ON SANOV 4TH-COMPOUNDS OF A GROUP

MARTIN L. NEWELL
Dedicated to the memory of my teacher Professor Reinhold Baer

1. Introduction

In his elegant inductive proof that every finitely generated group of exponent 4 is finite, Sanov used the following construction.

Let M be a group and let u be an involution in M. We form a group $S_{u}(M, a)$ by means of the relations $a^{2}=u$ and $(m a)^{4}=1$ for every $m \in M$. When $u=1$, we write $S_{0}(M, a)$ for the corresponding group.

We call $S_{u}(M, a)$ a Sanov compound and there is one for every conjugacy class of involutions in M. Sanov proved that for finite M of order m, every Sanov compound $S_{u}(M, a)$ has finite order at most m^{m+1}. (See, for example, [2, Theorem 18.3.1] or [3, Theorem 14.2.4].) Here we establish some general results concerning $S_{u}(M, a)$. For example, if M is infinite cyclic, then $S_{0}(M, a)$ is the extension of a countable elementary abelian 2-group by the infinite dihedral group. If M is cylic of order 3 , then $S_{0}(M, a)$ is isomorphic to S_{4}. For $M=A_{4}, S_{0}(M, a)$ has order $2^{9} \cdot 3$, while $S_{u}(M, a)$ has order $2^{6} \cdot 3$ for $u=(1,2)(3,4)$.

For computational purposes one uses a presentation for M via generators and relations. Then one adds the extra relations defining $S_{u}(M, a)$. These extra relations usually induce further relations in M. Thus, while M itself may not be a subgroup of $S_{u}(M, a)$, there exists a normal subgroup K_{u} of M such that $S_{u}(M, a)$ is isomorphic to $S_{\bar{u}}(\bar{M}, a)$, where $\bar{M}=M / K_{u}$ belongs to $S_{\bar{u}}(\bar{M}, a)$. For example, when M is a dihedral group of order $2 n$, with n odd, $S_{0}(M, a)=S_{0}\left(C_{2}, a\right)$ is dihedral of order 8 and $K_{0}=M^{\prime}$, the commutator subgroup of M. We also show that for M finite, simple and non-abelian, $S_{u}(M, a)=S_{0}(1, a)$ is cyclic of order 2 . Originally these investigations were prompted by a remark of M. Newman who asked if every Sanov compound of a 2 -group M is itself a 2 -group. We give a positive answer to this question, and a bound for the order. In a later paper we will examine the compounds of soluble groups and present further information on the groups M / K_{u}.

[^0]
2. Elementary properties of a compound $S_{u}(M, a)$

Lemma 1. Let x, y and t belong to M. Let $\alpha=a t$. Then:
(1) $x^{\alpha+1}$ is inverted by α^{2}.
(2) $\left(x^{\alpha+1}\right)^{y}=\left(y^{\alpha+1}\right)^{-1}(y x)^{\alpha+1}[x, y]$.
(3) $x^{\alpha+1}$ commutes with $y^{\alpha^{-1}+1}$ when $[y, x]=1$.
(4) $\left[x^{\alpha}, x\right]=1$, when x is inverted by α^{2}.
(5) $\left[x^{\alpha}, y\right]=\left[x, y^{\alpha}\right]$, when x, y and $x y^{-1}$ are inverted by α^{2}.

Proof. By hypothesis $\left(x \alpha^{-1}\right)^{4}=1=x x^{\alpha} x^{\alpha^{2}} x^{\alpha^{3}}=x^{(1+\alpha)\left(1+\alpha^{2}\right)}$. Hence (1) and (4) are immediate consequences. Since

$$
x^{(\alpha+1) y}=y^{-1} x^{\alpha} x y=\left(y^{\alpha} y\right)^{-1}(y x)^{\alpha} y x[x, y]
$$

we get property (2).
Let $[y, x]=1$. Then $x^{y \alpha+1}=x^{\alpha+1}$ is inverted by α^{2} and $(y \alpha)^{2}=y y^{\alpha^{-1}} \alpha^{2}$. Therefore $y y^{\alpha-1}$ and $\left(y^{\alpha^{-1}} y\right)^{-1}$ commutes with $x^{\alpha+1}$. This proves (3).

