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SOME SUBGROUPS DEFINED BY IDENTITIES

WOLFGANG P. KAPPE

Meinem verehrten Lehrer Reinhold Baer zum hundertsten Geburtstag gewidmet

Abstract. The subgroups studied in this paper are generalizations of

the subgroup R2(G) = {x ∈ G|[x, g, g] = 1, ∀g ∈ G} of right 2-Engel
elements of G. It is shown that they are actually partial margins and

their embedding in G is investigated.

1. Introduction

Let G be a group and f(x0, x1, . . . , xm) a word in x0, . . . , xm. Define a
subset B(f) of G by

B(f)(G) = {x ∈ G | f(x, g1, . . . , gm) = 1, ∀g1, . . . , gm ∈ G}.
In general B(f)(G) is not a subgroup, but it is always a characteristic set. The
terms Zm(G) of the upper central series are familiar examples, and they are
subgroups. On the other hand, f(x0) = x2

0 and f(x0, x1) = [x0, x1, x0] are
simple examples where B(f)(G) is not a subgroup. The set Rn(G) of right
n-Engel elements of G is defined by

Rn(G) = {x ∈ G | [x, ng] = 1, ∀g ∈ G},
so it is B(f)(G) for the word f(x0, x1) = [x0,nx1]. Here commutators are de-
noted by [x, y] = x−1y−1xy = [x, 1y], [x1, . . . , xn, xn+1] = [[x1, . . . , xn], xn+1],
and [x, n+1y] = [[x, ny], y].

For n = 1 this is a subgroup, namely R1(G) = Z1(G). For n = 2 again
R2(G) is a subgroup [4], but for n = 3, an example by I.D. Macdonald [8]
shows that R3(G) is in general not a subgroup. More recently, Nickel [10]
has shown that for any integer n ≥ 3 there is a group G with Rn(G) not a
subgroup.

There are other ways of associating subsets of G with a given word
f(x0, x1, . . . , xm). The margin F ∗(G) introduced by P. Hall [2] and the partial
margins F ∗i (G) investigated by L.C. Kappe [3] are examples.
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Definition 1.1. For a given word f(x0, . . . , xm) define the i-th partial
margin of G as

F ∗i (G) = {x ∈ G | f(a0, . . . , xai−1, . . . , am) = f(a0, . . . , ai−1, . . . , am),

∀a0, . . . , am ∈ G}.

The margin F ∗(G) is then the intersection of all the F ∗i (G).

Unlike the sets B(f)(G), the margin and the partial margins are always
characteristic subgroups. If the word f satisfies f(1, x1, . . . , xm) = 1, then for
x ∈ F ∗1 (G) and a0 = 1 it follows from

f(x, a1, . . . , am) = f(1, a1, . . . , am) = 1

that F ∗1 (G) ⊆ B(f)(G). The subgroups Bn(G) studied in this paper are
generalizations of R2(G). To simplify notation for B(f)(G) and the first partial
margin F ∗1 (G) for the word

f(x0, x1, . . . , xn+1) = [x0, x1, . . . , xn+1, x1]

we give the following definition.

Definition 1.2. For a positive integer n let

Bn(G) = {x ∈ G | [x, g, a1, . . . , an, g] = 1, ∀g, a1, . . . , an ∈ G}
Cn(G) = {x ∈ G | [xa0, g, a1, . . . , an, g] = [a0, g, a1, . . . , an, g],

∀g, a0, . . . , an ∈ G}.

As observed above, Cn(G) ⊆ Bn(G). It will be shown that Cn(G) = Bn(G).
Thus Bn(G) is a characteristic subgroup of G. The remaining questions con-
cern the structure of Bn(G) and the embedding of Bn(G) in G. The structure
of Bn(G) has already been determined by I.D. Macdonald [6], [7]: Bn(G) is
nilpotent of class n+ 2 at most.

2. Preliminaries

Since R2(G) = {x ∈ G | [x, g, g] = 1, ∀g ∈ G} is both a tool and a model
for the investigation of Bn(G), the relevant facts are summarized in the next
theorem.

