M1φ = M ∩Gφ ⊇ M0φ, so M1 ⊇ M0. If Mi+1 ⊇ Mi

for some i, then by Lemma 2.3(b), Mi+2φ = Mi+1∩Gφ ⊇Mi∩Gφ = Mi+1φ,
so Mi+2 ⊇ Mi+1 as well. Thus, (a) follows by induction on i. As for (b), we
have M̃φ =

⋃
i≥1Miφ =

⋃
i≥1(Mi−1 ∩Gφ) = M̃ ∩Gφ.

For (c), it is obvious that Lφi = L ∩ Gφi for all i, so Miφ
i = M ∩ Gφi ⊆

L ∩Gφi = Lφi, whence Mi ⊆ L for all i.
Finally for (d), begin by observing that Miφ

i+1 = Miφ
iφ = (M ∩Gφi)φ =

Mφ∩Gφi+1 = Mφ∩M ∩Gφi+1 = Mφ∩Mi+1φ
i+1, so Miφ

i = M ∩Mi+1φ
i.

Thus, if M̃ = Mj = Mj+1, then M̃φj = Mjφ
j = M ∩Mj+1φ

j = M ∩ M̃φj , so
M̃φj ⊆M . Conversely, if M̃φj ⊆M , then M̃φj = M̃φj ∩Gφj ⊆M ∩Gφj =
Mjφ

j , so M̃ ⊆Mj ⊆ M̃ . �

Lemma 2.5. Let G be a finitely generated group.
(a) If M /f G, then there exists j ≥ 0 such that N =

⋂
i≥0Mi =

⋂j
i=0Mi.

In particular, N /f G and Nφ ⊆ N .
(b) Suppose that G is also residually finite. If Q/G, Qφ ⊆ Q ⊆ R(G,φ),

and Q is finite, then Q = 1.

Proof. (a) We have |G : Mi| = |Gφi : Miφ
i| = |Gφi : M ∩Gφi| 6 |G : M |.

As G has only a finite number of subgroups of index at most |G : M |, the
set {Mi : i ≥ 0} is finite, so N is a finite intersection and so in particular
has finite index in G. By Lemma 2.3(b), we have N ∩Gφ =

⋂
i≥0Mi ∩Gφ =⋂

i≥0Mi+1φ ⊇ Nφ, as required.
(b) Of course Qφ ⊆ Q implies that Qφ = Q, because Q is finite. As G is

residually finite, there exists M /f G such that M ∩ Q = 1, and by part (a)
we may assume that Mφ ⊆ M . Then M̃ ∈ Yf (G,φ), so Q ⊆ R(G,φ) ⊆ M̃
by definition. On the other hand, the chain M = M0 ⊆ M1 ⊆ · · · is finite,
so M̃ = Mj for some j, whence M̃φj ⊆M by the previous lemma. But then
Q = Qφj ⊆ M̃φj ⊆M , so Q = M ∩Q = 1, as required. �

From time to time, we have to deal with subgroups N / G such that N ∩
Gφ ⊆ Nφ, i.e., the reverse inclusion to that defining the elements of X(G,φ)
(such subgroups, for example, include ζ1(G), the centre of G). We have the
following.

Lemma 2.6. Let M /G such that M ∩Gφ ⊆Mφ. Then:
(a) M ⊇ M1 ⊇ M2 ⊇ · · · , and the subgroup M̂ =

⋂
i≥0Mi is the unique

maximal element of Y (G,φ) contained in M .
(b) Assume that G/M is polycyclic-by-finite, with a torsion-free subgroup

of finite index n. Then there exists j ≥ 0 such that Mj ∈ Y (G,φ)
and |M/Mj | 6 n. Moreover, G/Mj is isomorphic to a subgroup of
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G/M . Furthermore, there exists H ∈ Yf (G,φ) such that H/Mj is
torsion-free (so in particular H ∩M = Mj).

(c) If G/M is finite, then M ∈ Y (G,φ).
(d) Let H be a subgroup of finite index in G such that Hφ = H∩Gφ. Then

the normal core HG ∈ Yf (G,φ). In particular, R(G,φ) = R(H,φ).