Finally (5) follows from the fact that x^{α}, y^{α}, and $x^{\alpha} y^{-\alpha}$ commute, respectively, with x, y, and $x y^{-1}$, and $\left(x y^{-1}\right)^{\alpha} x y^{-1}=x^{\alpha} x\left[x, y^{\alpha}\right] y^{-\alpha} y^{-1}$.

Lemma 2. Let $t, a^{2} \in M$ and put $z=\left[a^{2}, t\right]$. Then:
(1) $z=t^{a^{-1}+1} t^{a+1}$.
(2) $\left[z, z^{a}\right]=1$.
(3) $z^{a t}=z^{t^{-1} a}$.
(4) $\left(t^{a+1}\right)^{2}=z z^{a t}$.

Proof. $\left(t a^{-1}\right)^{4}=1$ implies that $t t^{a} t^{a^{2}} t^{a^{-1}}=1$. Hence $t^{-a^{2}}=t^{a^{-1}} t t^{a}$ and (1) follows. Since $z^{a^{2}}=z^{-1}$, (2) is a consequence of Lemma 1(4). Also, by Lemma $1(3), z$ commutes with $t^{a^{-1}+1}$ and since $a t=\left(t^{a^{-1}} t\right) t^{-1} a$, property (3) follows. Finally, $z^{a t}=\left(t^{a} t\right)\left(t^{a+1}\right)^{a t}=\left(t^{a} t\right)\left(t^{a-1} t\right)^{-1}$ and $z z^{a t}=\left(t^{a} t\right)^{2}$. This completes the proof.

3. Examples

Example 1. (a) Let $M=\langle t\rangle$ be cyclic, put $S=S_{0}(M, a)$ and let $T_{k}=$ $\left(t^{k}\right)^{a+1}$ for every integer $k \neq 0$. Then, by Lemma 2 , each T_{k} is an involution and the group $T=\left\langle T_{k}\right\rangle$ is an elementary abelian 2-group, by Lemma 1(3). It is normalized by t, since $T_{k}^{t}=T_{1}^{-1} T_{k+1}$, by Lemma $1(2)$. It is normalized by a, since $T_{k}^{a}=\left(t^{k}\right)^{a^{2}+a}=T_{-k}$. Then S / T is a dihedral group. When t has order m, the normal subgroup T of S has order 2^{m-1} and S has order $2^{m} m$.
(b) Suppose t has order $2 m$ and let $u=t^{m}$. Then a^{2} is central in $S_{u}(M)$ and $S_{u}(M) /\left\langle a^{2}\right\rangle$ is isomorphic to a subgroup of $S_{0}\left(M /\left\langle a^{2}\right\rangle, a\right)$.

Example 2. (a) Let M be a dihedral group, $M=\langle s, r\rangle$ for involutions s and r. Let $t=s r$ and $S=S_{0}(M, a)$. Then $1=\left(a t^{-1}\right)^{4}=a a^{t} a^{t} a^{t^{3}} t^{-4}$. Also the involutions a, s generate a dihedral group of order 8 , since $(a s)^{4}=1$.

In particular, a^{s} commutes with a. The same is true for $a^{s t^{k}}$ for every integer k. Thus a^{s} commutes with $a, a^{t}, a^{t^{2}}, a^{t^{3}}$ and consequently with t^{4}. But then a commutes with t^{4}. Now $\left(t^{4}\right)^{a+1}=t^{8}$ is an involution by Lemma $2(4)$ and hence $t^{16}=1$. So for $M=D_{\infty}$ we have $S_{0}(M, a)=S_{0}(\langle s\rangle, a)$ is dihedral of order 8 . The same is true for a dihedral group M or order $2 n, n$ odd.
(b) Let $a^{2}=s \in M$ and let $S=S_{s}(M, a)$. Then $t^{a^{2}}=t^{-1}$ and $\left[t^{a}, t\right]=1$ in S, by Lemma 1(4). The abelian group $A=\left\langle t, t^{a}\right\rangle$ is normal in S and S / A is cyclic of order 4.

