THREE-STAR PERMUTATION GROUPS

PETER M. NEUMANN AND CHERYL E. PRAEGER

To the memory of Reinhold and Marianne Baer

Abstract

A permutation group is a three-star group if it induces a non-trivial group on each 3 -element subset of points. Our main results are that a primitive three-star group is generously transitive and that a finite primitive three-star group has rank at most 3 , that is, a stabiliser has at most 3 orbits. We also describe the structure of an arbitrary (non-primitive) three-star group and give a collection of examples. In particular, we sketch a construction of infinite primitive three-star groups of arbitrarily high rank.

1. Introduction

A permutation group G acting on a set Ω will be said to be a three-star group if it has the following property: for every 3 -subset Θ of Ω the permutation group G^{Θ} induced on Θ by its setwise stabiliser $G_{\{\Theta\}}$ is non-trivial. Praeger and Schneider [5] came across this condition in a study of overgroups of finite permutation groups that have a transitive minimal normal subgroup.

To exclude trivialities we assume throughout that $|\Omega| \geqslant 3$. In [4] a group G was defined to be generously k-transitive if $G^{\Theta}=\operatorname{Sym}(\Theta)$ for all $(k+1)$-subsets Θ of Ω and almost generously k-transitive if $G^{\Theta} \geqslant \operatorname{Alt}(\Theta)$ for all $(k+1)$-subsets Θ of Ω. In particular, an almost generously 2 -transitive group is a three-star group. It was shown in [4] that an almost generously 2 -transitive group is (as the terminology suggests) doubly transitive. So strong a conclusion cannot be expected with the weaker hypothesis treated here. Nevertheless, we find that the three-star condition is quite strong. Our main theorems are that a primitive three-star group is generously transitive and that a finite primitive three-star group has rank at most 3-that is to say, a stabiliser has at most 3 orbits in Ω. The proofs of these facts are given in Section 2 below. In Section 3 we consider the structure of an arbitrary (non-primitive) three-star group and describe a range of examples. In particular, we sketch a construction of infinite primitive three-star groups of arbitrarily high rank.

[^0]
2. Primitive three-star groups

In this section we focus on primitive three-star groups. This is, of course, a significant restriction. However, there is quite a strong sense in which the study of arbitrary three-star groups may be reduced to the study of primitive ones. We will return to this point in Section 3 below.

Some general theory of permutation groups is needed for the statement and proof of our results. Recall (see, for example, [2, §3.2]) that for a group G acting on a set Ω the orbitals are the orbits of G in $\Omega \times \Omega$. When G is transitive these are in one-one correspondence with the suborbits, that is to say, the orbits of a stabiliser G_{α} for $\alpha \in \Omega$. An orbital Γ corresponds to the suborbit $\Gamma(\alpha)$, where $\Gamma(\alpha):=\{\omega \in \Omega \mid(\alpha, \omega) \in \Gamma\}$; the so-called trivial orbital $\{(\omega, \omega) \mid \omega \in \Omega\}$ corresponds to the trivial suborbit $\{\alpha\}$. The number of orbitals (or of suborbits) is known as the rank of G. Associated with an orbital Γ is its paired orbital Γ^{*} defined by $\Gamma^{*}:=\left\{\left(\omega_{1}, \omega_{2}\right) \mid\left(\omega_{2}, \omega_{1}\right) \in \Gamma\right\}$. The orbital Γ is said to be self-paired if $\Gamma=\Gamma^{*}$. This is the case if and only if for any $\left(\omega_{1}, \omega_{2}\right) \in \Gamma$ there is a permutation in G that transposes ω_{1} and ω_{2}; therefore G is generously transitive if and only if all orbitals are self-paired. For subsets Γ, Δ of Ω^{2} we define

$$
\Gamma \circ \Delta:=\left\{\left(\omega_{1}, \omega_{2}\right) \in \Omega^{2} \mid(\exists \omega \in \Omega):\left(\omega_{1}, \omega\right) \in \Gamma \text { and }\left(\omega, \omega_{2}\right) \in \Delta\right\}
$$

If Γ, Δ are orbitals then $\Gamma \circ \Delta$ will be a union of orbitals. Note that $(\Gamma \circ \Delta)^{*}=$ $\Delta^{*} \circ \Gamma^{*}$ and that $\Gamma \circ(\Delta \circ \Phi)=(\Gamma \circ \Delta) \circ \Phi$.

