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ON SANOV 4TH-COMPOUNDS OF A GROUP

MARTIN L. NEWELL

Dedicated to the memory of my teacher Professor Reinhold Baer

1. Introduction

In his elegant inductive proof that every finitely generated group of expo-
nent 4 is finite, Sanov used the following construction.

Let M be a group and let u be an involution in M . We form a group
Su(M,a) by means of the relations a2 = u and (ma)4 = 1 for every m ∈ M .
When u = 1, we write S0(M,a) for the corresponding group.

We call Su(M,a) a Sanov compound and there is one for every conjugacy
class of involutions in M . Sanov proved that for finite M of order m, every
Sanov compound Su(M,a) has finite order at most mm+1. (See, for example,
[2, Theorem 18.3.1] or [3, Theorem 14.2.4].) Here we establish some general
results concerning Su(M,a). For example, ifM is infinite cyclic, then S0(M,a)
is the extension of a countable elementary abelian 2-group by the infinite
dihedral group. If M is cylic of order 3, then S0(M,a) is isomorphic to S4.
For M = A4, S0(M,a) has order 29 · 3, while Su(M,a) has order 26 · 3 for
u = (1, 2)(3, 4).

For computational purposes one uses a presentation for M via generators
and relations. Then one adds the extra relations defining Su(M,a). These
extra relations usually induce further relations in M . Thus, while M itself
may not be a subgroup of Su(M,a), there exists a normal subgroup Ku of M
such that Su(M,a) is isomorphic to Su(M,a), where M = M/Ku belongs to
Su(M,a). For example, when M is a dihedral group of order 2n, with n odd,
S0(M,a) = S0(C2, a) is dihedral of order 8 and K0 = M ′, the commutator
subgroup of M . We also show that for M finite, simple and non-abelian,
Su(M,a) = S0(1, a) is cyclic of order 2. Originally these investigations were
prompted by a remark of M. Newman who asked if every Sanov compound of
a 2-group M is itself a 2-group. We give a positive answer to this question,
and a bound for the order. In a later paper we will examine the compounds
of soluble groups and present further information on the groups M/Ku.
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2. Elementary properties of a compound Su(M,a)

Lemma 1. Let x, y and t belong to M . Let α = at. Then:

(1) xα+1 is inverted by α2.
(2) (xα+1)y = (yα+1)−1(yx)α+1[x, y].
(3) xα+1 commutes with yα

−1+1 when [y, x] = 1.
(4) [xα, x] = 1, when x is inverted by α2.
(5) [xα, y] = [x, yα], when x, y and xy−1 are inverted by α2.

Proof. By hypothesis (xα−1)4 = 1 = xxαxα
2
xα

3
= x(1+α)(1+α2). Hence

(1) and (4) are immediate consequences. Since

x(α+1)y = y−1xαxy = (yαy)−1(yx)αyx[x, y],

we get property (2).
Let [y, x] = 1. Then xyα+1 = xα+1 is inverted by α2 and (yα)2 = yyα

−1
α2.

Therefore yyα−1 and (yα
−1
y)−1 commutes with xα+1. This proves (3).

Finally (5) follows from the fact that xα, yα, and xαy−α commute, respec-
tively, with x, y, and xy−1, and (xy−1)αxy−1 = xαx[x, yα]y−αy−1. �

Lemma 2. Let t, a2 ∈M and put z = [a2, t]. Then:

(1) z = ta
−1+1ta+1.

(2) [z, za] = 1.
(3) zat = zt

−1a.
(4) (ta+1)2 = zzat.

Proof. (ta−1)4 = 1 implies that ttata
2
ta
−1

= 1. Hence t−a
2

= ta
−1
tta and

(1) follows. Since za
2

= z−1, (2) is a consequence of Lemma 1(4). Also, by
Lemma 1(3), z commutes with ta

−1+1 and since at = (ta
−1
t)t−1a, property

(3) follows. Finally, zat = (tat)(ta+1)at = (tat)(ta−1t)−1 and zzat = (tat)2.
This completes the proof. �

3. Examples

Example 1. (a) Let M = 〈t〉 be cyclic, put S = S0(M,a) and let Tk =
(tk)a+1 for every integer k 6= 0. Then, by Lemma 2, each Tk is an involution
and the group T = 〈Tk〉 is an elementary abelian 2-group, by Lemma 1(3).
It is normalized by t, since T tk = T−1

1 Tk+1, by Lemma 1(2). It is normalized
by a, since T ak = (tk)a

2+a = T−k. Then S/T is a dihedral group. When t has
order m, the normal subgroup T of S has order 2m−1 and S has order 2mm.

(b) Suppose t has order 2m and let u = tm. Then a2 is central in Su(M)
and Su(M)/〈a2〉 is isomorphic to a subgroup of S0(M/〈a2〉, a).
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Example 2. (a) Let M be a dihedral group, M = 〈s, r〉 for involutions s
and r. Let t = sr and S = S0(M,a). Then 1 = (at−1)4 = aatatat

3
t−4. Also

the involutions a,s generate a dihedral group of order 8, since (as)4 = 1.
In particular, as commutes with a. The same is true for ast

k

for every
integer k. Thus as commutes with a, at, at

2
, at

3
and consequently with t4.

