Illinois Journal of Mathematics Volume 47, Number 1/2, Spring/Summer 2003, Pages 445–452 S 0019-2082

THREE-STAR PERMUTATION GROUPS

PETER M. NEUMANN AND CHERYL E. PRAEGER

To the memory of Reinhold and Marianne Baer

ABSTRACT. A permutation group is a three-star group if it induces a non-trivial group on each 3-element subset of points. Our main results are that a primitive three-star group is generously transitive and that a finite primitive three-star group has rank at most 3, that is, a stabiliser has at most 3 orbits. We also describe the structure of an arbitrary (non-primitive) three-star group and give a collection of examples. In particular, we sketch a construction of infinite primitive three-star groups of arbitrarily high rank.

1. Introduction

A permutation group G acting on a set Ω will be said to be a *three-star* group if it has the following property: for every 3-subset Θ of Ω the permutation group G^{Θ} induced on Θ by its setwise stabiliser $G_{\{\Theta\}}$ is non-trivial. Praeger and Schneider [5] came across this condition in a study of overgroups of finite permutation groups that have a transitive minimal normal subgroup.

To exclude trivialities we assume throughout that $|\Omega| \ge 3$. In [4] a group G was defined to be generously k-transitive if $G^{\Theta} = \text{Sym}(\Theta)$ for all (k+1)-subsets Θ of Ω and almost generously k-transitive if $G^{\Theta} \ge \text{Alt}(\Theta)$ for all (k+1)-subsets Θ of Ω . In particular, an almost generously 2-transitive group is a three-star group. It was shown in [4] that an almost generously 2-transitive group is (as the terminology suggests) doubly transitive. So strong a conclusion cannot be expected with the weaker hypothesis treated here. Nevertheless, we find that the three-star group is generously transitive and that a finite primitive three-star group has rank at most 3—that is to say, a stabiliser has at most 3 orbits in Ω . The proofs of these facts are given in Section 2 below. In Section 3 we consider the structure of an arbitrary (non-primitive) three-star group and describe a range of examples. In particular, we sketch a construction of infinite primitive three-star groups of arbitrarily high rank.

©2003 University of Illinois

Received August 20, 2002.

²⁰⁰⁰ Mathematics Subject Classification. 20B05, 20B15.

2. Primitive three-star groups

In this section we focus on primitive three-star groups. This is, of course, a significant restriction. However, there is quite a strong sense in which the study of arbitrary three-star groups may be reduced to the study of primitive ones. We will return to this point in Section 3 below.

Some general theory of permutation groups is needed for the statement and proof of our results. Recall (see, for example, [2, §3.2]) that for a group G acting on a set Ω the orbitals are the orbits of G in $\Omega \times \Omega$. When G is transitive these are in one-one correspondence with the suborbits, that is to say, the orbits of a stabiliser G_{α} for $\alpha \in \Omega$. An orbital Γ corresponds to the suborbit $\Gamma(\alpha)$, where $\Gamma(\alpha) := \{\omega \in \Omega \mid (\alpha, \omega) \in \Gamma\}$; the so-called trivial orbital $\{(\omega, \omega) \mid \omega \in \Omega\}$ corresponds to the trivial suborbit $\{\alpha\}$. The number of orbitals (or of suborbits) is known as the rank of G. Associated with an orbital Γ is stabilized orbital Γ^* defined by $\Gamma^* := \{(\omega_1, \omega_2) \mid (\omega_2, \omega_1) \in \Gamma\}$. The orbital Γ is said to be self-paired if $\Gamma = \Gamma^*$. This is the case if and only if for any $(\omega_1, \omega_2) \in \Gamma$ there is a permutation in G that transposes ω_1 and ω_2 ; therefore G is generously transitive if and only if all orbitals are self-paired. For subsets Γ , Δ of Ω^2 we define

$$\Gamma \circ \Delta := \{ (\omega_1, \omega_2) \in \Omega^2 \mid (\exists \omega \in \Omega) : (\omega_1, \omega) \in \Gamma \text{ and } (\omega, \omega_2) \in \Delta \}.$$

If Γ , Δ are orbitals then $\Gamma \circ \Delta$ will be a union of orbitals. Note that $(\Gamma \circ \Delta)^* = \Delta^* \circ \Gamma^*$ and that $\Gamma \circ (\Delta \circ \Phi) = (\Gamma \circ \Delta) \circ \Phi$.