Theorem 2.1. With one exception a primitive three-star group is generously transitive. The exception is the alternating group Alt(3).

Proof. Let G be a primitive three-star group acting on the set Ω, and suppose that G is not generously transitive. Let Γ be a non-self-paired orbital. We claim that $\Gamma \circ \Gamma=\Gamma^{*}$. Choose $(\alpha, \gamma) \in \Gamma \circ \Gamma$. By definition there exists $\beta \in \Omega$ such that $(\alpha, \beta) \in \Gamma$ and $(\beta, \gamma) \in \Gamma$. Now $\alpha \neq \gamma(\Gamma$ is not self-paired), and so α, β, γ are distinct. Let $\Theta:=\{\alpha, \beta, \gamma\}$ and $T:=G^{\Theta}$. Since Γ is not self-paired, T contains neither of the transpositions $(\alpha \beta),(\beta \gamma)$. Nor does it contain $(\alpha \gamma)$ since α, γ lie in different orbits of the stabiliser G_{β}. By assumption, however, $T \neq\{1\}$, and therefore $(\alpha \beta \gamma) \in T$. It follows that $(\gamma, \alpha) \in \Gamma$, whence $\Gamma \circ \Gamma=\Gamma^{*}$. Then also $\Gamma^{*} \circ \Gamma^{*}=\Gamma$.

Now define $\Delta:=\Gamma \circ \Gamma^{*}$. Then $\Delta=\Gamma \circ \Gamma \circ \Gamma=\Gamma^{*} \circ \Gamma$, and so $\Delta \circ \Gamma=\Gamma \circ \Delta=\Gamma$. As a binary relation Δ is reflexive and symmetric. It is also transitive because $\Delta \circ \Delta=\Delta \circ \Gamma \circ \Gamma^{*}=\Gamma \circ \Gamma^{*}=\Delta$. Thus Δ is a G-invariant equivalence relation on Ω. Since G is primitive Δ is either the universal relation U or the trivial relation E (equality). However, $U \circ \Gamma=U \neq \Gamma$, and so $\Delta \neq U$. Therefore $\Delta=E$. Let $\gamma, \gamma^{\prime} \in \Gamma^{*}(\alpha)$. Then $\gamma^{\prime} \in \Delta(\gamma)$, whence $\gamma=\gamma^{\prime}$. Thus Γ^{*} has subdegree 1. Similarly of course Γ has subdegree 1. It follows immediately that $G=\operatorname{Alt}(3)$.

ThEOREM 2.2. A finite primitive three-star group has rank at most 3.

Proof. Suppose that Ω and G are finite and that G acts as a primitive three-star group on Ω. Clearly we may assume that $|\Omega|>3$, so that, by what has just been proved, all orbitals are self-paired. An edge (α, β) of the complete graph with vertex-set Ω will be said to be of colour Γ (where Γ is an orbital) if $(\alpha, \beta) \in \Gamma$. Let Γ, Δ be distinct orbitals and let $\alpha \in \Omega$. The three-star condition implies that no triangle in Ω can have edges of three different colours, and so all edges between points in $\Gamma(\alpha)$ and points in $\Delta(\alpha)$ are coloured Γ or Δ. Suppose that all such edges had the same colour, say Γ. If $\beta \in \Gamma(\alpha)$ and $\gamma \in \Delta(\beta)$ then $\gamma \notin \Delta(\alpha)$ and so the third edge (α, γ) of the triangle $\{\alpha, \beta, \gamma\}$ must have colour Γ. Thus $\Gamma(\alpha)$ would be a union of components of the graph (Ω, Δ), and this is impossible since G is primitive. Therefore there are edges of both colours Γ and Δ between $\Gamma(\alpha)$ and $\Delta(\alpha)$. Thus for any ordered pair (Γ, Δ) of colours there are triangles with edges coloured Γ, Γ, Δ. In particular, every orbital graph has diameter 2 , and for every Γ there are edges of every colour, except possibly Γ itself, within $\Gamma(\alpha)$.