Theorem 2.1. Let G be a group. Then:

R2(G) is a characteristic subgroup of G, and R2(G) is the first
partial margin of [x0, x1, x1].

(2.1.1)
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For x, y ∈ R2(G) and a, b, c ∈ G we have:
(a) The normal closure xG of x is abelian.
(b) [x, a, b] = [x, b, a]−1,
(c) [x, [a, b]] = [x, a, b]2,
(d) [x, [a, b, c]] = 1,
(e) [[x, a], [b, c]] = 1,
(f) [x, a, b, c]2 = 1,
(g) [x, y, a]3 = 1,
(h) [x, y, a, b] = 1.

(2.1.2)

Z2(G) ⊆ R2(G), and if [R2(G), 3G] has no elements of order 2,
then R2(G) ⊆ Z3(G).

(2.1.3)

For every positive integer m there exists a finite group G with
R2(G) * Zm(G).

(2.1.4)

Proof. The fact that R2(G) is a subgroup is proven in [4] and that it is
the first partial margin of [x0, x1, x1] is due to Teague [11]. The identities (a)
through (d) are from [4]. Concerning (f), it was noted in [9] that [x, a, b, c]2 =
1, improving on [x, a, b, c]4 = [x, [a, b, c]] = 1. Furthermore, [[x, a], [b, c]] =
[x, a, b, c]2 = 1 gives (e), since [x, g] ∈ R2(G) by (2.1.1). Identities (g) and (h)
generalize Levi’s results on 2-Engel groups [5]. We have [x, y, a] = [x, a, y]−1 =
[y, [x, a]] = [y, x, a]2 = [[x, y]−1, a]2 = [x, y, a]−2 from (b), (c), and (a). Hence
[x, y, a]3 = 1, proving (g). Further, 1 = [[x, y, a]3, b] = [x, y, a, b]3 combined
with (f) yields (h).

For (2.1.3) note that [x, a, b, c] ∈ [R2(G), 3G]. The result then follows from
(f) of (2.1.2).

Finally, (2.1.4) is due to Gruenberg [1]. Let G be the wreath product of a
group of order 2 and a finite elementary abelian 2-group H. If the base group
of G is denoted by N , then both N and G/N have exponent 2 and N 6⊆ Zm(G)
for sufficiently large H. For x ∈ N and g ∈ G, g2 ∈ N , and N abelian of
exponent 2 gives 1 = [x, g2] = [x, g][x, g, g][x, g] = [x, g]2[x, g, g] = [x, g, g], so
N ⊆ R2(G) and R2(G) 6⊆ Zm(G). �

In the next lemma and throughout the rest of the paper we will use the
following familiar commutator expansion formulas without further reference:

[xy, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z];

[x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z];

[x, y]z = [xz, yz] = [x, y][x, y, z].

Lemma 2.2. If [b, g1, . . . , gm−1, gm, c] = 1 for fixed b, g1, . . . , gm−1, c ∈ G
and all gm ∈ G, then [[b, g1, . . . , gm−1, gm]G, cG] = 1.
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Proof. Commutator expansion gives

1 = [[b, g1, . . . , gm−1, gmd], c] = [[b, g1, . . . , gm−1, d][b, g1, . . . , gm−1, gm]d, c]

= [[b, g1, . . . , gm−1, gm]d, c]. �

Lemma 2.3. Let x ∈ Bn(G). Then for all g, a1, . . . , an, w0, . . . , wn ∈ G
we have

[[x, g, a1, . . . , an]G, gG] = 1,(2.3.1)

[[x, g, a1, . . . , an]G, xG] = 1,(2.3.2)

[. . . [x, g]w0 , a1]w1 , . . . , an]wn , g] = 1.(2.3.3)

Proof. For x ∈ Bn(x) we have [x, g, a1, . . . , an, g] = 1. Thus (2.3.1) fol-
lows directly from Lemma 2.2 for m = n + 1, b = x, g1 = c = g and
g2 = a1, . . . , gm = an. For (2.3.2) note that

