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THREE-STAR PERMUTATION GROUPS

PETER M. NEUMANN AND CHERYL E. PRAEGER

To the memory of Reinhold and Marianne Baer

Abstract. A permutation group is a three-star group if it induces a

non-trivial group on each 3-element subset of points. Our main re-
sults are that a primitive three-star group is generously transitive and

that a finite primitive three-star group has rank at most 3, that is, a
stabiliser has at most 3 orbits. We also describe the structure of an

arbitrary (non-primitive) three-star group and give a collection of ex-

amples. In particular, we sketch a construction of infinite primitive
three-star groups of arbitrarily high rank.

1. Introduction

A permutation group G acting on a set Ω will be said to be a three-star
group if it has the following property: for every 3-subset Θ of Ω the permu-
tation group GΘ induced on Θ by its setwise stabiliser G{Θ} is non-trivial.
Praeger and Schneider [5] came across this condition in a study of overgroups
of finite permutation groups that have a transitive minimal normal subgroup.

To exclude trivialities we assume throughout that |Ω| > 3. In [4] a group G
was defined to be generously k-transitive ifGΘ = Sym(Θ) for all (k+1)-subsets
Θ of Ω and almost generously k-transitive ifGΘ > Alt(Θ) for all (k+1)-subsets
Θ of Ω. In particular, an almost generously 2-transitive group is a three-star
group. It was shown in [4] that an almost generously 2-transitive group is (as
the terminology suggests) doubly transitive. So strong a conclusion cannot
be expected with the weaker hypothesis treated here. Nevertheless, we find
that the three-star condition is quite strong. Our main theorems are that a
primitive three-star group is generously transitive and that a finite primitive
three-star group has rank at most 3—that is to say, a stabiliser has at most 3
orbits in Ω. The proofs of these facts are given in Section 2 below. In Section 3
we consider the structure of an arbitrary (non-primitive) three-star group and
describe a range of examples. In particular, we sketch a construction of infinite
primitive three-star groups of arbitrarily high rank.

Received August 20, 2002.
2000 Mathematics Subject Classification. 20B05, 20B15.

c©2003 University of Illinois

445



446 PETER M. NEUMANN AND CHERYL E. PRAEGER

2. Primitive three-star groups

In this section we focus on primitive three-star groups. This is, of course,
a significant restriction. However, there is quite a strong sense in which the
study of arbitrary three-star groups may be reduced to the study of primitive
ones. We will return to this point in Section 3 below.

Some general theory of permutation groups is needed for the statement
and proof of our results. Recall (see, for example, [2, §3.2]) that for a group
G acting on a set Ω the orbitals are the orbits of G in Ω × Ω. When G is
transitive these are in one-one correspondence with the suborbits, that is to
say, the orbits of a stabiliser Gα for α ∈ Ω. An orbital Γ corresponds to
the suborbit Γ(α), where Γ(α) := {ω ∈ Ω | (α, ω) ∈ Γ}; the so-called trivial
orbital {(ω, ω) | ω ∈ Ω} corresponds to the trivial suborbit {α}. The number
of orbitals (or of suborbits) is known as the rank of G. Associated with an
orbital Γ is its paired orbital Γ∗ defined by Γ∗ := {(ω1, ω2) | (ω2, ω1) ∈ Γ}.
The orbital Γ is said to be self-paired if Γ = Γ∗. This is the case if and only
if for any (ω1, ω2) ∈ Γ there is a permutation in G that transposes ω1 and ω2;
therefore G is generously transitive if and only if all orbitals are self-paired.
For subsets Γ, ∆ of Ω2 we define

Γ ◦∆ := {(ω1, ω2) ∈ Ω2 | (∃ω ∈ Ω) : (ω1, ω) ∈ Γ and (ω, ω2) ∈ ∆}.

If Γ, ∆ are orbitals then Γ◦∆ will be a union of orbitals. Note that (Γ◦∆)∗ =
∆∗ ◦ Γ∗ and that Γ ◦ (∆ ◦ Φ) = (Γ ◦∆) ◦ Φ.

Theorem 2.1. With one exception a primitive three-star group is gener-
ously transitive. The exception is the alternating group Alt(3).