Proof. By definition, M1φ = M ∩Gφ ⊆ Mφ, so M1 ⊆ M0. If Mi+1 ⊆ Mi

for some i, then Mi+2φ = Mi+1 ∩Gφ ⊆Mi ∩Gφ = Mi+1φ, so Mi+2 ⊆Mi+1.
This proves the first statement of (a). Also, M̂ ∩ Gφ = ∩i≥0(Mi ∩ Gφ) =
∩i≥0Mi+1φ = M̂φ. Conversely, if N ∈ Y (G,φ) and N ⊆ M , then Miφ

i =
M ∩Gφi ⊇ N ∩Gφi = Nφi, so N ⊆ M̂ .

Next, by part (a) we have M∩Gφi = Miφ
i ⊆Mφi, so M∩Mφi = M∩Gφi

for all i ≥ 0. Therefore, G/Mi
∼= Gφi/Miφ

i ↪→ G/M . On the other hand,
Mi ⊆ M , so G/M is a homomorphic image of G/Mi. It follows that G/M
and G/Mi have the same Hirsch length, and so M/Mi, being the kernel of
the map G/Mi � G/M , is finite. In particular, |M/Mi| 6 n for all i. This,
and the fact that M ⊇ M1 ⊇ M2 ⊇ · · · , evidently imply the existence of
j ≥ 0 such that Mj+1 = Mj , which is equivalent to Mj ∈ Y (G,φ). The other
properties of Mj have already been established in the course of the proof.

We now turn to the existence of H. Write P = Mj ∈ Y (G,φ). The
polycyclic-by-finite group G/P contains a torsion-free subgroup T/P of finite
index. In particular, T ∩ M = P as M/P is finite. For any i, we have
(Ti ∩M)φi = Tiφ

i ∩Mφi = T ∩ Gφi ∩Mφi = T ∩Mφi ⊇ T ∩M ∩ Gφi =
P ∩ Gφi = Pφi, so P ⊆

⋂
i≥0 Ti = N , say. By Lemma 2.5(b), we have

Nφ ⊆ N and N /f G. By construction, N/P is torsion-free. Thus, the set
S =

{
N/P : N ∈ X(G,φ), P ⊆ N /f G, N/P is torsion-free

}
is non-empty.

Let H/P be a maximal element of the above set (i.e., one with minimal
index in G/P ). It is sufficient to show that H ∈ Y (G,φ). As H /f G, we have
H̃ = Hk for some k ≥ 0, and so H̃φk ⊆ H by Lemma 2.4(d). Then (H̃φk)P/P
is torsion-free, being a subgroup of H/P . But (H̃φk)P/P ∼= H̃φk/(H̃φk ∩P ),
and H̃φk ∩ P = H̃ ∩Gφk ∩ P = H̃φk ∩ Pφk = (H̃ ∩ P )φk = Pφk. Therefore,
(H̃φk)P/P ∼= H̃φk/Pφk ∼= H̃/P . Thus, H̃/P is torsion-free, so H̃ belongs to
S. The maximal choice of H now implies that H = H̃ ∈ Y (G,φ), as claimed.

The proof of (c) is much simpler, because |G : M1| = |Gφ : M1φ| 6 |G :
M | 6 |G : M1|, so again M = M1.

For (d), let M = HG =
⋂
x∈GH

x /f G. Then Mφ =
⋂
x∈G(Hφ)xφ =⋂

x∈G(H ∩Gφ)xφ =
⋂
y∈GφH

y ∩Gφ ⊇M ∩Gφ. Therefore, M ∈ Yf (G,φ) by
part (c). In particular, if P ∈ Yf (H,φ), then Pφ = P ∩Hφ = P ∩H ∩Gφ =
P ∩ Gφ. By the first part of (d), we have PG ∈ Yf (G,φ), so R(G,φ) ⊆ P .
This is for all such P , so R(G,φ) ⊆ R(H,φ). Conversely, if N ∈ Yf (G,φ),
then N ∩H ∈ Yf (H,φ), so R(H,φ) ⊆ H ∩N . Since this holds for all N , we
have R(H,φ) ⊆ R(G,φ), as required. �
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Lemma 2.7. Let F be a non-trivial nilpotent group of class c, and let φ be
an injective endomorphism of F . Then ˜γc(F ) ⊆̂ζ1(F ).