1 = [x, xg, a1, . . . , an, xg] = [x, g, a1, . . . , an, g][x, g, a1, . . . , an, x]g

= [x, g, a1, . . . , an, x]g,

and (2.3.2) follows from Lemma 2.2.
To prove (2.3.3), note that

[. . . [x, g]w0 , a1]w1 , . . . , an]wn = [[x, g], av1
1 , . . . , a

vn
n ]vn+1

for suitable v1, . . . , vn+1 ∈ G, and observe that (2.3.1) holds for all ai ∈ G.
Thus (2.3.3) follows. �

For f ∈ G, define [f,G] = 〈[f, h] | h ∈ G〉. Then [f, h]k = [f, k]−1[f, hk] for
f, h, k ∈ G shows that [f,G] is a normal subgroup of G. If N is normal, define
inductively [N, i+1G] = [[N, iG], G] and note that [N,Gi] ⊆ [N, iG], where Gi
is the i-th term of the lower central series. For x ∈ Bn(G) and N = [x, g]G

we have [N, iG] = 〈[x, g, g1, . . . , gi] | g1, . . . , gi ∈ G〉, and so (2.3.1) says that
[N, nG, g] = 1. In the following lemma a simplification is given for some terms
that occur in commutator expansions.

Lemma 2.4. If x ∈ Bn(G), v1, . . . , vn ∈ [x, g]G and a, b, a1, . . . , an ∈ G,
then

[. . . [a, b, a1]v1 , . . . , an]vn , g] = [[a, b, a1, . . . , an], g].

Proof. Set N = [x, g]G and observe that [a, b, a1]v1 = [a, b, a1][a, b, a1, v1] ≡
[a, b, a1] modulo [N, 3G], since [v1, [a, b, a1]] ∈ [N,G3] ⊆ [N, 3G]. Assume
inductively that yv ≡ y modulo [N, k+2G] for y ∈ Gk+2 and v ∈ N . Then
yv = zy for some z ∈ [N, k+2G] and

[yv, h] = [zy, h] = [z, h]y[y, h] ≡ [y, h] modulo [N, k+3G].

Since [[N, nG], g] = 1 by (2.3.1), this proves the lemma. �
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3. Basic results for Bn(G)

The goal of this section is to prove the following results for Bn(G).

Theorem 3.1. For all positive integers n and a group G we have:

Bn(G) = Cn(G) and hence Bn(G) is a characteristic subgroup
of G.

(3.1.1)

R2(G) ⊆ B1(G) and Bn(G) ⊆ Bn+1(G).(3.1.2)

[x, g, a1, . . . , an, h, h] = 1 for x ∈ Bn(G) and all
g, a1, . . . , an, h ∈ G, i.e., [x, g, a1, . . . , an] ∈ R2(G).

(3.1.3)

[x, g, g, a1, . . . , an, h] = 1 for x ∈ Bn(G) and all
g, a1, . . . , an, h ∈ G,
i.e., xZn+1(G)/Zn+1(G) ⊆ R2(G/Zn+1(G)).

(3.1.4)

[x, g, a1, . . . , an, b, c, d]2 = 1 for x ∈ Bn(G),
g, a1, . . . , an, b, c, d ∈ G.

(3.1.5)

[x, g, a1, . . . , an, h] = [x, h, a1, . . . , an, g]−1 for x ∈ Bn(G),
g, a1, . . . , an, h ∈ G.

(3.1.6)

Proof. We have [xa, g] = [x, g]a[a, g] and by induction

[xa, g, a1, . . . , an] = [[[x, g]w0 , a1]w1 , . . . , an]wn [a, g, a1, . . . , an]

for suitable w0, w1, . . . , wn ∈ G. Since x ∈ Bn(G), the first factor on the right
commutes with g by (2.3.3). Hence [xa, g, a1, . . . , an, g] = [a, g, a1, . . . , an, g],
i.e., Bn(G) ⊆ Cn(G), and (3.1.1) follows since Cn(G) ⊆ Bn(G) was noted
before.