THEOREM 2.1. With one exception a primitive three-star group is generously transitive. The exception is the alternating group Alt(3).

Proof. Let G be a primitive three-star group acting on the set Ω , and suppose that G is not generously transitive. Let Γ be a non-self-paired orbital. We claim that $\Gamma \circ \Gamma = \Gamma^*$. Choose $(\alpha, \gamma) \in \Gamma \circ \Gamma$. By definition there exists $\beta \in \Omega$ such that $(\alpha, \beta) \in \Gamma$ and $(\beta, \gamma) \in \Gamma$. Now $\alpha \neq \gamma$ (Γ is not self-paired), and so α, β, γ are distinct. Let $\Theta := \{\alpha, \beta, \gamma\}$ and $T := G^{\Theta}$. Since Γ is not self-paired, T contains neither of the transpositions $(\alpha \beta), (\beta \gamma)$. Nor does it contain $(\alpha \gamma)$ since α, γ lie in different orbits of the stabiliser G_{β} . By assumption, however, $T \neq \{1\}$, and therefore $(\alpha \beta \gamma) \in T$. It follows that $(\gamma, \alpha) \in \Gamma$, whence $\Gamma \circ \Gamma = \Gamma^*$. Then also $\Gamma^* \circ \Gamma^* = \Gamma$.

Now define $\Delta := \Gamma \circ \Gamma^*$. Then $\Delta = \Gamma \circ \Gamma \circ \Gamma = \Gamma^* \circ \Gamma$, and so $\Delta \circ \Gamma = \Gamma \circ \Delta = \Gamma$. As a binary relation Δ is reflexive and symmetric. It is also transitive because $\Delta \circ \Delta = \Delta \circ \Gamma \circ \Gamma^* = \Gamma \circ \Gamma^* = \Delta$. Thus Δ is a *G*-invariant equivalence relation on Ω . Since *G* is primitive Δ is either the universal relation *U* or the trivial relation *E* (equality). However, $U \circ \Gamma = U \neq \Gamma$, and so $\Delta \neq U$. Therefore $\Delta = E$. Let $\gamma, \gamma' \in \Gamma^*(\alpha)$. Then $\gamma' \in \Delta(\gamma)$, whence $\gamma = \gamma'$. Thus Γ^* has subdegree 1. Similarly of course Γ has subdegree 1. It follows immediately that G = Alt(3).

446

THEOREM 2.2. A finite primitive three-star group has rank at most 3.

Proof. Suppose that Ω and G are finite and that G acts as a primitive three-star group on Ω . Clearly we may assume that $|\Omega| > 3$, so that, by what has just been proved, all orbitals are self-paired. An edge (α, β) of the complete graph with vertex-set Ω will be said to be of colour Γ (where Γ is an orbital) if $(\alpha, \beta) \in \Gamma$. Let Γ , Δ be distinct orbitals and let $\alpha \in \Omega$. The three-star condition implies that no triangle in Ω can have edges of three different colours, and so all edges between points in $\Gamma(\alpha)$ and points in $\Delta(\alpha)$ are coloured Γ or Δ . Suppose that all such edges had the same colour, say Γ . If $\beta \in \Gamma(\alpha)$ and $\gamma \in \Delta(\beta)$ then $\gamma \notin \Delta(\alpha)$ and so the third edge (α, γ) of the triangle $\{\alpha, \beta, \gamma\}$ must have colour Γ . Thus $\Gamma(\alpha)$ would be a union of components of the graph (Ω, Δ) , and this is impossible since G is primitive. Therefore there are edges of both colours Γ and Δ between $\Gamma(\alpha)$ and $\Delta(\alpha)$. Thus for any ordered pair (Γ, Δ) of colours there are triangles with edges coloured Γ , Γ , Δ . In particular, every orbital graph has diameter 2, and for every Γ there are edges of every colour, except possibly Γ itself, within $\Gamma(\alpha)$.