We continue to focus on a point α of Ω and distinct orbitals Γ, Δ. Let Φ denote the merger of all the colours other than Γ and Δ : that is, (Ω, Φ) is the graph whose edge-set consists of all edges of the complete graph with colours different from Γ and Δ. Let $\gamma_{1}, \gamma_{2} \in \Gamma(\alpha)$ and suppose that the edge $\left(\gamma_{1}, \gamma_{2}\right)$ is coloured Φ. For any $\delta \in \Delta(\alpha)$ the edges $\left(\gamma_{1}, \delta\right)$ and $\left(\gamma_{2}, \delta\right)$ have colour Γ or Δ. Since the triangle $\left(\gamma_{1}, \gamma_{2}, \delta\right)$ cannot have three differently coloured edges, the colours of $\left(\gamma_{1}, \delta\right)$ and $\left(\gamma_{2}, \delta\right)$ must be the same. It follows that if $\Gamma_{1}, \ldots, \Gamma_{c}$ are the components of the Φ-graph with vertex-set $\Gamma(\alpha)$, and if $\delta \in \Delta(\alpha)$, then all edges from vertices in Γ_{i} to δ have the same colour. Interchanging the roles played by Γ and Δ, we see that if $\Delta_{1}, \ldots, \Delta_{d}$ are the components of the Φ-graph with vertex-set $\Delta(\alpha)$ then all edges between a component Γ_{i} and a component Δ_{j} have the same colour.

Suppose the Φ-graph with vertex-set $\Gamma(\alpha)$ were connected. Then all edges between points of $\Gamma(\alpha)$ and a given point $\delta \in \Delta(\alpha)$ would be the same colour. Since G_{α} acts transitively on $\Delta(\alpha)$ it would follow that all edges between points of $\Gamma(\alpha)$ and points of $\Delta(\alpha)$ would be the same colour. This is not the case (see above) and therefore the Φ-graph with vertex-set $\Gamma(\alpha)$ is not connected, that is, $c>1$. Similarly, the Φ-graph with vertex-set $\Delta(\alpha)$ is not connected, that is, $d>1$.

If there is a Δ-coloured edge $\left(\gamma_{1}, \gamma_{2}\right)$ with $\gamma_{1} \in \Gamma_{1}$ and $\gamma_{2} \in \Gamma_{2}$ then we shall say that Δ dominates Γ. Suppose for the moment that this is the case. If $\gamma_{1}^{\prime} \in \Gamma_{1}$ and $\left(\gamma_{1}, \gamma_{1}^{\prime}\right) \in \Phi$ then the edge $\left(\gamma_{1}^{\prime}, \gamma_{2}\right)$ must also be coloured Δ. It follows that all edges from points of Γ_{1} to γ_{2} are coloured Δ, and then that all edges between points of Γ_{1} and points of Γ_{2} are coloured Δ. Thus if Δ dominates Γ then the Δ-components of $\Gamma(\alpha)$ are proper unions of Φ components Γ_{i}; if Δ does not dominate Γ then of course the Φ-components
Γ_{i} are $(\Phi \cup \Delta)$-components in $\Gamma(\alpha)$. If Δ dominates Γ then for every other orbital Δ^{\prime} the Δ-components of $\Gamma(\alpha)$ are proper unions of Δ^{\prime}-components, and therefore Δ^{\prime} cannot dominate Γ since the Δ^{\prime}-components of $\Gamma(\alpha)$ are then not unions of Δ-components. Clearly therefore, for an orbital Γ, at most one orbital Δ can dominate Γ.

Since G_{α} acts transitively on $\Gamma(\alpha)$ all the Φ-components Γ_{i} of $\Gamma(\alpha)$ have the same size, say a. Similarly, all the Φ-components Δ_{j} of $\Delta(\alpha)$ have the same size, say b. Suppose that $a \leqslant b$. Let $\gamma \in \Gamma_{1}$ and consider the set $\Delta(\gamma)$. We know that $\Delta(\gamma) \subseteq \Gamma(\alpha) \cup \Delta(\alpha)$, and $\Delta(\gamma) \cap \Delta(\alpha)$ is a union of some but not all of the Φ-components Δ_{j} of $\Delta(\alpha)$. Let $n_{\Delta}:=|\Delta(\alpha)|$. Then $|\Delta(\gamma) \cap \Delta(\alpha)| \leqslant n_{\Delta}-b$ and so $|\Delta(\gamma) \cap \Gamma(\alpha)| \geqslant b$. It follows that $\Delta(\gamma) \cap \Gamma(\alpha)$ cannot be contained in the Φ-component Γ_{1}, and so Δ dominates Γ. Of course if $b \leqslant a$ then we find that Γ dominates Δ. Thus, of any two orbitals, one dominates the other.