To prove (3.1.2), let x ∈ R2(G). Since R2(G) is normal in G, also [x, g] ∈
R2(G) and from (b) of (2.1.2) we have

[[x, g], a, g] = [[x, g], g, a]−1 = [1, a]−1 = 1,

proving R2(G) ⊆ B1(G). For x ∈ Bn(G) we have [x, g, a1, . . . , an, an+1] ∈
[x, g, a1, . . . , an]G, so (2.3.2.) yields [x, g, a1, . . . , an, an+1, g] = 1 and Bn(G) ⊆
Bn+1(G). Commutator expansion of [x, gh, a1, . . . , an] yields

[x, gh, a1, . . . , an] = [[x, h][x, g]h, a1, . . . , an] = y1y2,

y1 = [. . . [x, h, a1]w1 , . . . , an]wn ,

y2 = [[x, g]h, a1, . . . , an]

for suitable w1, . . . , wn ∈ G. By (2.3.3) we have [y1, h] = 1 and [y2, g] = 1.
Then the commutator expansion of 1 = [x, gh, a1, . . . , an, gh] gives

1 = [y1, gh]y2 [y2, gh] = [y1, h]y2 [y1, g]hy2 [y2, h][y2, g]h.

Hence 1 = [y1, g]hy2 [y2, h].
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Commuting with h and observing that [[y1, g]hy2 , h] = 1 by (2.3.3), we
obtain [y2, h, h] = 1. The substitution of ahi for ai finally gives

1 = [[x, g]h, ah1 , . . . , a
h
n, h, h] = [x, g, a1, . . . , an, h, h]h,

proving (3.1.3).
To prove (3.1.4), substitute [x, g] for x in 1 = [y1, g]hy2 [y2, h] and note that

[y1, g] = 1 by (2.3.3). Thus 1 = [y2, h] = [[x, g, g]h, a1, . . . , an, h] for all ai ∈ G,
proving (3.1.4).

Next, (3.1.5) follows from (3.1.3) and (f) of (2.1.2). Finally, for (3.1.6),
commutator expansion of 1 = [x, gh, a1, . . . , an, gh], as in the proof of (3.1.3),
leads to 1 = [y1, g]hy2 [y2, h], where y1 = [. . . [x, h, a1]w1 , . . . , an]wn with

w1 = [x, g]h, w2 = [w1, a1], . . . , wn = [wn−1, an−1],

which are all elements of [x, g]G. Thus Lemma 2.4 implies that [y1, g] =
[x, h, a1, . . . , an, g]. We have [y1, g]hy2 = [y1, g] by (2.3.1) and (2.3.2), since
y2 = [[x, g]h, a1, . . . , an] ∈ xG. To simplify [y2, h], write [x, g]h = [x, g][x, g, h]
and expand

[y2, h] = [. . . [x, g, a1]v1 , . . . , an]vn , h]vn+1 [x, g, h, a1, . . . , an, h],

where

v1 = [x, g, h], v2 = [v1, a1], . . . , vn = [vn−1, an−1], vn+1 = [vn, an].

Here [x, g, h, a1, . . . , an, h] = 1, since [x, g] ∈ Bn(G) and

[. . . [x, g, a1]v1 , . . . , an]vn , h]vn+1 = [x, g, a1, . . . , an, h]vn+1

by Lemma 2.4 and (2.3.2), since v1, . . . , vn ∈ [x, g, h]G and vn+1 ∈ xG. Alto-
gether we have

1 = [y1, g]hy2 [y2, h] = [x, h, a1, . . . , an, g][x, g, a1, . . . , an, h],

proving (3.1.6). �

4. The embedding of Bn(G)

The following simple observation leads to an estimate of the embedding of
Bn(G) in the upper central series. From (3.1.5) we have

[x, g, a1, . . . , an, b, c, d]2 = 1

for x ∈ Bn(G). So, if R2(G) or Bn(G) have no elements of order 2, then
Bn(G) ⊆ Zn+4(G). We will show next that this can be improved for even n.