EXAMPLE 3. The symmetric group $M=S_{4}$ has essentially three compounds, where $u=1,(1,2)(3,4)$ and $(1,2)$, respectively. The first $S_{0}(M, a)$ is isomorphic to D_{8}, the dihedral group of order 8 . So is the second, while the third compound has order 36 and is isomorphic to $C_{3} \times C_{3}$ extended by C_{4}, with a^{2} acting by inversion. We already noted that S_{4} is the compound of C_{3}. Thus for a given group M, by iterating the process one can develop a tree of compounds. For $M=1$, the associated tree is an interesting family of 2-groups. We will see later that for $M=S_{n}, n>4$, the only possible Sanov compounds are C_{2}, C_{4} and D_{8}.

We now consider the Sanov compounds of nilpotent groups.
Theorem 1. Let M be a nilpotent group. Let $a^{2}=u$ be an involution in M. Then $S_{u}(M, a)$ is soluble.

If M is finite of order m, then $S_{u}(M, a)$ is finite of order dividing $2^{m} m$.
Proof. Let $s \neq 1$ be an element of $Z(M)$. Then $\left[a^{2}, s\right]=1$ and s^{a+1} is an involution, by Lemma 2(4). Let $A=\left\langle s^{a+1}: 1 \neq s \in Z(M)\right\rangle$. By Lemma $1(2)$ and Lemma $1(3)$ it follows that A is an elementary abelian 2-group and is normalized by $Z(M)$.

Let $y \in M$. Then y^{a+1} commutes with $s^{a^{-1}+1}=s^{a+1}$, by Lemma $1(3)$. Hence $\left(s^{a+1}\right)^{y}$ centralizes A for all $y \in M$ by Lemma $1(2)$. It follows that $B=\left\langle A^{M}\right\rangle$ is an elementary abelian 2-group, which is normalized by M. Furthermore, $y a=y y^{a^{-1}} a y^{-1}$ and thus $s^{(a+1) y a}=s^{(1+a) y^{-1}}$ belongs to B. Therefore B is a normal subgroup of $S=S_{u}(M, a)$. Since a inverts s in S / B, it follows that for $C=\left\langle Z(M)^{S}\right\rangle$, the group C / B is abelian. Also the group S / C is isomorphic to a subgroup of $S_{\bar{u}}(M / Z(M), a)$ where $\bar{u}=u Z(m)$. By induction on the nilpotency class, we conclude that S / C and hence S is soluble. If M is finite of order m, let $Z(M)$ have order c. Then $M / Z(M)$ has order $m^{\prime}=m / c,|A|$ divides 2^{c-1}, and $|B|$ divides $|A|^{m^{\prime}}$, since $Z(M)$
normalizes A. Finally, $|C|$ divides $|Z(M)||B|=2^{(c-1) m^{\prime}} c$. By induction $|S / C|$ divides $2^{m^{\prime}} m^{\prime}$, and $|S|$ divides $2^{c m^{\prime}} m^{\prime} c=2^{m} m$. This completes the proof.

Corollary 1.

(1) Every Sanov compound of a finite 2-group is a finite 2-group.
(2) Every Sanov compound of a nilpotent group of class d is soluble with derived length at most $2 d$.

4. Properties of a Sanov involution

Let $a^{2}=u \in M$. When performing calculations, we will for simplicity identify the elements in M with their images in $S_{u}(M, a)$.