We continue to focus on a point α of Ω and distinct orbitals Γ , Δ . Let Φ denote the merger of all the colours other than Γ and Δ : that is, (Ω, Φ) is the graph whose edge-set consists of all edges of the complete graph with colours different from Γ and Δ . Let $\gamma_1, \gamma_2 \in \Gamma(\alpha)$ and suppose that the edge (γ_1, γ_2) is coloured Φ . For any $\delta \in \Delta(\alpha)$ the edges (γ_1, δ) and (γ_2, δ) have colour Γ or Δ . Since the triangle $(\gamma_1, \gamma_2, \delta)$ cannot have three differently coloured edges, the colours of (γ_1, δ) and (γ_2, δ) must be the same. It follows that if $\Gamma_1, \ldots, \Gamma_c$ are the components of the Φ -graph with vertex-set $\Gamma(\alpha)$, and if $\delta \in \Delta(\alpha)$, then all edges from vertices in Γ_i to δ have the same colour. Interchanging the roles played by Γ and Δ , we see that if $\Delta_1, \ldots, \Delta_d$ are the components of the Φ -graph with vertex-set $\Lambda(\alpha)$ then all edges between a component Γ_i and a component Δ_i have the same colour.

Suppose the Φ -graph with vertex-set $\Gamma(\alpha)$ were connected. Then all edges between points of $\Gamma(\alpha)$ and a given point $\delta \in \Delta(\alpha)$ would be the same colour. Since G_{α} acts transitively on $\Delta(\alpha)$ it would follow that all edges between points of $\Gamma(\alpha)$ and points of $\Delta(\alpha)$ would be the same colour. This is not the case (see above) and therefore the Φ -graph with vertex-set $\Gamma(\alpha)$ is not connected, that is, c > 1. Similarly, the Φ -graph with vertex-set $\Delta(\alpha)$ is not connected, that is, d > 1.

If there is a Δ -coloured edge (γ_1, γ_2) with $\gamma_1 \in \Gamma_1$ and $\gamma_2 \in \Gamma_2$ then we shall say that Δ dominates Γ . Suppose for the moment that this is the case. If $\gamma'_1 \in \Gamma_1$ and $(\gamma_1, \gamma'_1) \in \Phi$ then the edge (γ'_1, γ_2) must also be coloured Δ . It follows that all edges from points of Γ_1 to γ_2 are coloured Δ , and then that all edges between points of Γ_1 and points of Γ_2 are coloured Δ . Thus if Δ dominates Γ then the Δ -components of $\Gamma(\alpha)$ are proper unions of Φ components Γ_i ; if Δ does not dominate Γ then of course the Φ -components Γ_i are $(\Phi \cup \Delta)$ -components in $\Gamma(\alpha)$. If Δ dominates Γ then for every other orbital Δ' the Δ -components of $\Gamma(\alpha)$ are proper unions of Δ' -components, and therefore Δ' cannot dominate Γ since the Δ' -components of $\Gamma(\alpha)$ are then not unions of Δ -components. Clearly therefore, for an orbital Γ , at most one orbital Δ can dominate Γ .

Since G_{α} acts transitively on $\Gamma(\alpha)$ all the Φ -components Γ_i of $\Gamma(\alpha)$ have the same size, say a. Similarly, all the Φ -components Δ_j of $\Delta(\alpha)$ have the same size, say b. Suppose that $a \leq b$. Let $\gamma \in \Gamma_1$ and consider the set $\Delta(\gamma)$. We know that $\Delta(\gamma) \subseteq \Gamma(\alpha) \cup \Delta(\alpha)$, and $\Delta(\gamma) \cap \Delta(\alpha)$ is a union of some but not all of the Φ -components Δ_j of $\Delta(\alpha)$. Let $n_{\Delta} := |\Delta(\alpha)|$. Then $|\Delta(\gamma) \cap \Delta(\alpha)| \leq n_{\Delta} - b$ and so $|\Delta(\gamma) \cap \Gamma(\alpha)| \geq b$. It follows that $\Delta(\gamma) \cap \Gamma(\alpha)$ cannot be contained in the Φ -component Γ_1 , and so Δ dominates Γ . Of course if $b \leq a$ then we find that Γ dominates Δ . Thus, of any two orbitals, one dominates the other.