Proof. There is nothing to prove if c = 1, so assume that c ≥ 2. Write A =
γc(F ) and Z = ζ1(F ). Then A ⊆ Z, so Ai ⊆ Zi for all i, and plainly Aφ ⊆ A.
Fix i, and consider any j ≥ i. Then Ai ⊆ Aj ⊆ Zj , so Ai ⊆

⋂
j≥i Zj = Ẑ.

Thus Ã ⊆ Ẑ, as required. �

3. Proof of the Main Theorems

For the proof of Theorem 1.1, we require the case J = Z of the following
result of Roseblade ([7, Corollary C5, p. 321]):

Suppose J is a commutative Hilbert domain and G is polycyclic-by-finite.
Suppose M is a finitely generated JG-module and φ an endomorphism of it.
If Mφ is contained in every maximal φ-invariant JG-submodule of M , then
Mφn = 0 for some n.

Proof of Theorem 1.1. Recall that finitely generated abelian-by-polycyclic-
by-finite groups satisfy the maximal condition on normal subgroups (see [3]).
LetG be a minimal counterexample so that for some injective endomorphism φ
of G, the group Gφ is not residually finite, but every ascending HNN extension
of each proper quotient of G is residually finite. It then follows that R(G,φ) is
the unique minimal non-trivial member of the set Y (G,φ). Let F = Fitt(G)
be the product of all the nilpotent normal subgroups of G. Then F is nilpotent
of class c for some c ≥ 1. Since G/F is polycyclic-by-finite, parts (b) and (d) of
Lemma 2.6 apply with F playing the role of M in that lemma. In particular,
G may be replaced by a subgroup H ∈ Yf (G,φ), and we may assume that

F ∈ Y (G,φ). Let B = ˜γc(F ). Then B ⊆̂ζ1(F ) ⊆ ζ1(F ) by Lemma 2.7, so
A = R(G,φ) ⊆ ζ1(F ).

Now let N ⊂ A be any maximal element of X(G,φ). Then N 6= N1 and
N1 ∈ X(G,φ), so N1 = A. By definition, this means that Aφ = N1φ =
N ∩ Aφ, so Aφ ⊆ N . By the above-quoted result of Roseblade, this implies
that Aφn = 1 for some integer n, which is impossible as A 6= 1 and φ is
injective. �

Proof of Theorem 1.2. Let A be the additive subgroup of Q consisting of
all the rational numbers with odd denominator (in lowest form), and let B =
Dri∈ZAi be the direct product of countably many copies of A indexed by the
integers. A typical element b ∈ B is written as b = (bi) = (bi)i, the outside
subscript indicating the position of the entry bi (where necessary).

Let µ : B → B be the map defined by (bµ)i = (2i + 1)bi for all i and all
b ∈ B. Note that µ ∈ Aut(B). Next, let ν : B → B be the shift automorphism
defined by (bν)i = bi−1 for all i. Let H = 〈µ, ν〉 6 Aut(B) and G = B oH.
We begin by establishing some properties of H and G.
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1. H = 〈µ〉 o 〈ν〉 ∼= C∞ o C∞: For any b ∈ B and any integer k, we have
bµν−kµνk = ((2i + 1)bi)iν−kµνk = ((2(i + k) + 1)bi)iµνk = ((2i + 1)(2(i +
k) + 1)bi)iνk = ((2(i − k) + 1)(2i + 1)bi)i, while bν−kµνkµ = (bi+k)iµνkµ =
((2i + 1)bi+k)iνkµ = ((2(i − k) + 1)bi)iµ = ((2(i − k) + 1)(2i + 1)bi)i. In
other words, the normal closure 〈µH〉 is abelian. The verification that H is
the indicated wreath product is now trivial.

2. G is a 3-generator group: Let c ∈ B be the element with c0 = 1 and
ci = 0 for all i 6= 0. Then for any odd integer 2k + 1, we have cνkµ−1ν−k =
(ci/(2(i+k)+1))i, which has 1/(2k+1) in the 0-th component, and 0 elsewhere.
Thus, the normal closure 〈cG〉 contains A0, and as ν is the shift map, we must
have B = 〈cG〉. Thus G = 〈c, u, v〉, where conjugation by u (respectively v)
induces µ (resp. ν) on B.

