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BAER–LIKE DECOMPOSITIONS OF MODULES

L. A. KURDACHENKO, J. OTAL, AND I. YA. SUBBOTIN

On the 100th anniversary of the birthday of Reinhold Baer

Abstract. For certain artinian modules over group rings, we obtain the

Baer decomposition, that is, a direct decomposition into two summands

such that all chief factors of the first summand are X–central and all
chief factors of the second summand are X–eccentric, for some formation

X of finite groups.

1. Introduction

Let X be a class of groups. A factor C/B of a group G is said to be X–
central (respectively, X–eccentric) if G/CG(C/B) ∈ X (respectively,
G/CG(C/B) 6∈ X ). In general, X–central and X–eccentric factors of a group
G can appear at arbitrary points in a composition series of G. Thus the prob-
lem of finding cases in which all X–central factors of a group or of a normal
subgroup of this group can be gathered in one place, whereas all X–eccentric
factors can be gathered in another place, appears to be very interesting. Mo-
tivated by this problem, R. Baer [3] introduced, for a finite group G, two im-
portant subgroups to rule out the X–centrality and the X–eccentricity with
respect to G. These subgroups are the X–hypercenter HZX (G) of G and the
X–hypereccenter HEX (G) of G, and are defined as follows. Every G–chief
factor of the normal subgroup HZX (G) (respectively, HEX (G)) is X–central
(respectively, X -eccentric) and HZX (G) (respectively, HEX (G)) is a maximal
normal subgroup with respect to this property. Clearly HZX (G)∩HEX (G) =
〈1〉 always holds, but the direct decomposition G = HZX (G)×HEX (G) usu-
ally fails. Baer himself obtained an important result in this direction, which
we now quote. A finite group G is called X–nilpotent if HZX (G) = G. Baer’s
result (see [3]) is the following.
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Theorem. Suppose that X is a local formation of finite groups and A is a
normal subgroup of a finite group G such that Q = G/CG(A) is X–nilpotent.
Then A = (A ∩HZX (G))× (A ∩HEX (G).

In passing we mention that under these assumptions the stronger restriction
G ∈ X holds, since for a local formation X , X–nilpotency of G implies that
G ∈ X (see, for example, [4, Theorem IV.3.2]).

Later, P. Schmid [15] was able to extend Baer’s theorem to finite groups
with operators.

The direct decompositions, which are similar to Baer decompositions, have
been the subject of much research in the theory of modules over group rings.
We briefly mention some of the results. The first is the famous Fitting lemma,
which can be formulated as follows.

Theorem (H. Fitting). Let R be a ring, G a finite nilpotent group and
A an RG–module having finite composition series. Then A = C ⊕ E, where
the RG–chief factors U/V of C (respectively, of E) satisfy G = CG(U/V )
(respectively, G 6= CG(U/V ).

Other researchers studied the question whether the upper RG-hypercenter
of a module A is complemented, and considered generalizations to modules
that are near modules of finite composition length. This question has found
many applications in the study of groups and modules with finiteness condi-
tions and is also connected with the existence of complements of some partic-
ular residuals in groups; for more details see the survey paper [6].

In this paper, we prove the existence of Baer decompositions for certain
types of artinian modules. We consider infinite groups and artinian modules
that are associated in some way with specific formations of groups.

We first develop the concepts necessary to state our results. All of these
concepts are closely related to the concept of a X–center, which is due to
Baer himself [1]. If G is a group and x ∈ G, we put xG = {g−1xg | g ∈ G};
clearly, CG(xG) is normal in G. Now let X be a class of groups, and define
the X–center of G by

XC(G) = {x ∈ G | G/CG(xG) ∈ X}.
If X is a formation of groups, then XC(G) is a characteristic subgroup of G
and G is said to be an XC–group if the equality G = XC(G) holds. If X = I
is the class of all identity groups, then XC(G) = ζ(G) is the ordinary center
of G, whereas if X = F is the class of all finite groups, then XC(G) = FC(G)
is precisely the FC–center of G introduced by Baer. From this subgroup, we
may construct the upper X–central series of G as

〈1〉 = C0 ≤ C1 ≤ · · · ≤ Cα ≤ Cα+1 ≤ · · ·Cγ ,
where C1 = XC(G), Cα+1/Cα = XC(G/Cα), α < γ, and XC(G/Cγ) = 〈1〉.
The last term Cγ of this series is called the upper X–hypercenter of G and
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denoted by HZX (G). If G = Cγ , then G is said to be X–hypercentral, and
if γ is finite, G is called X–nilpotent. Once again, if X = I or X = F ,
HZX (G) = ζ∞(G) and FC∞(G) are called the upper hypercenter and upper
FC–hypercenter of G, respectively.

Let R be a ring, G a group, X a class of groups and A an RG–module.
Recall that if B ≤ C are RG–submodules of A, the factor C/B is said to
be X–central (respectively, X–eccentric) if G/CG(C/B) ∈ X (respectively,
G/CG(C/B) 6∈ X ). We then define

XCRG(A) = {a ∈ A | G/CG(aRG) ∈ X}.