Lemma 4.1. Let N be a normal subgroup of G and i ≥ 1. If y1, y2 ∈
[N, iG], a ∈ G and y ≡ y1y2 mod [N,i+2G], then [y, a] ≡ [y1, a][y2, a] mod
[N, i+3G].
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Proof. By assumption y = zy1y2 with z ∈ [N, i+2G] and y1, y2 ∈ [N, iG].
Then [z, a]y1y2 ∈ [N, i+3G] and [y1, a, y2] ∈ [N, i+1G,G

′] ⊆ [N, i+3G] so that
[y, a] = [z, a]y1y2 [y1, a][y1, a, y2][y2, a] ≡ [y1, a][y2, a] mod [N, i+3G]. �

Lemma 4.2. For x ∈ Bn(G) and g, t, h, a1, . . . , an ∈ G we have

[x, t, h, a1, . . . , an, g] ≡ [x, g, a1, . . . , an, t, h]−1 mod [Bn(G),n+4G].

Proof. This result is obtained from (3.1.6) by substituting th for h and
commutator expansion. Let N = xG. Then [x, th] = [x, h][x, t][x, t, h] with
[x, h], [x, t], [x, t, h] ∈ [N,G]. Apply Lemma 4.1 to obtain

[x, th, a1] ≡ [x, h, a1][x, t, a1][x, t, h, a1] mod [N, 4G]

and by induction,

[x, th, a1, . . . , an, g] ≡ [x, h, a1 . . . , an, g][x, t, a1, . . . , an, g][x, t, h, a1, . . . , an, g]

modulo [N, n+4G]. We also have

[x, g, a1, . . . , an, th] = [x, g, a1, . . . , an, h][x, g, a1, . . . , an, t][x, g, a1, . . . , an, t, h].

All these commutators commute by (2.3.2), and (3.1.5) gives

[x, y, a1, . . . , an, g] = [x, g, a1, . . . , an, y]−1

for y = th, t and h. Together this yields

[x, t, h, a1, . . . , an, g] ≡ [x, g, a1, . . . , an, t, h]−1 mod [Bn(G), n+4G],

the desired result. �

That some restrictions on elements of order 2 are needed for our estimates
follows from R2(G) ⊆ Bn(G) and (2.1.4).

Theorem 4.3. Let G be a group with [Bn(G), n+4G] having no elements
of order 2. Then:

Bn(G) ⊆ Zn+4(G).(4.3.1)

[x, t, h, a1, . . . , an, g] = [x, g, a1, . . . , an, t, h]−1.(4.3.2)

If n is even and [Bn(G), n+3G] has no elements of order 2,
then Bn(G) ⊆ Zn+3(G).

(4.3.3)

Proof. From (3.1.5) we have [x, g, a1, . . . , an, b, c, d]2 = 1 and [x, g, a1, . . . ,
an, b, c, d] ∈ [Bn(G), n+4G]. The assumption gives [x, g, a1, . . . , an, b, c, d] = 1
and so (4.3.1) holds. For (4.3.2) note that the elements [x, g, a1, . . . , an, b, c, d]
generate [Bn(G), n+4G]; hence [Bn(G), n+4G] = 1 and (4.3.2) follows by
Lemma 4.2.

Finally, since [Bn(G), n+4G] ⊆ [Bn(G), n+3G] and by assumption
[Bn(G), n+3G] has no elements of order 2, we have from (4.3.2) that

[x, t, h, a1, . . . , an, g] = [x, g, a1, . . . , an, t, h]−1.
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So repeated application gives

[x, g, a1, . . . , an, t, h] = [x, g, a1, . . . , an, t, h](−1)n+3
,

since the permutation of the arguments is a cycle of length n + 3. For n
even we have [x, g, a1, . . . , an, t, h]2 = 1 and [x, g, a1, . . . , an, t, h] = 1, since
[x, g, a1, . . . , an, t, h] ∈ [Bn(G), n+3G], which has no elements of order 2 by
assumption, proving (4.3.3). �

5. An example

From Theorem 4.3 we see that both B1(G) and B2(G) are contained in
Z5(G) if there are no elements of order 2. The following example shows that
this can not be improved to B1(G) ⊆ Z4(G).