Now let r be the rank of G and let k := r-1. By what has just been proved there are at least $\binom{k}{2}$ ordered pairs (Γ, Δ) of non-trivial orbitals in which Δ dominates Γ . On the other hand, for each Γ there is at most one orbital Δ that dominates Γ and therefore there are at most k such pairs. Thus $\binom{k}{2} \leq k$ and so $k \leq 3$.

Suppose that k = 3. Let Γ , Δ , Φ be the non-trivial orbitals and let a_{Γ} be the size of the Φ -components in $\Gamma(\alpha)$, a_{Δ} the size of the Γ -components in $\Delta(\alpha)$, and a_{Φ} the size of the Δ -components in $\Phi(\alpha)$. Let n_{Φ} be the valency of the graph (Ω, Φ) , so that $n_{\Phi} = |\Phi(\alpha)|$. Consider $\Phi(\omega)$, where $\omega \in \Gamma(\alpha)$. If Γ_1 is the Φ -component of $\Gamma(\alpha)$ containing ω then $\Phi(\omega) = (\Phi(\omega) \cap \Gamma_1) \cup (\Phi(\omega) \cap \Phi(\alpha))$. Now $\Phi(\omega) \cap \Gamma_1 \subseteq \Gamma_1 \setminus \{\omega\}$ and so $|\Phi(\omega) \cap \Gamma_1| \leq a_{\Gamma} - 1$. Also, $\Phi(\omega) \cap \Phi(\alpha)$ is a union of some but not all of the Δ -components in $\Phi(\alpha)$, and so $|\Phi(\omega) \cap \Phi(\alpha)| \leq n_{\Phi} - a_{\Phi}$. Therefore $n_{\Phi} \leq (a_{\Gamma} - 1) + (n_{\Phi} - a_{\Phi})$ and so $a_{\Phi} \leq a_{\Gamma} - 1$. Similarly, considering $\Gamma(\omega)$ for $\omega \in \Delta(\alpha)$ we find that $a_{\Gamma} \leq a_{\Delta} - 1$ and considering $\Delta(\omega)$ for $\omega \in \Phi(\alpha)$ we find that $a_{\Delta} \leq a_{\Phi} - 1$. These inequalities imply that $a_{\Phi} \leq a_{\Phi} - 3$, which is absurd. It follows that $k \leq 2$ and so the rank of G is at most 3, as our theorem states.

3. Commentary

There is quite a strong sense in which the study of arbitrary three-star groups may be reduced to that of primitive three-star groups. First, we have the following:

OBSERVATION 3.1. If G is an intransitive three-star group then it has exactly two orbits Ω_1 and Ω_2 . Moreover, G acts as a three-star group on each of Ω_1 , Ω_2 , and, as G-spaces, Ω_1 , Ω_2 are strongly orthogonal in the sense that for $\omega_1 \in \Omega_1$ the stabiliser G_{ω_1} is generously transitive on Ω_2 and for $\omega_2 \in \Omega_2$ the stabiliser G_{ω_2} is generously transitive on Ω_1 . *Proof.* If there were three or more orbits then there would be a triple consisting of points from different orbits, and its stabiliser would act trivially on it, contrary to assumption. Thus, given that G is intransitive, there are just two orbits Ω_1 , Ω_2 . The fact that G acts as a three-star group on each of Ω_1 , Ω_2 is clear. Consider any point $\omega_1 \in \Omega_1$ and any pair $\{\alpha, \beta\}$ of points from Ω_2 . Since the stabiliser of the triple $\{\omega_1, \alpha, \beta\}$ is non-trivial G contains a permutation fixing ω_1 and interchanging α , β . Therefore G_{ω_1} is generously transitive on Ω_2 . And of course, similarly, for $\omega_2 \in \Omega_2$, G_{ω_2} is generously transitive on Ω_1 .