If X is a formation of groups, then XCRG(A) is an RG–submodule of A called
the X–center of A (more precisely, the X–RG–center of A). Proceeding as in
the case of groups, we construct the upper X–central series of the module A
as

〈0〉 = A0 ≤ A1 ≤ · · ·Aα ≤ Aα+1 ≤ · · · ≤ Aγ ,
where A1 = XCRG(A), Aα+1/Aα = XCRG(A/Aα) for all ordinals α < γ,
and XCRG(A/Aγ) = 〈0〉. The last term Aγ = HZX−RG(A) of this series
is called the upper X–hypercenter of A (or the X–RG–hypercenter) and the
other terms Aα are called the X–hypercenters of A. If A = Aγ , then A is said
to be X–hypercentral (X–nilpotent, if γ is finite). If X = I and X = F , we
have the RG–center ζRG(A) of A, the upper RG–hypercenter ζ∞RG(A) of A,
the FC–center FCRG(A) of A and the upper FC–hypercenter FC∞RG(A) of
A.

On the other hand, an RG–submodule C of A is said to be X–RG–
hypereccentric if it has an ascending series

〈0〉 = C0 ≤ C1 ≤ · · ·Cγ ≤ Cα+1 ≤ · · ·Cγ = C

of RG–submodules of A such that each factor Cα+1/Cα is an X–eccentric
simple RG–module for every α < γ.

We say that the RG–module A has the Baer decomposition for the for-
mation X (the Baer X–decomposition or, more precisely, the Baer X–RG–
decomposition) if the following equality holds:

A = HZX−RG(A)
⊕

HEX−RG(A),

where HEX−RG(A) is the unique maximal X–RG–hypereccentric RG–sub-
module of A. In fact, let B be an X–RG-hypereccentric RG–submodule of A
and E = HEX−RG(A). If (B+E)/E is non-zero, it contains a non-zero simple
RG–submodule U/E. Since (B+E)/E ∼= B/(B∩E), U/E is RG–isomorphic
to some simple RG–factor of B and it follows that G/CG(U/E) 6∈ X . On the
other hand, (B + E)/E ≤ A/E ∼= HZX−RG(A), that is, G/CG(U/E) ∈ X .
This contradiction shows that B ≤ E. Hence HEX−RG(A) contains every
X–RG–hypereccentric RG–submodule and, in particular, is unique.



332 L. A. KURDACHENKO, J. OTAL, AND I. YA. SUBBOTIN

If X = I, the decomposition is simply called the Z–decomposition, whereas
if X = F , we call it the F–decomposition.

In module theory modules having a finite composition series correspond
closely to finite groups. For these modules we can obtain the following result,
which is analogous to Baer’s theorem.

Theorem A. Let X be a formation of finite groups, G an X–hypercentral
group, D a Dedekind domain and A a DG–module. If A has a finite DG–
composition series, then A has the Baer X–decomposition.

Since G is FC–hypercentral by [19, Corollary 1 of Theorem 2], A = B⊕C
has the F–decomposition, where B = HZF−DG(A) and C = HEF−DG(A).
(In fact, in [19], only the case D = Z was the treated, but the proof remains
valid for an arbitrary Dedekind domain D.) In particular, C ≤ HEX−DG(A).
Since B has a finite composition series every factor of which is F–central,
G/CG(B) is finite. By [12], B has the Baer X–decomposition and therefore
A also has the Baer X–decomposition.

Note that in this result X is an arbitrary formation of finite groups.
It is natural to raise the question of the existence of the Baer X–decom-

position for artinian modules. If X = I, this question was solved by D. I.
Zaitsev [18]. Another important formation is the formation X = F . For
artinian DG–modules, the case X = F was considered by Zaitsev [20] for
hyperfinite groups and by Duan [5] for groups having an ascending series of
normal subgroups with finite or infinite cyclic factors (again, Zaitsev and Duan
only considered the case D = Z). The most recent result in this direction was
obtained by Kurdachenko, Petrenko and Subbotin [10]. The existence of the
F–decomposition is an important special case and led to the solution of the
above question for many important formations X .

We now restrict ourselves to two special cases, the case F ≤ X , and the
case when X is a proper formation of finite groups.

A formation X is said to be overfinite if it satisfies the following conditions:

(i) If G ∈ X and H is a normal subgroup of G of finite index, then
H ∈ X .

(ii) If G is a group, H is a normal subgroup of finite index of G and
H ∈ X , then G ∈ X .

(iii) I ≤ X .

Clearly, an overfinite formation always contains F . The most important
examples of these formations are polycyclic groups, Chernikov groups, soluble
minimax groups, soluble groups of finite special rank and soluble groups of fi-
nite abelian section rank. For locally soluble FC–hypercentral groups, the ex-
istence of the Baer decomposition for an overfinite formation X in an artinian
DG–module A was also proved by Kurdachenko, Petrenko and Subbotin [11].
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Since every overfinite formation X contains F , every FC–hypercentral group
is likewise X–hypercentral.