Proof. Let G be a primitive three-star group acting on the set Ω, and
suppose that G is not generously transitive. Let Γ be a non-self-paired orbital.
We claim that Γ ◦ Γ = Γ∗. Choose (α, γ) ∈ Γ ◦ Γ. By definition there exists
β ∈ Ω such that (α, β) ∈ Γ and (β, γ) ∈ Γ. Now α 6= γ (Γ is not self-paired),
and so α, β, γ are distinct. Let Θ := {α, β, γ} and T := GΘ. Since Γ is
not self-paired, T contains neither of the transpositions (αβ), (β γ). Nor
does it contain (αγ) since α, γ lie in different orbits of the stabiliser Gβ . By
assumption, however, T 6= {1}, and therefore (αβ γ) ∈ T . It follows that
(γ, α) ∈ Γ, whence Γ ◦ Γ = Γ∗. Then also Γ∗ ◦ Γ∗ = Γ.

Now define ∆ := Γ◦Γ∗. Then ∆ = Γ◦Γ◦Γ = Γ∗◦Γ, and so ∆◦Γ = Γ◦∆ = Γ.
As a binary relation ∆ is reflexive and symmetric. It is also transitive because
∆◦∆ = ∆◦Γ◦Γ∗ = Γ◦Γ∗ = ∆. Thus ∆ is a G-invariant equivalence relation
on Ω. Since G is primitive ∆ is either the universal relation U or the trivial
relation E (equality). However, U ◦ Γ = U 6= Γ, and so ∆ 6= U . Therefore
∆ = E. Let γ, γ′ ∈ Γ∗(α). Then γ′ ∈ ∆(γ), whence γ = γ′. Thus Γ∗ has
subdegree 1. Similarly of course Γ has subdegree 1. It follows immediately
that G = Alt(3).
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Theorem 2.2. A finite primitive three-star group has rank at most 3.

Proof. Suppose that Ω and G are finite and that G acts as a primitive
three-star group on Ω. Clearly we may assume that |Ω| > 3, so that, by
what has just been proved, all orbitals are self-paired. An edge (α, β) of the
complete graph with vertex-set Ω will be said to be of colour Γ (where Γ is
an orbital) if (α, β) ∈ Γ. Let Γ, ∆ be distinct orbitals and let α ∈ Ω. The
three-star condition implies that no triangle in Ω can have edges of three
different colours, and so all edges between points in Γ(α) and points in ∆(α)
are coloured Γ or ∆. Suppose that all such edges had the same colour, say
Γ. If β ∈ Γ(α) and γ ∈ ∆(β) then γ /∈ ∆(α) and so the third edge (α, γ) of
the triangle {α, β, γ} must have colour Γ. Thus Γ(α) would be a union of
components of the graph (Ω,∆), and this is impossible since G is primitive.
Therefore there are edges of both colours Γ and ∆ between Γ(α) and ∆(α).
Thus for any ordered pair (Γ,∆) of colours there are triangles with edges
coloured Γ, Γ, ∆. In particular, every orbital graph has diameter 2, and for
every Γ there are edges of every colour, except possibly Γ itself, within Γ(α).

We continue to focus on a point α of Ω and distinct orbitals Γ, ∆. Let Φ
denote the merger of all the colours other than Γ and ∆: that is, (Ω,Φ) is the
graph whose edge-set consists of all edges of the complete graph with colours
different from Γ and ∆. Let γ1, γ2 ∈ Γ(α) and suppose that the edge (γ1, γ2) is
coloured Φ. For any δ ∈ ∆(α) the edges (γ1, δ) and (γ2, δ) have colour Γ or ∆.
Since the triangle (γ1, γ2, δ) cannot have three differently coloured edges, the
colours of (γ1, δ) and (γ2, δ) must be the same. It follows that if Γ1, . . . , Γc
are the components of the Φ-graph with vertex-set Γ(α), and if δ ∈ ∆(α),
then all edges from vertices in Γi to δ have the same colour. Interchanging
the roles played by Γ and ∆, we see that if ∆1, . . . , ∆d are the components
of the Φ-graph with vertex-set ∆(α) then all edges between a component Γi
and a component ∆j have the same colour.

Suppose the Φ-graph with vertex-set Γ(α) were connected. Then all edges
between points of Γ(α) and a given point δ ∈ ∆(α) would be the same colour.
Since Gα acts transitively on ∆(α) it would follow that all edges between
points of Γ(α) and points of ∆(α) would be the same colour. This is not
the case (see above) and therefore the Φ-graph with vertex-set Γ(α) is not
connected, that is, c > 1. Similarly, the Φ-graph with vertex-set ∆(α) is not
connected, that is, d > 1.