OBSERVATION 3.2. Suppose that G is a three-star group which is transitive but imprimitive on Ω . Let ρ be a non-trivial proper G-congruence on Ω , let Γ be a ρ -class in Ω , let $\Delta := \Omega/\rho$, let $C := G^{\Gamma}$, the group induced on Γ by its setwise stabiliser in G, and let $D := G^{\Delta}$. Then C is a three-star group on Γ and D is a three-star group on Δ . Moreover, C is generously transitive on Γ .

Conversely, if C is a generously transitive three-star group on the set Γ , and D is a three-star group on the set Δ , then the wreath product C Wr D is a three-star group in its natural imprimitive representation on $\Gamma \times \Delta$.

Since the proof is routine we leave it to the interested reader. Note that here we should permit the possibility that $|\Gamma| = 2$ and $C = \text{Sym}(\Gamma)$ or that $|\Delta| = 2$ and $D = \text{Sym}(\Delta)$.

We have not sought to compile a systematic catalogue of primitive threestar groups, but we do not think that would be a very difficult project. There are several interesting families of examples. As has already been observed, any almost generously 2-transitive group is a three-star group. Many of the finite 2-transitive groups are almost generously 2-transitive; the only ones that are not are those contained in affine groups $A\Gamma L(d, q)$ for $q \ge 5$ and the almost simple groups whose socle is a Suzuki group Sz(q), where $q = 2^{2m+1}$ and $m \ge 1$, or a Ree group Ree(q) where $q = 3^{2m+1}$ and $m \ge 1$. It is not hard to see that the Suzuki and Ree groups are not three-star groups. Some of the affine groups that are not almost generously 2-transitive are three-star groups, however.

EXAMPLE 3.3. The affine groups AGL(d, 5) are three-star groups.

Proof. Let Θ be a triple of points of the affine space $\operatorname{AG}(d, 5)$ and let $G := \operatorname{AGL}(d, 5)$. If Θ consists of non-collinear points then $G^{\Theta} = \operatorname{Sym}(\Theta)$ and so certainly $G^{\Theta} \neq \{1\}$. If Θ is a collinear triple then, as is not hard to see, it is equivalent under affine transformations to the triple $\{0, 1, 4\}$ or to the triple $\{0, 2, 3\}$ in an affine line in $\operatorname{AG}(d, 5)$. Both of these triples admit involutions, so $G^{\Theta} \neq \{1\}$.

There are several families of primitive three-star groups of rank 3.

EXAMPLE 3.4. Let G := Sym(m) where $m \ge 3$, and let $\Omega := m^{\{2\}}$, the set of pairs from $\{1, \ldots, m\}$. In its natural action on Ω , G is a primitive three-star group of rank 3.

Proof. That G is primitive on Ω is well known and easy to prove. Define

$$\begin{split} \Theta_1 &:= \left\{ \{1,2\}, \, \{1,3\}, \, \{2,3\} \right\}, \\ \Theta_2 &:= \left\{ \{1,2\}, \, \{1,3\}, \, \{1,4\} \right\}, \\ \Theta_3 &:= \left\{ \{1,2\}, \, \{2,3\}, \, \{3,4\} \right\}, \\ \Theta_4 &:= \left\{ \{1,2\}, \, \{2,3\}, \, \{4,5\} \right\}, \\ \Theta_5 &:= \left\{ \{1,2\}, \, \{3,4\}, \, \{5,6\} \right\}. \end{split}$$

Any triple of unordered pairs is equivalent to one of these five, and for each of these five it is easy to see that $G^{\Theta} \neq \{1\}$.

EXAMPLE 3.5. Let H be a group acting generously 2-transitively on a set Γ of size ≥ 3 . If G := H Wr Sym(2) and $\Omega := \Gamma^2$, then G is a primitive three-star group of rank 3.