Theorem 2. Let $M=\left\langle a^{2}, H\right\rangle$, where $H=\langle x, y:[x, y]=1\rangle$ and $a^{2} \neq 1$. Let $T_{h}=h^{a+1}$ in $S=S_{u}(M, a)$. Then:
(1) $\left[T_{x}, T_{y}\right]$ is inverted by a and commutes with x and y in S.
(2) $\left[a^{2}, x\right]$ commutes with $\left[a^{2}, x\right]^{a y}$ in S.

Proof. Let $z_{x}=\left[a^{2}, x\right]$. Then $z_{x}=T_{x} T_{x^{-1}}^{a}$ by Lemma 2(1), since $T_{h^{-1}}^{a}=$ $T_{h^{-1}}^{-a^{-1}}=h^{a^{-1}+1}$. Also, for $h, k \in H$ it follows from Lemma 1(2) and (3) that T_{k} commutes with T_{h}^{a} and $T_{k}^{h}=T_{h}^{-1} T_{h k}$, and $a h=\left(h^{a^{-1}} h\right) h^{-1} a$ implies that $T_{k}^{a h}=T_{k}^{h^{-1} a}$. Now $z_{x}^{1+a y}$ is inverted by $(a y)^{2}=a^{2} T_{y}$. But

$$
z_{x}^{1+a y}=T_{x} T_{x^{-1}}^{a} T_{x}^{a y} T_{x^{-1}}^{-y}=\left(T_{x} T_{x^{-1}}^{-y}\right)\left(T_{x^{-1}} T_{x}^{y^{-1}}\right)^{a}
$$

and

$$
\left(T_{x} T_{x^{-1}}^{-y}\right)^{1+(a y)^{2}}=\left(v^{-a}\right)^{1+(a y)^{2}}
$$

where $v=T_{x-1} T_{x}^{y^{-1}}$. Now $\left(T_{x} T_{x^{-1}}^{-y}\right)^{1+(a y)^{2}}$ equals

$$
\left(T_{x} T_{y x^{-1}}^{-1} T_{y}\right)^{1+a^{2} T_{y}}=\left(T_{x} T_{y x^{-1}}^{-1} T_{y}\right)\left(T_{x}^{-1} T_{y x^{-1}} T_{y}^{-1}\right)^{T_{y}}=\left[T_{x}^{-1}, T_{y x^{-1}}\right]
$$

while

$$
\left(T_{x}^{-y^{-1}} T_{x^{-1}}^{-1}\right)^{a\left(1+a^{2} T_{y}\right)}=\left(T_{x}^{-y^{-1}} T_{x^{-1}}^{-1}\right)^{\left(1+a^{2}\right) a}
$$

Therefore

$$
\left[T_{x}^{-1}, T_{y x^{-1}}\right]=\left(T_{x}^{-y^{-1}} T_{x^{-1}}^{-1}\right)^{\left(1+a^{2}\right) a}
$$

From this we deduce that $T=\left\langle T_{h}: h \in H\right\rangle$ is nilpotent of class 2 .
Expanding

$$
\left(T_{x}^{-y^{-1}} T_{x^{-1}}^{-1}\right)^{1+a^{2}}=T_{x}^{-y^{-1}} T_{x^{-1}}^{-1} T_{x}^{-y^{-1} a^{2}} T_{x^{-1}}
$$

using

$$
T_{x}^{-y^{-1} a^{2}}=T_{x}^{y^{-a^{2}}}=T_{x}^{y^{-1}\left[y^{-1}, a^{2}\right]}=T_{x}^{y^{-1}}\left[T_{x}^{y^{-1}}, T_{y^{-1}}^{-1}\right]=\left(T_{x}\left[T_{x}, T_{y}\right]\right)^{y^{-1}}
$$

we get

$$
\left[T_{x}^{y^{-1}}, T_{x^{-1}}\right]\left[T_{x}^{y^{-1}}, T_{y^{-1}}^{-1}\right]=\left[T_{x}^{y^{-1}}, T_{y^{-1}}^{-1} T_{x^{-1}}\right]=\left[T_{x}, T_{y x^{-1}}\right]^{y^{-1}}
$$