But then a commutes with t4. Now (t4)a+1 = t8 is an involution by Lemma
2(4) and hence t16 = 1. So for M = D∞ we have S0(M,a) = S0(〈s〉, a) is
dihedral of order 8. The same is true for a dihedral group M or order 2n, n
odd.

(b) Let a2 = s ∈ M and let S = Ss(M,a). Then ta
2

= t−1 and [ta, t] = 1
in S, by Lemma 1(4). The abelian group A = 〈t, ta〉 is normal in S and S/A
is cyclic of order 4.

Example 3. The symmetric group M = S4 has essentially three com-
pounds, where u = 1, (1, 2)(3, 4) and (1, 2), respectively. The first S0(M,a)
is isomorphic to D8, the dihedral group of order 8. So is the second, while
the third compound has order 36 and is isomorphic to C3 × C3 extended by
C4, with a2 acting by inversion. We already noted that S4 is the compound
of C3. Thus for a given group M , by iterating the process one can develop a
tree of compounds. For M = 1, the associated tree is an interesting family of
2-groups. We will see later that for M = Sn, n > 4, the only possible Sanov
compounds are C2, C4 and D8.

We now consider the Sanov compounds of nilpotent groups.

Theorem 1. Let M be a nilpotent group. Let a2 = u be an involution in
M . Then Su(M,a) is soluble.

If M is finite of order m, then Su(M,a) is finite of order dividing 2mm.

Proof. Let s 6= 1 be an element of Z(M). Then [a2, s] = 1 and sa+1 is an
involution, by Lemma 2(4). Let A = 〈sa+1 : 1 6= s ∈ Z(M)〉. By Lemma
1(2) and Lemma 1(3) it follows that A is an elementary abelian 2-group and
is normalized by Z(M).

Let y ∈ M . Then ya+1 commutes with sa
−1+1 = sa+1, by Lemma 1(3).

Hence (sa+1)y centralizes A for all y ∈ M by Lemma 1(2). It follows that
B = 〈AM 〉 is an elementary abelian 2-group, which is normalized by M .
Furthermore, ya = yya

−1
ay−1 and thus s(a+1)ya = s(1+a)y−1

belongs to B.
Therefore B is a normal subgroup of S = Su(M,a). Since a inverts s in
S/B, it follows that for C = 〈Z(M)S〉, the group C/B is abelian. Also the
group S/C is isomorphic to a subgroup of Su(M/Z(M), a) where u = uZ(m).
By induction on the nilpotency class, we conclude that S/C and hence S is
soluble. If M is finite of order m, let Z(M) have order c. Then M/Z(M)
has order m′ = m/c, |A| divides 2c−1, and |B| divides |A|m′ , since Z(M)
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normalizes A. Finally, |C| divides |Z(M)||B| = 2(c−1)m′c. By induction
|S/C| divides 2m

′
m′, and |S| divides 2cm

′
m′c = 2mm. This completes the

proof. �

Corollary 1.

(1) Every Sanov compound of a finite 2-group is a finite 2-group.
(2) Every Sanov compound of a nilpotent group of class d is soluble with

derived length at most 2d.

4. Properties of a Sanov involution

Let a2 = u ∈ M . When performing calculations, we will for simplicity
identify the elements in M with their images in Su(M,a).

Theorem 2. Let M = 〈a2,H〉, where H = 〈x, y : [x, y] = 1〉 and a2 6= 1.
Let Th = ha+1 in S = Su(M,a). Then:

(1) [Tx, Ty] is inverted by a and commutes with x and y in S.
(2) [a2, x] commutes with [a2, x]ay in S.

Proof. Let zx = [a2, x]. Then zx = TxT
a
x−1 by Lemma 2(1), since T ah−1 =

T−a
−1

h−1 = ha
−1+1. Also, for h, k ∈ H it follows from Lemma 1(2) and (3) that

Tk commutes with T ah and Thk = T−1
h Thk, and ah = (ha

−1
h)h−1a implies that

T ahk = Th
−1a

k . Now z1+ay
x is inverted by (ay)2 = a2Ty. But

z1+ay
x = TxT

a
x−1T ayx T−yx−1 = (TxT

−y
x−1)(Tx−1T y

−1

x )a

and
(TxT

−y
x−1)1+(ay)2

= (v−a)1+(ay)2
,

where v = Tx−1T y
−1

x . Now (TxT
−y
x−1)1+(ay)2

equals

(TxT−1
yx−1Ty)1+a2Ty = (TxT−1

yx−1Ty)(T−1
x Tyx−1T−1

y )Ty =
[
T−1
x , Tyx−1

]
,

while
(T−y

−1

x T−1
x−1)a(1+a2Ty) = (T−y

−1

x T−1
x−1)(1+a2)a.

Therefore [
T−1
x , Tyx−1

]
= (T−y

−1

x T−1
x−1)(1+a2)a.