A formation X of finite groups is said to be infinitely hereditary for a class
of groups Y if it satisfies the following condition:

(IH) Whenever a Y–group G belongs to the class RX , then every finite
factor group of G belongs to X .

Many important formations of finite groups are infinitely hereditary for the
class of FC–hypercentral groups, for example:

(1) A ∩ F , finite abelian groups,
(2) Nc ∩ F , finite nilpotent groups of class at most c,
(3) Sd ∩ F , finite soluble groups of derived length at most d,
(4) S ∩ F , finite soluble groups,
(5) B(n) ∩ F , finite groups of exponent dividing n.

Moreover, these five examples, and the examples
(6) N ∩ F , finite nilpotent groups,
(7) U ∩ F , finite supersoluble groups,

are infinitely hereditary for the classes of FC–groups and hyperfinite groups.
In the present paper we study the question of the existence of the Baer

decomposition in artinian modules for infinitely hereditary formations of finite
groups. Our main results are as follows:

Theorem B. Let D be a Dedekind domain, X a formation of finite
groups, G an infinite X–hypercentral group, A an artinian DG–module. If
X is infinitely hereditary for the class of FC–hypercentral groups, then A has
the Baer decomposition for the formation X .

Corollary B1. Let D be a Dedekind domain, X a formation of finite
groups, G an infinite X–hypercentral group, A an artinian DG–module. Then
A has the Baer decomposition for the formations A∩F , Nc∩F , Sd∩F , S∩F
and B(n) ∩ F .

Corollary B2. Let D be a Dedekind domain, X a formation of finite
groups, G an infinite X–hypercentral group, A an artinian DG–module. If G
is an FC–group, then A has the Baer decomposition for the formations A∩F ,
Nc ∩ F , Sd ∩ F , S ∩ F , B(n) ∩ F , N ∩ F and U ∩ F .

Corollary B3. Let D be a Dedekind domain, X a formation of finite
groups, G an infinite X–hypercentral group, A an artinian DG–module. If G
is a hyperfinite group, then A has the Baer decomposition for the formations
A ∩ F , Nc ∩ F , Sd ∩ F , S ∩ F , B(n) ∩ F , N ∩ F and U ∩ F .

Corollary B4. Let D be a Dedekind domain, X a formation of finite
groups, G an infinite X–hypercentral group, A an artinian DG–module. If G
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is a Chernikov group, then A has the Baer decomposition for the formation
X .

Theorem C. Let D be a Dedekind domain, X a formation of finite
groups, G an infinite X–hypercentral group, A an artinian DG–module. If
G is finitely generated, then A has the Baer decomposition for the formation
X .

The other classical generalization of modules with finite composition series
are the noetherian modules. Here the situation is quite different: we cannot
expect to find direct decompositions for a noetherian module, as the following
example shows. Let A = 〈u〉 × 〈v〉 be a free abelian group of rank 2. We
construct the split extension G of A by a finite cyclic group 〈g〉 of order
3, where the action is given by: ug = v and vg = u−1v−1. Then every
non-identity G–invariant subgroup of A has finite index. In particular, the
Z〈g〉–module A is noetherian. However, A is directly indecomposable and has
central and non-central G–chief factors.

In spite of this, D. J. S. Robinson [14] was able to obtain the best result
known, which gives a weak form of the Z–RG–decomposition:

Theorem (Robinson). If R is a commutative ring, G a nilpotent group,
W the augmentation ideal of the group ring RG and A a noetherian RG-
module, then the lower RG–central series {Aα | Aα = AWα} terminates
at the first infinite ordinal ω and there is some positive integer n such that
AWn ∩ ζ∞RG(A) = 〈0〉.

2. Some preliminary results

We list some elementary properties of X–hypercentral groups.

Lemma 2.1. Let X be a formation of groups and G a finitely generated
XC–group. Then G is a central–by–X–group.

Proof. Indeed, let G = 〈g1, . . . , gs〉. Then each G/CG(〈gi〉G) ∈ X , 1 ≤
i ≤ s. Since Z = CG(〈g1〉G) ∩ · · · ∩ CG(〈gs〉G) ≤ ζ(G) and X is a formation,
G/Z ∈ X and therefore G/ζ(G) ∈ X . �

Lemma 2.2. Let X be a formation of groups, G a group, P = XC(G),
Q = HZX (G), H a G–invariant subgroup of Q. If H 6= 〈1〉, then H∩P 6= 〈1〉.