It follows that

$$
\left[T_{x}^{-1}, T_{y x^{-1}}\right]=\left[T_{x}, T_{y x^{-1}}\right]^{-1}=\left(T_{x}^{-y^{-1}} T_{x^{-1}}^{-1}\right)^{\left(1+a^{2}\right) a}=\left[T_{x}, T_{y x^{-1}}\right]^{y^{-1} a}
$$

for all $x, y \in H$. Thus

$$
\left[T_{x}, T_{y}\right]^{-1}=\left[T_{x}, T_{y}\right]^{x^{-1} y^{-1} a}
$$

and

$$
\left[T_{x}, T_{y}\right]^{-a y}=\left[T_{x}, T_{y}\right]^{x^{-1}}=\left[T_{x}, T_{y}\right]^{-y^{-1} a},
$$

since $\left[T_{x}, T_{y}\right]$ commutes with a^{2}. Therefore

$$
\left[T_{x^{-1}}, T_{x^{-1} y}\right]^{-1}=\left[T_{y^{-1} x}, T_{y^{-1}}\right]^{a} \text { for all } x, y \in H .
$$

Hence

$$
\left[T_{h}, T_{k}\right]^{-1}=\left[T_{k}, T_{h}\right]=\left[T_{k^{-1}}, T_{h k^{-1}}\right]^{a} \text { for all } h, k \in H,
$$

and

$$
\left[T_{x^{-1}}, T_{x^{-1} y}\right]=\left[T_{x}, T_{y}\right]^{a} .
$$

Thus

$$
\left[T_{x}, T_{y}\right]^{x^{-1}}=\left[T_{x^{-1}}, T_{x^{-1} y}\right]^{-1}=\left[T_{x}, T_{y}\right]^{-a}=\left[T_{x}, T_{y}\right]^{-y^{-1} a} .
$$

Therefore $\left[T_{x}, T_{y}\right]$ commutes with y and so with x by symmetry and it is inverted by a. This concludes the proof of (1).

Since

$$
z_{x} z_{x}^{a y} z_{x}^{(a y)^{2}} z_{x}^{y^{-1} a^{-1}}=1
$$

and

$$
z_{x}^{(a y)^{2}}=z_{x}^{a^{2} T_{y}}=z_{x}^{-T_{y}}=\left(z_{x}\left[T_{x}, T_{y}\right]\right)^{-1},
$$

it follows that

$$
z_{x} z_{x}^{a y} z_{x}^{-1} z_{x}^{-a y}\left[T_{x}, T_{y}\right]^{-1}\left[T_{x}, T_{y}\right]^{-a y}=1,
$$

and therefore

$$
\left[z_{x}, z_{x}^{a y}\right]=1 .
$$

This proves (2).
Corollary 2. Let $u=a^{2} \neq 1$ and $t \in M$. Then $\left\langle a^{2}, t\right\rangle$ is central by metabelian in $S_{u}(M, a)$.

$$
\begin{aligned}
& \text { Proof. Let } T_{i}=\left(t^{i}\right)^{a+1} \text { and let } z_{i}=\left[a^{2}, t^{i}\right] \text {. Then } z_{i}=T_{i} T_{-i}^{a} \text { and } \\
& \qquad\left[z_{i}, z_{j}\right]=\left[T_{i}, T_{j}\right]\left[T_{-i}, T_{-j}\right]^{a}=\left[T_{i}, T_{j}\right]\left[T_{-i}, T_{-j}\right]^{-1} .
\end{aligned}
$$