Proof. As in the previous example, that G is primitive on Ω is well known and easy to prove. Let $\alpha_1, \alpha_2, \alpha_3$ be distinct points of Γ and define

$$\begin{aligned} \Theta_1 &:= \{ (\alpha_1, \alpha_1), (\alpha_2, \alpha_2), (\alpha_3, \alpha_3) \} ,\\ \Theta_2 &:= \{ (\alpha_1, \alpha_1), (\alpha_2, \alpha_2), (\alpha_2, \alpha_3) \} ,\\ \Theta_3 &:= \{ (\alpha_1, \alpha_1), (\alpha_1, \alpha_2), (\alpha_1, \alpha_3) \} ,\\ \Theta_4 &:= \{ (\alpha_1, \alpha_1), (\alpha_1, \alpha_2), (\alpha_2, \alpha_1) \} . \end{aligned}$$

Any triple of ordered pairs is equivalent to one of these four, and for each of these four it is easy to see that $G^{\Theta} \neq \{1\}$.

EXAMPLE 3.6. Let Q be a non-degenerate quadratic form on the vector space Ω of dimension 2m over the field \mathbb{F}_2 and let G := AO(2m, 2), the group generated by translations and orthogonal transformations of Ω with respect to Q. Then G is a primitive three-star group of rank 3.

Proof. Triples Θ are triangles in the affine space Ω with side-lengths $\{0, 0, 0\}, \{0, 0, 1\}, \{0, 1, 1\}, \text{ or } \{1, 1, 1\}$. In each case $G^{\Theta} \neq \{1\}$.

EXAMPLE 3.7. Let Q be a non-degenerate quadratic form on the vector space Ω of dimension d over the field \mathbb{F}_3 and let $G := \operatorname{AGO}(d, 3)$, the group generated by translations and transformations of Ω that preserve Q up to scalar multiplication. Then G is a primitive three-star group of rank 3.

450

Proof. Triples Θ are of the following kinds. First, there are triples $\{\alpha, \beta, \gamma\}$ forming a line of the affine space Ω . For these $G^{\Theta} = \text{Sym}(\Theta)$. Secondly, there are triangles in the affine space Ω . Triangles can have side-lengths a, b, c, each of which can be 0, 1 or 2 (in \mathbb{F}_3). It is easy to see that if two side-lengths are the same then $G^{\Theta} \neq \{1\}$. If the side-lengths are all different then the triangle is equivalent to $\{0, u, w\}$, where Q(u) = 1, Q(w) = 2 and Q(u-w) = 0. Now there is a linear transformation $T \in \text{GO}(\Omega)$ for which Q(Tv) = 2Q(v) for all $v \in \Omega$ and which interchanges u and w. Thus in all cases $G^{\Theta} \neq \{1\}$.

The situation is different for infinite permutation groups. Although Theorem 2.1 does not require finiteness of G or Ω , so that an infinite primitive three-star group is generously transitive, Theorem 2.2 fails without the finiteness assumption.

OBSERVATION 3.8. There are infinite primitive three-star groups of arbitrary rank.

Proof. We confine ourselves to a sketch of the construction. It is based on the theory of C-relations and C-sets propounded in [1]. Let (Ω, C) be the C-set whose chains are isomorphic to (\mathbb{Z}, \leq) and whose branching number is *s* (the value of *s* is irrelevant, as it happens). The construction of such a C-set is described on page 43 of [1]—take Q_0 there to be \mathbb{Z} with a least element adjoined. In slightly different terms, Ω may be taken to be the set of doubly infinite sequences $(q_i)_{i\in\mathbb{Z}}$, where $q_i \in \{0, 1, \ldots, s-1\}$, and which are of finite support in the sense that there exists $n \in \mathbb{N}$ such that $q_i = 0$ when |i| > n. Let *W* be the wreath power Wr $(\text{Sym}(s))^{\mathbb{Z}}$ defined by Philip Hall in [3] as a subgroup of $\text{Sym}(\Omega)$. Let $m \ge 1$. The infinite cyclic group *Z* acts by translation through *m* on \mathbb{Z} , that is, with its generator acting as $i \mapsto i + m$. This extends in a natural way to an action of *Z* on Ω , and then *Z*, as subgroup of $\text{Sym}(\Omega)$, normalises *W*. Let $G := W.Z \leq \text{Sym}(\Omega)$. It is not hard to see that the only *W*-invariant equivalence relations on Ω are the relations ρ_r ($r \in \mathbb{Z}$) defined by