Proof. Let 〈1〉 = C0 ≤ C1 ≤ · · · ≤ Cα ≤ Cα+1 ≤ · · ·Cγ be the upper
X–central series of G. Let β be the least ordinal such that H ∩ Cβ 6= 〈1〉.
Clearly β is not a limit ordinal, so that H ∩ Cβ−1 = 〈1〉. If 1 6= y ∈ H ∩ Cβ
and Y = 〈y〉G, since yCβ−1 ∈ Cβ/Cβ−1, we have G/CG(Y Cβ−1/Cβ−1) ∈ X .
Let g ∈ CG(Y Cβ−1/Cβ−1). Then [g, Y ] ≤ Cβ−1. On the other hand, H is a
normal subgroup, so that [g, Y ] ≤ H, that is, [g, Y ] ≤ H ∩ Cβ−1 = 〈1〉. This
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means that CG(Y Cβ−1/Cβ−1) ≤ CG(Y ) and, in particular, G/CG(Y ) ∈ X ,
because X is a formation. Hence Y ≤ XC(G). �

Corollary 2.3. Let X be a formation of groups, G a X–hypercentral
group. If H is a non-identity normal subgroup of G, then H ∩ XC(G) 6= 〈1〉.

Lemma 2.4. Let X be a formation of finite groups, G a finitely generated
X–nilpotent group. Then G is a nilpotent–by–X–group. In particular, G is
polycyclic–by–finite.

Proof. Let 〈1〉 = F0 ≤ F1 ≤ · · · ≤ Fn = G be the upper X–central series of
G. It suffices to show that G/CG(Fi+1/Fi) ∈ X , for every 0 ≤ i ≤ n− 1. We
proceed by induction on n. If n = 1, then G is an XC–group and it suffices
to apply Lemma 2.1.

Now let n > 1 and assume that we have already proved G/CG(Fi+1/Fi) ∈
X , for n > i ≥ 1. Let H = CG(F2/F1)∩ · · · ∩CG(Fn/Fn−1). Then G/H ∈ X
and H/F1 is nilpotent (see [7, Theorem 1.C.1]). In particular, G/F1 is finitely
presented (see [13, Corollary 1.43]) and it follows that F1 = 〈g1〉G · · · 〈gs〉G,
where g1, . . . , gs ∈ XC(G) ([13, Corollary 1.43]). Put U = CG(〈g1〉G) ∩ · · · ∩
CG(〈gs〉G). Then G/U ∈ X and U = CG(F1). If C = H ∩ U , G/C ∈ X and
C is nilpotent (see [7, Theorem 1.C.1]). �

Lemma 2.5. Let X be a formation of finite groups, G a finitely generated
X–hypercentral group. Then G is a nilpotent–by–X–group.

Proof. Let 〈1〉 = C0 ≤ C1 ≤ · · · ≤ Cα ≤ Cα+1 ≤ · · ·Cγ = G be the
upper X–central series of G. Let Σ = {α | G/Cα is nilpotent-by-X}. Since
G =

⋃
α≤γ Cα, we have Σ 6= ∅. Let β be the least element of Σ. If β = 0,

then G is a nilpotent–by–X–group and we are done.
Suppose that β > 0. First consider the case when β is not a limit ordinal.

Since Cβ/Cβ−1 is the XC–center of G/Cβ−1, G/Cβ−1 is X–nilpotent. By
Lemma 2.4, G/Cβ−1 is a nilpotent–by–X–group. But this contradicts the
choice of β. Hence β has to be a limit ordinal. Since G/Cβ is a nilpotent–by–
X–group, and, in particular, nilpotent–by–finite, it is finitely presented. By
[13, Corollary 1.43], Cβ = 〈g1〉G · · · 〈gs〉G, where g1, . . . , gs ∈ Cβ . It follows
that there is an ordinal δ < β such that g1, . . . , gs ∈ Cδ, which yields Cβ = Cδ,
a contradiction. �

Corollary 2.6. Let X be a formation of finite groups such that X = SX ,
G an X–hypercentral group, H a finitely generated subgroup of H. Then H is
a nilpotent–by–X–group. In particular, G is locally (polycyclic–by–finite).

Lemma 2.7. Let X be a formation of groups such that X = SnX , G a
group, g1, . . . , gs ∈ XC(G), H = 〈g1〉G · · · 〈gs〉G. Then H is a central–by–X–
group.
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Proof. Indeed, since CG(〈g1〉G) ∩ · · · ∩ CG(〈gs〉G) ∩H ≤ ζ(H),

H/

((
s⋂
i=1

CG(〈gi〉G)

)
∩H

)
≤

s
×
i=1

H/(H ∩ CG(〈gi〉G))

and

H/(H ∩ CG(〈gi〉G)) ∼= HCG(〈gi〉G)/CG(〈gi〉G) ≤ G/CG(〈gi〉G),

we obtain that H/ζ(H) ∈ X . �

Corollary 2.8. Let X be a formation of locally finite groups such that
X = SnX , and let G be an XC–group. Then:

(1) The derived subgroup [G,G] is locally finite.
(2) If G is torsion-free, then G is abelian.
(3) If H is a normal torsion-free subgroup, then H ≤ ζ(G).
(4) If g ∈ G, L = 〈g〉G, then either L is locally finite or L contains a G–

invariant locally finite subgroup T such that L/T is an infinite cyclic
group.

Proof. (1) Let g1, . . . , gs ∈ G, H = 〈g1〉G · · · 〈gs〉G. By Lemma 2.7, H is
a central–by–X–group. By [13, Corollary to Theorem 4.12], [H,H] is locally
finite. It follows that [G,G] is also locally finite.