Now let r be the rank of G and let $k:=r-1$. By what has just been proved there are at least $\binom{k}{2}$ ordered pairs (Γ, Δ) of non-trivial orbitals in which Δ dominates Γ. On the other hand, for each Γ there is at most one orbital Δ that dominates Γ and therefore there are at most k such pairs. Thus $\binom{k}{2} \leqslant k$ and so $k \leqslant 3$.

Suppose that $k=3$. Let Γ, Δ, Φ be the non-trivial orbitals and let a_{Γ} be the size of the Φ-components in $\Gamma(\alpha), a_{\Delta}$ the size of the Γ-components in $\Delta(\alpha)$, and a_{Φ} the size of the Δ-components in $\Phi(\alpha)$. Let n_{Φ} be the valency of the graph (Ω, Φ), so that $n_{\Phi}=|\Phi(\alpha)|$. Consider $\Phi(\omega)$, where $\omega \in \Gamma(\alpha)$. If Γ_{1} is the Φ-component of $\Gamma(\alpha)$ containing ω then $\Phi(\omega)=\left(\Phi(\omega) \cap \Gamma_{1}\right) \cup$ $(\Phi(\omega) \cap \Phi(\alpha))$. Now $\Phi(\omega) \cap \Gamma_{1} \subseteq \Gamma_{1} \backslash\{\omega\}$ and so $\left|\Phi(\omega) \cap \Gamma_{1}\right| \leqslant a_{\Gamma}-1$. Also, $\Phi(\omega) \cap \Phi(\alpha)$ is a union of some but not all of the Δ-components in $\Phi(\alpha)$, and so $|\Phi(\omega) \cap \Phi(\alpha)| \leqslant n_{\Phi}-a_{\Phi}$. Therefore $n_{\Phi} \leqslant\left(a_{\Gamma}-1\right)+\left(n_{\Phi}-a_{\Phi}\right)$ and so $a_{\Phi} \leqslant a_{\Gamma}-1$. Similarly, considering $\Gamma(\omega)$ for $\omega \in \Delta(\alpha)$ we find that $a_{\Gamma} \leqslant a_{\Delta}-1$ and considering $\Delta(\omega)$ for $\omega \in \Phi(\alpha)$ we find that $a_{\Delta} \leqslant a_{\Phi}-1$. These inequalities imply that $a_{\Phi} \leqslant a_{\Phi}-3$, which is absurd. It follows that $k \leqslant 2$ and so the rank of G is at most 3 , as our theorem states.

3. Commentary

There is quite a strong sense in which the study of arbitrary three-star groups may be reduced to that of primitive three-star groups. First, we have the following:

ObSERVATION 3.1. If G is an intransitive three-star group then it has exactly two orbits Ω_{1} and Ω_{2}. Moreover, G acts as a three-star group on each of Ω_{1}, Ω_{2}, and, as G-spaces, Ω_{1}, Ω_{2} are strongly orthogonal in the sense that for $\omega_{1} \in \Omega_{1}$ the stabiliser $G_{\omega_{1}}$ is generously transitive on Ω_{2} and for $\omega_{2} \in \Omega_{2}$ the stabiliser $G_{\omega_{2}}$ is generously transitive on Ω_{1}.

Proof. If there were three or more orbits then there would be a triple consisting of points from different orbits, and its stabiliser would act trivially on it, contrary to assumption. Thus, given that G is intransitive, there are just two orbits Ω_{1}, Ω_{2}. The fact that G acts as a three-star group on each of Ω_{1}, Ω_{2} is clear. Consider any point $\omega_{1} \in \Omega_{1}$ and any pair $\{\alpha, \beta\}$ of points from Ω_{2}. Since the stabiliser of the triple $\left\{\omega_{1}, \alpha, \beta\right\}$ is non-trivial G contains a permutation fixing ω_{1} and interchanging α, β. Therefore $G_{\omega_{1}}$ is generously transitive on Ω_{2}. And of course, similarly, for $\omega_{2} \in \Omega_{2}, G_{\omega_{2}}$ is generously transitive on Ω_{1}.