$$(q_i) \equiv (q'_i) : \Leftrightarrow q_i = q'_i \text{ for all } i \ge r.$$

Since these are not Z-invariant G acts primitively on Ω . Also, the stabiliser G_0 of the 0-sequence is U.Z, where $U := \operatorname{Wr} \left(\operatorname{Sym}(k-1) \right)^{\mathbb{Z}}$. For any other sequence (q_i) define $m((q_i)) := \max\{i \mid q_i \neq 0\}$. It is not hard to calculate that non-zero sequences (q_i) , (q'_i) are in the same G_0 -orbit if and only if $m((q_i)) \equiv m((q'_i)) \pmod{m}$. Thus G has rank m+1. To see that G is a three-star group consider three distinct elements α, β, γ of Ω and let $\Theta := \{\alpha, \beta, \gamma\}$. We may suppose that α is the 0-sequence, $\beta = (q_i)$ and $\gamma = (q'_i)$. It is not hard to calculate the following: if $m((q_i)) < m((q'_i))$ then the setwise stabiliser in G of Θ contains (and in fact is generated by) the transposition $(\alpha \beta)$; if $m((q_i)) > m((q'_i))$ then the setwise stabiliser in G of Θ contains the

transposition $(\alpha \gamma)$; if $m((q_i)) = m((q'_i)) = j$ and $q_j = q'_j$ then the setwise stabiliser in G of Θ contains the transposition $(\beta \gamma)$; if $m((q_i)) = m((q'_i)) = j$ and $q_j \neq q'_j$ then $G^{\Theta} = \text{Sym}(\Theta)$.

To produce a primitive three-star group with infinite rank κ one replaces (\mathbb{Z}, \leq) with a suitable linearly ordered set (Q, \leq) . All that is required is that (Q, \leq) should admit an infinite cyclic group Z of automorphisms whose orbits are co-initial and co-final in Q (that is, bounded neither below nor above in Q) and that Z should have κ orbits in Q.

FINAL NOTE. The notion of three-star group has an obvious generalisation to that of k-star group for any $k \ge 2$. It is not hard to see that the infinite groups described in the proof of Observation 3.8 are k-star groups for every finite k. For k > 3 we know little about finite primitive k-star groups but we believe them to be rather rare. As it happens, however, Example 3.4 is a four-star group and a five-star group.

References

- S. A. Adeleke and Peter M. Neumann, *Relations related to betweenness: their structure and automorphisms*, Mem. Amer. Math. Soc. **131** (1988), no. 623.
- [2] John D. Dixon and Brian Mortimer, *Permutation groups*, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996.
- P. Hall, Wreath powers and characteristically simple groups, Proc. Camb. Philos. Soc. 58 (1962), 170–184; reprinted in: The collected works of Philip Hall (compiled by K. W. Gruenberg and J. E. Roseblade), The Clarendon Press, Oxford Univ. Press, New York, 1988, pp. 611–625.
- [4] Peter M. Neumann, Generosity and characters of multiply transitive permutation groups, Proc. London Math. Soc. (3) 31 (1975), 457–481.
- [5] Cheryl E. Praeger and Csaba Schneider, Ordered triple designs and wreath products of groups, Science and Statistics: A Festschrift for Terry Speed (Ed. Darlene R. Goldstein), Institute of Mathematical Statistics Lecture Notes – Monograph Series, Volume 40, 2003, pp. 103–113.

PETER M. NEUMANN, THE QUEEN'S COLLEGE, OXFORD OX1 4AW, UNITED KINGDOM *E-mail address*: peter.neumann@queens.ox.ac.uk

CHERYL E. PRAEGER, UNIVERSITY OF WESTERN AUSTRALIA, WA 6009, AUSTRALIA *E-mail address*: praeger@maths.uwa.edu.au