(2) and (3) are obvious.
(4) By (1), the subgroup [L,L] is locally finite. All elements of finite order

in L/[L,L] form a characteristic subgroup T/[L,L], so that T is a G–invariant
subgroup of L and L/T is torsion-free abelian or T = L. In the first case we
have L/T ≤ ζ(G/T ) by (3). But L/T = 〈gT 〉G/T , so L/T = 〈gT 〉. �

Corollary 2.9. Let G be a group, g1, . . . , gs ∈ FC(G), H = 〈g1〉G
· · · 〈gs〉G. Then:

(1) H is a finitely generated subgroup.
(2) H is central-by-finite.
(3) Either H is finite or H has a G–invariant finite subgroup T such that

H/T is a finitely generated free abelian group.

Proof. Since each gi ∈ FC(G), G/CG(〈gi〉G) is finite; in particular, gi has
only finitely many conjugates in G, 1 ≤ i ≤ s. Since H = 〈gxi | x ∈ G, 1 ≤
i ≤ s〉, H is a finitely generated subgroup. By Lemma 2.7, the subgroup H is
central–by–finite. By [13, Corollary to Theorem 4.12], the derived subgroup
[H,H] is finite. Statement (3) follows from Corollary 2.8. �

3. On the existence of the relational Z–decomposition

In this section, we consider the question of the existence of the Z–RH–
decomposition in artinian modules over a group ring RG for a hypercentral
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normal subgroup H (which we simply call the relational Z–decomposition).
The results of this section play a very important role in the proof of Theo-
rem B.

Lemma 3.1. Let G be a group, Y and H normal subgroups of G such that
H ≤ Y and G/Y is finite, R a ring, A an RG–module. Suppose that B/C
is a chief RG–factor of A such that ζRH(B/C) = 〈0〉. If U/V is a chief
RY –factor such that C ≤ V ≤ U ≤ B, then ζRH(U/V ) = 〈0〉.

Proof. The RG–submodule B contains an RY –submodule E ≥ C such
that E/C is a simple RY –module and B/C = ⊕ni=1(E/C)gi for some ele-
ments g1, . . . , gn ([17, Lemma]). If we assume that CH(E/C) = H, then
from CH((E/C)gi) = g−1

i CH(E/C)gi = g−1
i Hgi = H we deduce that H =

CH(B/C), a contradiction. Since (E/C)gi is a simple RY –module and H
is a normal subgroup of Y , ζRH((E/C)gi) is an RY –submodule and hence
ζRH((E/C)gi) = 〈0〉 for every i, 1 ≤ i ≤ n. Since the RY –module B/C is
semisimple, a chief RY –factor U/V is RY –isomorphic with some (E/C)gi. It
follows that ζRH(U/V ) = ζRH((E/C)gi) = 〈0〉. �

Lemma 3.2. Let G be a group, H a normal subgroup of G, X a formation
of groups, R a ring, A an RG–module. Suppose that A contains an RH–
submodule B satisfying the following conditions:

(1) Every non-zero RH–factor of B is X–eccentric.
(2) HZX−RG(A/B) = A/B.

Then B is an RG–submodule of A.

The proof of this lemma is obvious.

Lemma 3.3. Let G be an FC–hypercentral group, H a normal hypercentral
subgroup of G, R a ring, A an artinian RG–module. Suppose that A contains
an RH–submodule B satisfying the following conditions:

(1) If U/V is a non-zero RH–factor of B, then CH(U/V ) 6= H.
(2) CH(A/B) = H.

Then B is an RG–submodule of A and there is an RG–submodule M such
that A = B ⊕M .

Proof. By Lemma 3.2, B is an RG–submodule. Put

Σ = {C | C is an RG–submodule such that A = B + C}.

Clearly Σ 6= ∅ since A ∈ Σ. Since A is an artinian RG–module, Σ has a
minimal element M . We may assume that CG(M) = 〈1〉. Suppose that
M1 = M ∩ B 6= 〈0〉. By Corollary 2.3, ζ(H) ∩ FC(G) 6= 〈1〉. Let 1 6= x ∈
ζ(H) ∩ FC(G), X = 〈x〉G. Then the subgroup Y = CG(X) has finite index
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in G and H ≤ Y . In particular, X ≤ ζ(Y ). Put

Σ1 = {S | S is an RY –submodule such that M = M1 + S}.

Clearly, Σ1 6= ∅. By a theorem by Wilson [16], A is an artinian RY –module,
so that Σ1 has a minimal element U . Put U1 = M1 ∩ U . If z ∈ X, then
z ∈ ζ(H), so that the mapping φz : u 7→ u(z − 1), u ∈ U , is an RY –
endomorphism. Therefore U(z − 1)/U1(z − 1) is an RY –epimorphic image
of

U/U1 = U/(M1 ∩ U) ∼=RY (U +M1)/M1 = M/M1

= M/(M ∩B) ∼=RY (M +B)/B = A/B.