Observation 3.2. Suppose that G is a three-star group which is transitive but imprimitive on Ω. Let ρ be a non-trivial proper G-congruence on Ω, let Γ be a ρ-class in Ω, let $\Delta:=\Omega / \rho$, let $C:=G^{\Gamma}$, the group induced on Γ by its setwise stabiliser in G, and let $D:=G^{\Delta}$. Then C is a three-star group on Γ and D is a three-star group on Δ. Moreover, C is generously transitive on Γ.

Conversely, if C is a generously transitive three-star group on the set Γ, and D is a three-star group on the set Δ, then the wreath product C Wr D is a three-star group in its natural imprimitive representation on $\Gamma \times \Delta$.

Since the proof is routine we leave it to the interested reader. Note that here we should permit the possibility that $|\Gamma|=2$ and $C=\operatorname{Sym}(\Gamma)$ or that $|\Delta|=2$ and $D=\operatorname{Sym}(\Delta)$.

We have not sought to compile a systematic catalogue of primitive threestar groups, but we do not think that would be a very difficult project. There are several interesting families of examples. As has already been observed, any almost generously 2 -transitive group is a three-star group. Many of the finite 2 -transitive groups are almost generously 2 -transitive; the only ones that are not are those contained in affine groups $\mathrm{A} \Gamma \mathrm{L}(d, q)$ for $q \geqslant 5$ and the almost simple groups whose socle is a Suzuki $\operatorname{group} \operatorname{Sz}(q)$, where $q=2^{2 m+1}$ and $m \geqslant 1$, or a Ree group $\operatorname{Ree}(q)$ where $q=3^{2 m+1}$ and $m \geqslant 1$. It is not hard to see that the Suzuki and Ree groups are not three-star groups. Some of the affine groups that are not almost generously 2 -transitive are three-star groups, however.

Example 3.3. The affine groups $\operatorname{AGL}(d, 5)$ are three-star groups.
Proof. Let Θ be a triple of points of the affine space $\mathrm{AG}(d, 5)$ and let $G:=\operatorname{AGL}(d, 5)$. If Θ consists of non-collinear points then $G^{\Theta}=\operatorname{Sym}(\Theta)$ and so certainly $G^{\Theta} \neq\{1\}$. If Θ is a collinear triple then, as is not hard to see, it is equivalent under affine transformations to the triple $\{0,1,4\}$ or to the triple $\{0,2,3\}$ in an affine line in $\operatorname{AG}(d, 5)$. Both of these triples admit involutions, so $G^{\Theta} \neq\{1\}$.

There are several families of primitive three-star groups of rank 3 .

Example 3.4. Let $G:=\operatorname{Sym}(m)$ where $m \geqslant 3$, and let $\Omega:=m^{\{2\}}$, the set of pairs from $\{1, \ldots, m\}$. In its natural action on Ω, G is a primitive three-star group of rank 3 .

Proof. That G is primitive on Ω is well known and easy to prove. Define

$$
\begin{aligned}
& \Theta_{1}:=\{\{1,2\},\{1,3\},\{2,3\}\}, \\
& \Theta_{2}:=\{\{1,2\},\{1,3\},\{1,4\}\}, \\
& \Theta_{3}:=\{\{1,2\},\{2,3\},\{3,4\}\}, \\
& \Theta_{4}:=\{\{1,2\},\{2,3\},\{4,5\}\}, \\
& \Theta_{5}:=\{\{1,2\},\{3,4\},\{5,6\}\} .
\end{aligned}
$$

Any triple of unordered pairs is equivalent to one of these five, and for each of these five it is easy to see that $G^{\Theta} \neq\{1\}$.

Example 3.5. Let H be a group acting generously 2 -transitively on a set Γ of size $\geqslant 3$. If $G:=H \mathrm{Wr} \operatorname{Sym}(2)$ and $\Omega:=\Gamma^{2}$, then G is a primitive three-star group of rank 3 .