From this we deduce that T = 〈Th : h ∈ H〉 is nilpotent of class 2.
Expanding

(T−y
−1

x T−1
x−1)1+a2

= T−y
−1

x T−1
x−1T

−y−1a2

x Tx−1 ,

using

T−y
−1a2

x = T y
−a2

x = T y
−1[y−1,a2]

x = T y
−1

x

[
T y
−1

x , T−1
y−1

]
= (Tx [Tx, Ty])y

−1
,
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we get[
T y
−1

x , Tx−1

] [
T y
−1

x , T−1
y−1

]
=
[
T y
−1

x , T−1
y−1Tx−1

]
=
[
Tx, Tyx−1

]y−1

.

It follows that[
T−1
x , Tyx−1

]
=
[
Tx, Tyx−1

]−1 = (T−y
−1

x T−1
x−1)(1+a2)a =

[
Tx, Tyx−1

]y−1a

for all x, y ∈ H. Thus

[Tx, Ty]−1 = [Tx, Ty]x
−1y−1a

and
[Tx, Ty]−ay = [Tx, Ty]x

−1

= [Tx, Ty]−y
−1a

,

since [Tx, Ty] commutes with a2. Therefore[
Tx−1 , Tx−1y

]−1 =
[
Ty−1x, Ty−1

]a for all x, y ∈ H.
Hence

[Th, Tk]−1 = [Tk, Th] = [Tk−1 , Thk−1 ]a for all h, k ∈ H,
and [

Tx−1 , Tx−1y

]
= [Tx, Ty]a .

Thus

[Tx, Ty]x
−1

=
[
Tx−1 , Tx−1y

]−1 = [Tx, Ty]−a = [Tx, Ty]−y
−1a

.

Therefore [Tx, Ty] commutes with y and so with x by symmetry and it is
inverted by a. This concludes the proof of (1).

Since
zxz

ay
x z(ay)2

x zy
−1a−1

x = 1
and

z(ay)2

x = za
2Ty
x = z−Tyx = (zx [Tx, Ty])−1,

it follows that

zxz
ay
x z−1

x z−ayx [Tx, Ty]−1 [Tx, Ty]−ay = 1,

and therefore
[zx, zayx ] = 1.

This proves (2). �

Corollary 2. Let u = a2 6= 1 and t ∈ M . Then
〈
a2, t

〉
is central by

metabelian in Su(M,a).

Proof. Let Ti = (ti)a+1 and let zi =
[
a2, ti

]
. Then zi = TiT

a
−i and

[zi, zj ] = [Ti, Tj ] [T−i, T−j ]
a = [Ti, Tj ] [T−i, T−j ]

−1
.

Therefore the group Z = 〈zi : i an integer〉 is nilpotent of class 2. Further,
z1 commutes with za1 and zat1 , by Theorem 3. Since

zat1 = zt
−1a

1 = z−a−1 ,
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we have that za1 and z−a−1 commute with z1. Because

zat
−i

1 = zt
ia

1 = z−ai zai+1

commutes with z1, we conclude by induction that zaj commutes with z1 for
every integer j. Further, since (zi)t = z−1

1 zi+1, a similar induction yields that
zi commutes with zaj for all integers i and j. Since [zi, zj ] is inverted by a, it
commutes with a2. Because [T1, Tj ] commutes with t for all j, we deduce by
induction that [Ti, Tj ] commutes with t, for all integers i, j. Hence [zi, zj ] is
central in

〈
a2, t

〉
and

〈
a2, t

〉
is central by metabelian. �

Theorem 3. Every Sanov-compound of a non-abelian, finite simple group
is cyclic of order 2.

Proof. Let a2 = u(6= 1) ∈ M . By the Theorem in [4], there exists an
element t such that M =

〈
a2, t

〉
. By Corollary 2, this has trivial image in

Su(M,a) and hence Su(M,a) is cyclic of order 2.
Consider S0(M,a) with a2 = 1. Let x be an involution in M and let y ∈M .

Then 〈xy, x〉 is dihedral and by Example 2(a) it is either trivial or a 2-group.
In particular, [y, x] has order dividing 16. Thus x is a left-engel element of M
and by [1] it is contained in the Fitting subgroup of M . Thus M is trivial in
S0(M,a) and this group is cyclic of order 2. �

Corollary 3. Let M = Sn be the symmetric group with n > 4. Then
Su(M,a) is isomorphic to D8, C4 or C2.

Proof. The Sanov compound of the trivial group is C2. We consider then
the remaining cases.

Let a2 = u. If u is even, Su(M,a) contains Su(An, a); also u ∈ An ⊆ Ku

and
Su(M,a) ' S0(C2, a) ' D8.

For a2 = (1, 2), Sn =
〈
a2, t

〉
, where t is an n-cycle, but this group is not central

by metabelian. In this case we can assume that t ∈ Ku and Su(M,a) ' C4.
Now let a2 = (1, 2)(3, 4)(5, 6)v, where v is an even involution. Then

〈
a2, t0

〉
is not central by metabelian, where t0 = (1, 2, 3, 4, 5). So we may assume that
every 5-cycle is in Ku and that An ⊆ Ku. Then a2 ≡ (1, 2) mod An and the
compound is C4. �
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