It follows that H = CH(U(z−1)/U1(z−1)). On the other hand, A(z−1) ≤ B
by condition (2). Since U(z− 1) and U1(z− 1) are RY –submodules, they are
also RH–submodules. So if we assume that U(z − 1) 6= U1(z − 1), then, by
condition (1), H 6= CH(U(z − 1)/U1(z − 1)). This contradiction shows that
U(z−1) = U1(z−1). In this case U = U1 +CU (z) and hence M = M1 +U =
M1 + U1 + CU (z) = M1 + CU (z), which implies that CU (z) ∈ Σ1. By the
choice of U we have U = CU (z). Since this is true for every z ∈ X, we
obtain U = CU (X), and, in particular, U ≤ CM (X). Note that CM (X) is an
RG–submodule since X is normal in G. Thus A = B +M = B +M1 + U =
B + CM (X), and by the choice of M we conclude that M = CM (X). Hence
X ≤ CG(M) = 〈1〉, a contradiction. Therefore M ∩ B = 〈0〉 and hence
A = B ⊕M . �

Lemma 3.4. Let G be an FC–hypercentral group, H a normal hypercentral
subgroup of G, D a Dedekind domain, A an artinian DG–module. Suppose
that A contains a DG–submodule B satisfying the following conditions:

(1) B ≤ ζ∞DH(A).
(2) A/B is a simple DG–module.
(3) CH(A/B) 6= H.

Then there exists a DG–submodule M such that A = B ⊕M .

Proof. Let a ∈ A\B, A1 = aDG. It suffices to show that A1 = (A1∩B)⊕M
for some DG–submodule M , for then A = A1 + B = ((A1 ∩ B)⊕M) + B =
B⊕M , as required. In other words, we may assume that A can be generated
by any element a ∈ A \B.

Put

Σ = {C | C is a DG–submodule such that A = B + C}.

Since A ∈ Σ, Σ 6= ∅. Since A is an artinian DG–module, Σ has a minimal
element M . We may assume that CG(M) = 〈1〉. Suppose that M1 = M∩B 6=
〈0〉. By Corollary 2.3, ζ(H) ∩ FC(G) 6= 〈1〉. Let 1 6= x ∈ ζ(H) ∩ FC(G),
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X = 〈x〉G. Then the subgroup Y = CG(X) has finite index in G and we have
H ≤ Y and, in particular, X ≤ ζ(Y ). Since

M/M1 = M/(M ∩B) ∼= (M +B)/B = A/B

is a simple DG/-module, M contains a DY –submodule U ≥ M1 such that
U/M1 is a simple DY –module and, moreover, M/M1 = ⊕ni=1(U/M1)gi, for
some g1, . . . , gn ( [17, Lemma]). By Lemma 3.1, CH(U/M1) 6= H. Put

Σ1 = {S | S is a DY –submodule such that U = M1 + S}.

Obviously, Σ1 6= ∅. By a theorem of Wilson [16], A is an artinian RY –module
and hence Σ1 has a minimal element Q. Put Q1 = M1 ∩ Q = M ∩ Q.
Let R/S be a chief DY –factor of M1. Since H is a normal subgroup of G,
ζDH(R/S) is a DY –submodule of R/S. The inclusion M1 ≤ ζ∞DH(A) implies
that ζDH(R/S) 6= 〈0〉. It follows that CH(R/S) = H. From

Q/Q1 = Q/(M1 ∩Q) ∼=DY (Q+M1)/M1 = U/M1

we deduce that Q/Q1 is a simple DY –module. Then either ζDH(Q/Q1) =
Q/Q1 or ζDH(Q/Q1) = 〈0〉. If we assume that H ≤ CY (Q/Q1), then also
H ≤ CY (U/M1). But we have already proved that this is impossible. This
contradiction shows that CY (Q/Q1) does not contain H.

If Q1 = 〈0〉, then we consider the DG–submodule QDG. In this case Q is
a simple DY –submodule, so QDG is a semisimple DY –submodule, that is,
QDG = Qw1⊕ · · · ⊕Qwm for some elements w1, . . . , wm ∈ G. If QDG∩B 6=
〈0〉, then it contains a simple DY –submodule V and so there is an index j,
1 ≤ j ≤ m, such that V ∼=DY Qwj and, in particular, CY (V ) = CY (Qwj).
However, CY (Qwj) = w−1

j CY (Q)wj . Since Q ∼=DY U/M1 and CH(U/M1) 6=
H, we obtain CH(Q) 6= H and H = w−1

j Hwj 6= w−1
j CH(Q)wj = CH(Qwj) =

CH(V ). Since V is a DY –submodule and H is normal in Y , CV (H) is a DY –
submodule. It follows that CV (H) = 〈0〉. On the other hand, B ≤ ζ∞DH(A)
and, in particular, CV (H) 6= 〈0〉. This contradiction shows that QDG ∩B =
〈0〉. Since A/B is a simple DG–module, QDG + B = A. But the choice of
M implies that QDG = M and we assumed that M ∩ B 6= 〈0〉, so we arrive
at a contradiction.