Proof. As in the previous example, that G is primitive on Ω is well known and easy to prove. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be distinct points of Γ and define

$$
\begin{aligned}
& \Theta_{1}:=\left\{\left(\alpha_{1}, \alpha_{1}\right),\left(\alpha_{2}, \alpha_{2}\right),\left(\alpha_{3}, \alpha_{3}\right)\right\} \\
& \Theta_{2}:=\left\{\left(\alpha_{1}, \alpha_{1}\right),\left(\alpha_{2}, \alpha_{2}\right),\left(\alpha_{2}, \alpha_{3}\right)\right\}, \\
& \Theta_{3}:=\left\{\left(\alpha_{1}, \alpha_{1}\right),\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{1}, \alpha_{3}\right)\right\}, \\
& \Theta_{4}:=\left\{\left(\alpha_{1}, \alpha_{1}\right),\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{2}, \alpha_{1}\right)\right\} .
\end{aligned}
$$

Any triple of ordered pairs is equivalent to one of these four, and for each of these four it is easy to see that $G^{\Theta} \neq\{1\}$.

ExAmple 3.6. Let Q be a non-degenerate quadratic form on the vector space Ω of dimension $2 m$ over the field \mathbb{F}_{2} and let $G:=\mathrm{AO}(2 m, 2)$, the group generated by translations and orthogonal transformations of Ω with respect to Q. Then G is a primitive three-star group of rank 3 .

Proof. Triples Θ are triangles in the affine space Ω with side-lengths $\{0,0,0\},\{0,0,1\},\{0,1,1\}$, or $\{1,1,1\}$. In each case $G^{\Theta} \neq\{1\}$.

Example 3.7. Let Q be a non-degenerate quadratic form on the vector space Ω of dimension d over the field \mathbb{F}_{3} and let $G:=\mathrm{AGO}(d, 3)$, the group generated by translations and transformations of Ω that preserve Q up to scalar multiplication. Then G is a primitive three-star group of rank 3.

Proof. Triples Θ are of the following kinds. First, there are triples $\{\alpha, \beta, \gamma\}$ forming a line of the affine space Ω. For these $G^{\Theta}=\operatorname{Sym}(\Theta)$. Secondly, there are triangles in the affine space Ω. Triangles can have side-lengths a, b, c, each of which can be 0,1 or 2 (in \mathbb{F}_{3}). It is easy to see that if two side-lengths are the same then $G^{\Theta} \neq\{1\}$. If the side-lengths are all different then the triangle is equivalent to $\{0, u, w\}$, where $Q(u)=1, Q(w)=2$ and $Q(u-w)=0$. Now there is a linear transformation $T \in \mathrm{GO}(\Omega)$ for which $Q(T v)=2 Q(v)$ for all $v \in \Omega$ and which interchanges u and w. Thus in all cases $G^{\Theta} \neq\{1\}$.

The situation is different for infinite permutation groups. Although Theorem 2.1 does not require finiteness of G or Ω, so that an infinite primitive three-star group is generously transitive, Theorem 2.2 fails without the finiteness assumption.

ObSERVATION 3.8. There are infinite primitive three-star groups of arbitrary rank.

Proof. We confine ourselves to a sketch of the construction. It is based on the theory of C-relations and C-sets propounded in [1]. Let (Ω, C) be the C-set whose chains are isomorphic to (\mathbb{Z}, \leqslant) and whose branching number is s (the value of s is irrelevant, as it happens). The construction of such a C-set is described on page 43 of [1]-take Q_{0} there to be \mathbb{Z} with a least element adjoined. In slightly different terms, Ω may be taken to be the set of doubly infinite sequences $\left(q_{i}\right)_{i \in \mathbb{Z}}$, where $q_{i} \in\{0,1, \ldots, s-1\}$, and which are of finite support in the sense that there exists $n \in \mathbb{N}$ such that $q_{i}=0$ when $|i|>n$. Let W be the wreath power $\operatorname{Wr}(\operatorname{Sym}(s))^{\mathbb{Z}}$ defined by Philip Hall in [3] as a subgroup of $\operatorname{Sym}(\Omega)$. Let $m \geqslant 1$. The infinite cyclic group Z acts by translation through m on \mathbb{Z}, that is, with its generator acting as $i \mapsto i+m$. This extends in a natural way to an action of Z on Ω, and then Z, as subgroup of $\operatorname{Sym}(\Omega)$, normalises W. Let $G:=W . Z \leqslant \operatorname{Sym}(\Omega)$. It is not hard to see that the only W-invariant equivalence relations on Ω are the relations $\rho_{r}(r \in \mathbb{Z})$ defined by

$$
\left(q_{i}\right) \equiv\left(q_{i}^{\prime}\right): \Leftrightarrow q_{i}=q_{i}^{\prime} \text { for all } i \geqslant r
$$