Therefore the group $Z=\left\langle z_{i}: i\right.$ an integer \rangle is nilpotent of class 2. Further, z_{1} commutes with z_{1}^{a} and $z_{1}^{a t}$, by Theorem 3. Since

$$
z_{1}^{a t}=z_{1}^{t^{-1} a}=z_{-1}^{-a},
$$

we have that z_{1}^{a} and z_{-1}^{-a} commute with z_{1}. Because

$$
z_{1}^{a t^{-i}}=z_{1}^{t^{i} a}=z_{i}^{-a} z_{i+1}^{a}
$$

commutes with z_{1}, we conclude by induction that z_{j}^{a} commutes with z_{1} for every integer j. Further, since $\left(z_{i}\right)^{t}=z_{1}^{-1} z_{i+1}$, a similar induction yields that z_{i} commutes with z_{j}^{a} for all integers i and j. Since $\left[z_{i}, z_{j}\right]$ is inverted by a, it commutes with a^{2}. Because $\left[T_{1}, T_{j}\right]$ commutes with t for all j, we deduce by induction that $\left[T_{i}, T_{j}\right]$ commutes with t, for all integers i, j. Hence $\left[z_{i}, z_{j}\right]$ is central in $\left\langle a^{2}, t\right\rangle$ and $\left\langle a^{2}, t\right\rangle$ is central by metabelian.

Theorem 3. Every Sanov-compound of a non-abelian, finite simple group is cyclic of order 2.

Proof. Let $a^{2}=u(\neq 1) \in M$. By the Theorem in [4], there exists an element t such that $M=\left\langle a^{2}, t\right\rangle$. By Corollary 2, this has trivial image in $S_{u}(M, a)$ and hence $S_{u}(M, a)$ is cyclic of order 2 .

Consider $S_{0}(M, a)$ with $a^{2}=1$. Let x be an involution in M and let $y \in M$. Then $\left\langle x^{y}, x\right\rangle$ is dihedral and by Example 2(a) it is either trivial or a 2-group. In particular, $[y, x]$ has order dividing 16 . Thus x is a left-engel element of M and by [1] it is contained in the Fitting subgroup of M. Thus M is trivial in $S_{0}(M, a)$ and this group is cyclic of order 2.

Corollary 3. Let $M=S_{n}$ be the symmetric group with $n>4$. Then $S_{u}(M, a)$ is isomorphic to D_{8}, C_{4} or C_{2}.

Proof. The Sanov compound of the trivial group is C_{2}. We consider then the remaining cases.

Let $a^{2}=u$. If u is even, $S_{u}(M, a)$ contains $S_{u}\left(A_{n}, a\right) ;$ also $u \in A_{n} \subseteq K_{u}$ and

$$
S_{u}(M, a) \simeq S_{0}\left(C_{2}, a\right) \simeq D_{8}
$$

For $a^{2}=(1,2), S_{n}=\left\langle a^{2}, t\right\rangle$, where t is an n-cycle, but this group is not central by metabelian. In this case we can assume that $t \in K_{u}$ and $S_{u}(M, a) \simeq C_{4}$. Now let $a^{2}=(1,2)(3,4)(5,6) v$, where v is an even involution. Then $\left\langle a^{2}, t_{0}\right\rangle$ is not central by metabelian, where $t_{0}=(1,2,3,4,5)$. So we may assume that every 5 -cycle is in K_{u} and that $A_{n} \subseteq K_{u}$. Then $a^{2} \equiv(1,2) \bmod A_{n}$ and the compound is C_{4}.

References

[1] R. Baer, Engelsche Elemente noetherscher Gruppen, Math. Ann. 133 (1957), 256-270.
[2] M. Hall, The theory of groups, MacMillan, New York, 1962.
[3] D.J.S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1982.
[4] A. Stein, $1 \frac{1}{2}$ generation of finite simple groups, Beiträge Algebra und Geom. 39 (1999), 349-358.

Department of Mathematics, National University of Ireland Galway, Galway, Ireland

E-mail address: martin.newell@nuigalway.ie

[^0]: Received September 9, 2002.
 2000 Mathematics Subject Classification. 20F05, 20F18.