Thus we may assume that Q1 6= 〈0〉. Note that Q can be generated by
any element a ∈ Q \ M1. If z ∈ X, then z ∈ ζ(Y ). By [10, Lemma 14],
Q(z − 1) 6= Q. Since Q is a minimal element of Σ1, Q(z − 1) 6∈ Σ1. This
means that Q(z − 1) + M1 6= U . It follows that Q(z − 1) ≤ M1 because
the DY –module U/M1 is simple. Since z ∈ ζ(Y ), the mapping φz : u 7→
u(z−1), u ∈ U , is a DY –endomorphism. Thus the factor Q(z−1)/Q1(z−1)
is a DY –epimorphic image of Q/Q1. Since Q/Q1 is a simple DY –module,
we have either Q(z − 1)/Q1(z − 1) ∼=DY Q/Q1 or Q(z − 1) = Q1(z − 1).
We have already proved that CY (Q/Q1) does not contain H and so, in the
first case, CY (Q(z − 1)/Q1(z − 1)) does not contain H. On the other hand,
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Q(z − 1) ≤M1 and we have already shown that the centralizer of every chief
DY –factor of M1 contains H. So the first case is impossible and we therefore
have Q(z − 1) = Q1(z − 1). In this case Q = Q1 + CQ(z). Since z ∈ ζ(Y ),
CQ(z) is a DY –submodule of Q and thus

U = M1 +Q = M1 +Q1 + CQ(z) = M1 + CQ(z),

which yields CQ(z) ∈ Σ1. By the choice of Q we have Q = CQ(z). Since this
is true for every z ∈ X, we have Q = CQ(X) and, in particular, Q ≤ CM (X).
Since U 6= M1, we deduce that M1 cannot contain CM (X). Since M/M1 is
a simple DG–module and X is normal in G, M1 + CM (X) = M . Therefore
A = B +M = B +M1 +CM (X) = B +CM (X) and, by the choice of M , we
deduce that M = CM (X). Hence X ≤ CG(M) = 〈1〉, a contradiction which
shows that M ∩B = 〈0〉. Therefore A = B ⊕M , as required. �

Theorem 3.5. Let G be an FC–hypercentral group, H a normal hyper-
central subgroup of G, D a Dedekind domain, A an artinian DG–module.
Then A has the Z–DH–decomposition.

Proof. Suppose that the result is false. If Σ is the family of all DG–
submodules B of A that do not have the Z–DH–decomposition, then clearly
Σ 6= ∅. Since A is an artinian DG–module, Σ has a minimal element C. By
[11, Corollary 3 to Lemma 2], C has a unique maximal DG–submodule M
having the Z–DH–decomposition. By the choice of C, M must contain every
proper DG–submodule. In particular, M is a maximal DG–submodule of C.

Let M = M1⊕M2, where M1 = ζ∞DH(M) is the corresponding hypercenter
and M2 = ζ∗DH(M) the hypereccenter. Since H is a normal subgroup of G,
ζDH(C/M) is a DG–submodule of C/M . Then either ζDH(C/M) = C/M or
ζDH(C/M) = 〈0〉. Suppose first that ζDH(C/M) = C/M and consider the
factor module C/M1. By Lemma 3.3, there exists a DG–submodule M3/M1

such that C/M1 = M/M1 ⊕ M3/M1. In this case M3 = ζ∞DH(C) and so
C = M3 ⊕M2. Let ζDH(C/M) = 〈0〉. By Lemma 3.4, there exists a DG–
submodule M4/M2 such that C/M2 = M/M2 ⊕ M4/M2 and we arrive at
M4 = ζ∗DH(C). Again C = M1 ⊕M4. �

If D = Z and G = H, we obtain [18, Theorem 1’].

4. Proof of main results

Proof of Theorem B. Since G is infinite, G 6∈ X . Suppose that A does
not have the Baer X -DG-decomposition. Thus if Σ is the family of all DG–
submodules B of A that do not have the X -DG-decomposition, then clearly
Σ 6= ∅. Since A is an artinian DG–module, Σ has a minimal element C. By
[11, Corollary 4], C contains a unique maximal DG–submodule M having
the X–DG–decomposition. By the choice of C we see that M contains every
proper DG–submodule of C and so M is a maximal DG–submodule of C.
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Let M = M1 ⊕M2, where M1 = HZX−DG(M) and M2 = HEX−DG(M).
Suppose first that G/CG(C/M) 6∈ X and consider the factor module C/M2.
In other words, we may assume that M = HZX−DG(M). By [10, Theorem
3], C = HZF−DG(C) ⊕HEF−DG(C). Since C is indecomposable and M ≤
HZF−DG(C), C = HZF−DG(C). In particular, the factor module C/M is
finite. Let S be the X–residual of G. If S = 〈1〉, then G ∈ RX . Since X is
infinitely hereditary for the class of FC–hypercentral groups, the finite factor
group G/CG(C/M) belongs to X . This contradiction shows that this case
cannot occur and so S 6= 〈1〉.