Since these are not Z-invariant G acts primitively on Ω. Also, the stabiliser G_{0} of the 0 -sequence is $U . Z$, where $U:=\mathrm{Wr}(\operatorname{Sym}(k-1))^{\mathbb{Z}}$. For any other sequence $\left(q_{i}\right)$ define $m\left(\left(q_{i}\right)\right):=\max \left\{i \mid q_{i} \neq 0\right\}$. It is not hard to calculate that non-zero sequences $\left(q_{i}\right),\left(q_{i}^{\prime}\right)$ are in the same G_{0}-orbit if and only if $m\left(\left(q_{i}\right)\right) \equiv m\left(\left(q_{i}^{\prime}\right)\right)(\bmod m)$. Thus G has rank $m+1$. To see that G is a threestar group consider three distinct elements α, β, γ of Ω and let $\Theta:=\{\alpha, \beta, \gamma\}$. We may suppose that α is the 0 -sequence, $\beta=\left(q_{i}\right)$ and $\gamma=\left(q_{i}^{\prime}\right)$. It is not hard to calculate the following: if $m\left(\left(q_{i}\right)\right)<m\left(\left(q_{i}^{\prime}\right)\right)$ then the setwise stabiliser in G of Θ contains (and in fact is generated by) the transposition $(\alpha \beta)$; if $m\left(\left(q_{i}\right)\right)>m\left(\left(q_{i}^{\prime}\right)\right)$ then the setwise stabiliser in G of Θ contains the
transposition $(\alpha \gamma)$; if $m\left(\left(q_{i}\right)\right)=m\left(\left(q_{i}^{\prime}\right)\right)=j$ and $q_{j}=q_{j}^{\prime}$ then the setwise stabiliser in G of Θ contains the transposition $(\beta \gamma)$; if $m\left(\left(q_{i}\right)\right)=m\left(\left(q_{i}^{\prime}\right)\right)=j$ and $q_{j} \neq q_{j}^{\prime}$ then $G^{\Theta}=\operatorname{Sym}(\Theta)$.

To produce a primitive three-star group with infinite rank κ one replaces (\mathbb{Z}, \leqslant) with a suitable linearly ordered set (Q, \leqslant). All that is required is that (Q, \leqslant) should admit an infinite cyclic group Z of automorphisms whose orbits are co-initial and co-final in Q (that is, bounded neither below nor above in $Q)$ and that Z should have κ orbits in Q.

Final Note. The notion of three-star group has an obvious generalisation to that of k-star group for any $k \geqslant 2$. It is not hard to see that the infinite groups described in the proof of Observation 3.8 are k-star groups for every finite k. For $k>3$ we know little about finite primitive k-star groups but we believe them to be rather rare. As it happens, however, Example 3.4 is a four-star group and a five-star group.

References

[1] S. A. Adeleke and Peter M. Neumann, Relations related to betweenness: their structure and automorphisms, Mem. Amer. Math. Soc. 131 (1988), no. 623.
[2] John D. Dixon and Brian Mortimer, Permutation groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996.
[3] P. Hall, Wreath powers and characteristically simple groups, Proc. Camb. Philos. Soc. 58 (1962), 170-184; reprinted in: The collected works of Philip Hall (compiled by K. W. Gruenberg and J. E. Roseblade), The Clarendon Press, Oxford Univ. Press, New York, 1988, pp. 611-625.
[4] Peter M. Neumann, Generosity and characters of multiply transitive permutation groups, Proc. London Math. Soc. (3) 31 (1975), 457-481.
[5] Cheryl E. Praeger and Csaba Schneider, Ordered triple designs and wreath products of groups, Science and Statistics: A Festschrift for Terry Speed (Ed. Darlene R. Goldstein), Institute of Mathematical Statistics Lecture Notes - Monograph Series, Volume 40, 2003, pp. 103-113.

Peter M. Neumann, The Queen's College, Oxford OX1 4AW, United Kingdom
E-mail address: peter.neumann@queens.ox.ac.uk
Cheryl E. Praeger, University of Western Australia, WA 6009, Australia
E-mail address: praeger@maths.uwa.edu.au

[^0]: Received August 20, 2002.
 2000 Mathematics Subject Classification. 20B05, 20B15.