If there is a ∆-coloured edge (γ1, γ2) with γ1 ∈ Γ1 and γ2 ∈ Γ2 then we
shall say that ∆ dominates Γ. Suppose for the moment that this is the case.
If γ′1 ∈ Γ1 and (γ1, γ

′
1) ∈ Φ then the edge (γ′1, γ2) must also be coloured ∆.

It follows that all edges from points of Γ1 to γ2 are coloured ∆, and then
that all edges between points of Γ1 and points of Γ2 are coloured ∆. Thus
if ∆ dominates Γ then the ∆-components of Γ(α) are proper unions of Φ-
components Γi; if ∆ does not dominate Γ then of course the Φ-components
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Γi are (Φ ∪ ∆)-components in Γ(α). If ∆ dominates Γ then for every other
orbital ∆′ the ∆-components of Γ(α) are proper unions of ∆′-components,
and therefore ∆′ cannot dominate Γ since the ∆′-components of Γ(α) are
then not unions of ∆-components. Clearly therefore, for an orbital Γ, at most
one orbital ∆ can dominate Γ.

Since Gα acts transitively on Γ(α) all the Φ-components Γi of Γ(α) have
the same size, say a. Similarly, all the Φ-components ∆j of ∆(α) have the
same size, say b. Suppose that a 6 b. Let γ ∈ Γ1 and consider the set
∆(γ). We know that ∆(γ) ⊆ Γ(α) ∪ ∆(α), and ∆(γ) ∩ ∆(α) is a union of
some but not all of the Φ-components ∆j of ∆(α). Let n∆ := |∆(α)|. Then
|∆(γ)∩∆(α)| 6 n∆− b and so |∆(γ)∩Γ(α)| > b. It follows that ∆(γ)∩Γ(α)
cannot be contained in the Φ-component Γ1, and so ∆ dominates Γ. Of
course if b 6 a then we find that Γ dominates ∆. Thus, of any two orbitals,
one dominates the other.

Now let r be the rank of G and let k := r−1. By what has just been proved
there are at least

(
k
2

)
ordered pairs (Γ,∆) of non-trivial orbitals in which ∆

dominates Γ. On the other hand, for each Γ there is at most one orbital ∆
that dominates Γ and therefore there are at most k such pairs. Thus

(
k
2

)
6 k

and so k 6 3.
Suppose that k = 3. Let Γ, ∆, Φ be the non-trivial orbitals and let aΓ

be the size of the Φ-components in Γ(α), a∆ the size of the Γ-components in
∆(α), and aΦ the size of the ∆-components in Φ(α). Let nΦ be the valency
of the graph (Ω,Φ), so that nΦ = |Φ(α)|. Consider Φ(ω), where ω ∈ Γ(α).
If Γ1 is the Φ-component of Γ(α) containing ω then Φ(ω) =

(
Φ(ω) ∩ Γ1

)
∪(

Φ(ω) ∩ Φ(α)
)
. Now Φ(ω) ∩ Γ1 ⊆ Γ1 \ {ω} and so |Φ(ω) ∩ Γ1| 6 aΓ − 1.

Also, Φ(ω) ∩ Φ(α) is a union of some but not all of the ∆-components in
Φ(α), and so |Φ(ω) ∩Φ(α)| 6 nΦ − aΦ. Therefore nΦ 6 (aΓ − 1) + (nΦ − aΦ)
and so aΦ 6 aΓ − 1. Similarly, considering Γ(ω) for ω ∈ ∆(α) we find that
aΓ 6 a∆ − 1 and considering ∆(ω) for ω ∈ Φ(α) we find that a∆ 6 aΦ − 1.
These inequalities imply that aΦ 6 aΦ − 3, which is absurd. It follows that
k 6 2 and so the rank of G is at most 3, as our theorem states.

3. Commentary

There is quite a strong sense in which the study of arbitrary three-star
groups may be reduced to that of primitive three-star groups. First, we have
the following:

Observation 3.1. If G is an intransitive three-star group then it has
exactly two orbits Ω1 and Ω2. Moreover, G acts as a three-star group on each
of Ω1, Ω2, and, as G-spaces, Ω1, Ω2 are strongly orthogonal in the sense that
for ω1 ∈ Ω1 the stabiliser Gω1 is generously transitive on Ω2 and for ω2 ∈ Ω2

the stabiliser Gω2 is generously transitive on Ω1.
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Proof. If there were three or more orbits then there would be a triple
consisting of points from different orbits, and its stabiliser would act trivially
on it, contrary to assumption. Thus, given that G is intransitive, there are
just two orbits Ω1, Ω2. The fact that G acts as a three-star group on each of
Ω1, Ω2 is clear. Consider any point ω1 ∈ Ω1 and any pair {α, β} of points
from Ω2. Since the stabiliser of the triple {ω1, α, β} is non-trivial G contains
a permutation fixing ω1 and interchanging α, β. Therefore Gω1 is generously
transitive on Ω2. And of course, similarly, for ω2 ∈ Ω2, Gω2 is generously
transitive on Ω1.