The group G has an ascending series of normal subgroups

〈1〉 = G0 ≤ G1 ≤ · · · ≤ Gα ≤ Gα+1 ≤ · · ·Gγ = G

such that G/CG(Gα+1/Gα) ∈ X for every α < γ.
It follows that

⋂
α<γ CG(Gα+1/Gα) ≥ S. By [9, Theorem 1], the Baer

radical of G contains
⋂
α<γ CG(Gα+1/Gα). Note that the Baer radical of the

group G is locally nilpotent ([1], [8]) and a locally nilpotent FC–hypercentral
group is hypercentral, so that, in particular, S is hypercentral. Since G/S ∈
RX , CG(C/M) 6≥ S. Further, M has an ascending series of DG–submodules

〈0〉 = U0 ≤ U1 ≤ · · ·Uα ≤ Uα+1 ≤ · · ·Uγ = M

such that G/CG(Uα+1/Uα) ∈ X for every α < γ.
It follows that

⋂
α<γ CG(Uα+1/Uα) ≥ S and thus M is DS–hypercentral.

We have already remarked that CS(C/M) 6= S. Therefore M = ζ∞DH(C). By
Theorem 3.5, C = M ⊕E, where E = HEI−DG(M). Since E ∼=DG C/M , we
get E = HEX−DG(A), a contradiction.

Suppose now that G/CG(C/M) ∈ X and consider the factor module C/M1.
In other words, we may assume that M = HEX−DG(M). By [10, Theo-
rem 3], C = HZF−DG(C) ⊕ HEF−DG(C). Since C is indecomposable and
G/CG(C/M) is finite, C = HZF−DG(C) again. The DG–submodule M has
an ascending series of DG–submodules

〈0〉 = U0 ≤ U1 ≤ · · · ≤ Uα ≤ Uα+1 ≤ · · ·Uγ = M

such that Uα+1/Uα is a DG–chief factor and G/CG(Uα+1/Uα) 6∈ X , if α < γ.
It follows that CG(Uα+1/Uα) 6≥ S and therefore ζDS(Uα+1/Uα) = 〈0〉 for

every α < γ, which means that M = ζ∗DH(C). By Theorem 3.5, C = M ⊕E,
where E = ζ∞DH(C). Since E ∼=DG C/M , we obtain E = HZX−DG(A), which
again is a contradiction. �

Proof of Corollary B1. It suffices to show that the formation of all finite
soluble groups is infinitely hereditary for the class of FC–hypercentral groups.
To do this, it is enough to show that if an FC–hypercentral group G belongs
to the class R(S ∩ F), then it is locally soluble, for G is then hyperabelian
and its finite factor groups are therefore soluble. Let K be a finitely generated
subgroup of G. By Corollary 2.6, K is nilpotent–by–finite. In particular, K
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satisfies Max and so K has a maximal normal soluble subgroup S. Assume
that K 6= S. Then K contains a subnormal subgroup L such that L ≥ S
and L/S is finite non-abelian simple. Since L ∈R(S ∩ F), L has a family
{Lλ | λ ∈ Λ} of normal subgroups such that each L/Lλ is finite soluble and⋂
λ∈Λ Lλ = 〈1〉. If we assume that some LλS 6= L, then L/LλS must be a

finite simple non-abelian group. This contradiction shows that LλS = L, for
each λ ∈ Λ. Therefore L/Lλ = LλS/Lλ ∼= S/(S ∩ Lλ). It follows that each
L/Lλ is a finite soluble group of derived length at most d, where d is the
derived length of the soluble radical S. By Remak’s theorem L ≤

∏
λ∈Λ L/Lλ

and so L is a soluble subgroup of derived length at most d. In particular,
L = S, a contradiction which shows K = S. Hence K is soluble. �

Proof of Corollary B4. Let GX be the X–residual of G. Since G/GX is
residually finite, this factor group becomes finite. This means that any for-
mation X of finite groups is infinitely hereditary for the class of Chernikov
groups. The result then follows from Theorem B. �

Proof of Theorem C. Since G is infinite, G 6∈ X . Suppose that A does not
have the Baer X -DG-decomposition. If Σ is the family of all DG–submodules
B of A that do not have the X -DG-decomposition, then clearly Σ 6= ∅. Since
A is an artinian DG–module, Σ has a minimal element C. By [11, Corollary
4], C contains a unique maximal DG–submodule M having the Baer X–DG–
decomposition. By the choice of C, we deduce that M contains every proper
DG–submodule of C and, in particular, M is a maximal DG–submodule of
C. Let c ∈ C \M . Thus M does not contain cDG. This means that C= cDG.
Since G is finitely generated, by Lemma 2.4, G is nilpotent–by–finite. Since
a Dedekind domain is noetherian, the group ring DG is noetherian (see [13,
Corollary of Lemma 5.35]). It follows that the cyclic DG–submodule C is
noetherian and, since it is also artinian, C has a finite composition series.
Then Theorem A gives us a contradiction. �
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