3. G is soluble of length 3: This is clear from Point 1.
4. G is residually finite: For any positive integer k, the subgroup 2kB /G,

and B/2kB is the direct product of countably many cyclic groups of order
2k. Moreover,

⋂
k≥0 2kB = 1. In order to show that G is residually finite, it

suffices to show that G/2kB is residually finite for every positive integer k.
Let m = 2k−1. Then for any b ∈ B, so bµ−1ν−mµνm = (( 2(i−m)+1

2i+1 )bi)i. But
2m = 2k, so 2(i−m) + 1 ≡ 2i+ 1 (mod 2k), and therefore bµ−1ν−mµνm ≡ b
(mod 2kB). In other words, [u, vm] ∈ C = CG(B/2kB). Thus, C ∩ H / G
and contains [u, vm]. Now H/(C ∩H) is polycyclic of Hirsch length at most
m+ 1, so the group W = G/2kB(C ∩H) is finitely generated and abelian-by-
polycyclic-by-finite, and so residually finite. In particular, as B/2kB embeds
into W , every element of B/2kB can be excluded from some normal subgroup
of finite index in W , and hence in G/2kB. Finally, any g ∈ G \ B has non-
trivial image in G/B = H, and so can be excluded from a normal subgroup of
finite index because H is residually finite. (Note that G is, in fact, residually
a finite 2-group.)

Now define φ : G → G by (bh)φ = (2b)h for all b ∈ B, h ∈ H. This is
plainly injective, and is a homomorphism of G because it is the identity on H,
and the action of H on B commutes with the action of φ on B. In the HNN-
extension Gφ = 〈G, t : t−1gt = gφ for all g ∈ G〉, the subgroup

⋃
n∈ZB

tn

is the direct product of countably many copies of (Q,+), which is divisible
and hence not residually finite. In particular, Gφ is not residually finite, as
required. �

Proof of Theorem 1.4. Let H = 〈t, G | gt = gφ, g ∈ G〉, where G is a
reduced soluble-by-finite minimax group and φ is an injective endomorphism
of G. Write Ḡ =

⋃
i=0,1,2,...G(i) where G(i) = Gt

−i
. Of course G = G(0) 6

G(1) 6 · · · .
(a) We may assume that G is soluble. For, there exists m > 0 such that

S = Gm is soluble, G/S is finite, and Sφ 6 S. Let N = S̃. Clearly N = Sj
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for some j, so Nφj ⊆ S by 2.4(d), and hence N is soluble. Finally, 〈t,N〉 is
an ascending HNN-extension of finite index in H.

(b) H is soluble with finite Prüfer rank. Clearly Ḡ is soluble, being the
union of a chain of subgroups isomorphic with G. Hence H is soluble. Suppose
that G has rank r. Then any finitely generated subgroup of Ḡ is contained in
some G(i) and hence can be generated by r elements. Therefore Ḡ has finite
rank, and hence so does H.

(c) H is a minimax group. First note that |G : Gφ| is finite. For otherwise
there would be the infinite descending chain G > Gφ > Gφ2 . . . in which
each |Gφi : Gφi+1| is infinite. This implies that G does not satisfy the weak
minimal condition, thus contradicting an easy result of Zaicev (see [5, Section
10.3]). Write m = |G : Gφ|. Then |G(j+1) : G(j)| = m for all j. Let A be an
abelian subgroup of H. If a ∈ A, then a ∈ G(j) for some j and it follows that
a(m!)j ∈ A∩G. Hence A/A∩G is a π-group where π is the set of all primes
not exceeding m. Since A/A∩G has finite rank and π is finite, it follows that
A/A ∩G satisfies the minimal condition, and so A is minimax.

(d) H is reduced and hence residually finite. For if H were not reduced,
then it would have a subgroup of Prüfer type p∞, which would have to be
contained in Ḡ. But in G, and hence in Ḡ, torsion elements have bounded
order, a contradiction. �
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