Observation 3.2. Suppose that G is a three-star group which is transitive
but imprimitive on Ω. Let ρ be a non-trivial proper G-congruence on Ω, let Γ
be a ρ-class in Ω, let ∆ := Ω/ρ, let C := GΓ, the group induced on Γ by its
setwise stabiliser in G, and let D := G∆. Then C is a three-star group on Γ
and D is a three-star group on ∆. Moreover, C is generously transitive on Γ.

Conversely, if C is a generously transitive three-star group on the set Γ,
and D is a three-star group on the set ∆, then the wreath product C Wr D is
a three-star group in its natural imprimitive representation on Γ×∆.

Since the proof is routine we leave it to the interested reader. Note that
here we should permit the possibility that |Γ| = 2 and C = Sym(Γ) or that
|∆| = 2 and D = Sym(∆).

We have not sought to compile a systematic catalogue of primitive three-
star groups, but we do not think that would be a very difficult project. There
are several interesting families of examples. As has already been observed,
any almost generously 2-transitive group is a three-star group. Many of the
finite 2-transitive groups are almost generously 2-transitive; the only ones
that are not are those contained in affine groups AΓL(d, q) for q > 5 and the
almost simple groups whose socle is a Suzuki group Sz(q), where q = 22m+1

and m > 1, or a Ree group Ree(q) where q = 32m+1 and m > 1. It is not
hard to see that the Suzuki and Ree groups are not three-star groups. Some
of the affine groups that are not almost generously 2-transitive are three-star
groups, however.

Example 3.3. The affine groups AGL(d, 5) are three-star groups.

Proof. Let Θ be a triple of points of the affine space AG(d, 5) and let
G := AGL(d, 5). If Θ consists of non-collinear points then GΘ = Sym(Θ)
and so certainly GΘ 6= {1}. If Θ is a collinear triple then, as is not hard to
see, it is equivalent under affine transformations to the triple {0, 1, 4} or to
the triple {0, 2, 3} in an affine line in AG(d, 5). Both of these triples admit
involutions, so GΘ 6= {1}.

There are several families of primitive three-star groups of rank 3.
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Example 3.4. Let G := Sym(m) where m > 3, and let Ω := m{2}, the
set of pairs from {1, . . . , m}. In its natural action on Ω, G is a primitive
three-star group of rank 3.

Proof. That G is primitive on Ω is well known and easy to prove. Define

Θ1 :=
{
{1, 2}, {1, 3}, {2, 3}

}
,

Θ2 :=
{
{1, 2}, {1, 3}, {1, 4}

}
,

Θ3 :=
{
{1, 2}, {2, 3}, {3, 4}

}
,

Θ4 :=
{
{1, 2}, {2, 3}, {4, 5}

}
,

Θ5 :=
{
{1, 2}, {3, 4}, {5, 6}

}
.

Any triple of unordered pairs is equivalent to one of these five, and for each
of these five it is easy to see that GΘ 6= {1}.

Example 3.5. Let H be a group acting generously 2-transitively on a set
Γ of size > 3. If G := H Wr Sym(2) and Ω := Γ2, then G is a primitive
three-star group of rank 3.

Proof. As in the previous example, that G is primitive on Ω is well known
and easy to prove. Let α1, α2, α3 be distinct points of Γ and define

Θ1 :=
{

(α1, α1), (α2, α2), (α3, α3)
}
,

Θ2 :=
{

(α1, α1), (α2, α2), (α2, α3)
}
,

Θ3 :=
{

(α1, α1), (α1, α2), (α1, α3)
}
,

Θ4 :=
{

(α1, α1), (α1, α2), (α2, α1)
}
.

Any triple of ordered pairs is equivalent to one of these four, and for each of
these four it is easy to see that GΘ 6= {1}.

Example 3.6. Let Q be a non-degenerate quadratic form on the vector
space Ω of dimension 2m over the field F2 and let G := AO(2m, 2), the group
generated by translations and orthogonal transformations of Ω with respect
to Q. Then G is a primitive three-star group of rank 3.

Proof. Triples Θ are triangles in the affine space Ω with side-lengths
{0, 0, 0}, {0, 0, 1}, {0, 1, 1}, or {1, 1, 1}. In each case GΘ 6= {1}.

Example 3.7. Let Q be a non-degenerate quadratic form on the vector
space Ω of dimension d over the field F3 and let G := AGO(d, 3), the group
generated by translations and transformations of Ω that preserve Q up to
scalar multiplication. Then G is a primitive three-star group of rank 3.
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Proof. Triples Θ are of the following kinds. First, there are triples {α, β, γ}
forming a line of the affine space Ω. For these GΘ = Sym(Θ). Secondly, there
are triangles in the affine space Ω. Triangles can have side-lengths a, b, c, each
of which can be 0, 1 or 2 (in F3). It is easy to see that if two side-lengths are
the same then GΘ 6= {1}. If the side-lengths are all different then the triangle
is equivalent to {0, u, w}, where Q(u) = 1, Q(w) = 2 and Q(u−w) = 0. Now
there is a linear transformation T ∈ GO(Ω) for which Q(Tv) = 2Q(v) for all
v ∈ Ω and which interchanges u and w. Thus in all cases GΘ 6= {1}.

The situation is different for infinite permutation groups. Although The-
orem 2.1 does not require finiteness of G or Ω, so that an infinite primitive
three-star group is generously transitive, Theorem 2.2 fails without the finite-
ness assumption.

Observation 3.8. There are infinite primitive three-star groups of arbi-
trary rank.

Proof. We confine ourselves to a sketch of the construction. It is based
on the theory of C-relations and C-sets propounded in [1]. Let (Ω, C) be the
C-set whose chains are isomorphic to (Z,6) and whose branching number
is s (the value of s is irrelevant, as it happens). The construction of such
a C-set is described on page 43 of [1]—take Q0 there to be Z with a least
element adjoined. In slightly different terms, Ω may be taken to be the set
of doubly infinite sequences (qi)i∈Z, where qi ∈ {0, 1, . . . , s − 1}, and which
are of finite support in the sense that there exists n ∈ N such that qi = 0
when |i| > n. Let W be the wreath power Wr

(
Sym(s)

)Z defined by Philip
Hall in [3] as a subgroup of Sym(Ω). Let m > 1. The infinite cyclic group
Z acts by translation through m on Z, that is, with its generator acting as
i 7→ i + m. This extends in a natural way to an action of Z on Ω, and then
Z, as subgroup of Sym(Ω), normalises W . Let G := W.Z 6 Sym(Ω). It is
not hard to see that the only W -invariant equivalence relations on Ω are the
relations ρr (r ∈ Z) defined by

(qi) ≡ (q′i) :⇔ qi = q′i for all i > r .

Since these are not Z-invariant G acts primitively on Ω. Also, the stabiliser
G0 of the 0-sequence is U.Z, where U := Wr

(
Sym(k − 1)

)Z. For any other
sequence (qi) define m((qi)) := max{i | qi 6= 0}. It is not hard to calculate
that non-zero sequences (qi), (q′i) are in the same G0-orbit if and only if
m((qi)) ≡ m((q′i)) (modm). Thus G has rank m+1. To see that G is a three-
star group consider three distinct elements α, β, γ of Ω and let Θ := {α, β, γ}.
We may suppose that α is the 0-sequence, β = (qi) and γ = (q′i). It is
not hard to calculate the following: if m((qi)) < m((q′i)) then the setwise
stabiliser in G of Θ contains (and in fact is generated by) the transposition
(αβ); if m((qi)) > m((q′i)) then the setwise stabiliser in G of Θ contains the
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transposition (αγ); if m((qi)) = m((q′i)) = j and qj = q′j then the setwise
stabiliser in G of Θ contains the transposition (β γ); if m((qi)) = m((q′i)) = j
and qj 6= q′j then GΘ = Sym(Θ).

To produce a primitive three-star group with infinite rank κ one replaces
(Z,6) with a suitable linearly ordered set (Q,6). All that is required is that
(Q,6) should admit an infinite cyclic group Z of automorphisms whose orbits
are co-initial and co-final in Q (that is, bounded neither below nor above in
Q) and that Z should have κ orbits in Q.

Final Note. The notion of three-star group has an obvious generalisa-
tion to that of k-star group for any k > 2. It is not hard to see that the
infinite groups described in the proof of Observation 3.8 are k-star groups for
every finite k. For k > 3 we know little about finite primitive k-star groups
but we believe them to be rather rare. As it happens, however, Example 3.4
is a four-star group and a five-star group.
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