Let p be an odd prime and N an elementary abelian group of order p30

with generators x1, . . . , x5, y1, . . . , y12, z1, . . . , z12, v.
Automorphisms a, b, c, d of N of order p are defined in the table below. Let

H = 〈a, b, c, d〉 and G = H · N , the semidirect product of N by H. The six
commutators [a, b], [a, c], [a, d], [b, c], [b, d], [c, d] are calculated, the results also
being listed in the table. From this one can see that [s, t] commutes with r for
any s, t, r ∈ {a, b, c, d}. This proves that H has class 2 and order p10. Each
element h ∈ H can then be written as

h = ai1bi2ci3d i4 [a, b]j1 [a, c]j2 [a, d]j3 [b, c]j4 [b, d]j5 [c, d]j6

with integers i1, . . . , i4, j1, . . . , j6 which are unique mod p. Since

[x1, a, b, c, d] = [x2, b, c, d] = [y1, c, d] = [z1, d] = v 6= 1,

we have x1 6∈ Z4(G). To show that x1 ∈ B1(G), it suffices to prove [x1, g, h, g] =
1 for g, h ∈ H, since N is abelian. The verification of [x1, g, h, g] = 1 is
straightforward but rather lengthy and omitted here.
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a b c d [a, b] [a, c] [a, d] [b, c] [b, d] [c, d]

x1 x1x2 x1x3 x1x4 x1x5 x1y1y
−1
4 x1y2y

−1
7 x1y3y

−1
10 x1y5y

−1
8 x1y6y

−1
11 x1y9y

−1
12

x2 x2 x2y1 x2y2 x2y3 x2 x2 x2 x2z1z
−1
3 x2z2z

−1
4 x2z5z

−1
6

x3 x3y4 x3 x3y5 x3y6 x3 x3z3z7 x3z4z8 x3 x3 x3z10z
−1
11

x4 x4y7 x4y8 x4 x4y9 x4z1z
−1
7 x4 x4z6z9 x4 x4z4z12 x4

x5 x5y10 x5y11 x5y12 x5 x5z2z
−1
8 x5z5z

−1
9 x5 x5z10z

−1
12 x5 x5

y1 y1 y1 y1z1 y1z2 y1 y1 y1 y1 y1 y1v
2

y2 y2 y2z3 y2 y2z5 y2 y2 y2 y2 y2v
−2 y2

y3 y3 y3z4 y3z6 y3 y3 y3 y3 y3v
2 y3 y3

y4 y4 y4 y4z7 y4z8 y4 y4 y4 y4 y4 y4v
−2

y5 y5z
−1
3 y5 y5 y5z10 y5 y5 y5v

2 y5 y5 y5

y6 y6z
−1
4 y6 y6z11 y6 y6 y6v

−2 y6 y6 y6 y6

y7 y7 y7z
−1
7 y7 y7z9 y7 y7 y7 y7 y7v

2 y7

y8 y8z
−1
1 y8 y8 y8z12 y8 y8 y8v

−2 y8 y8 y8

y9 y9z
−1
6 y9z

−1
11 y9 y9 y9v

2 y9 y9 y9 y9 y9

y10 y10 y10z
−1
8 y10z

−1
9 y10 y10 y10 y10 y10v

−2 y10 y9

y11 y11z
−1
2 y11 y11z

−1
12 y11 y11 y11v

2 y11 y11 y11 y11

y12 y12z
−1
5 y12z

−1
10 y12 y12 y12v

−2 y12 y12 y12 y12 y12

z1 z1 z1 z1 z1v z1 z1 z1 z1 z1 z1

z2 z2 z2 z2v
−1 z2 z2 z2 z2 z2 z2 z2

z3 z3 z3 z3 z3v
−1 z3 z3 z3 z3 z3 z3

z4 z4 z4 z4v z4 z4 z4 z4 z4 z4 z4

z5 z5 z5v z5 z5 z5 z5 z5 z5 z5 z5

z6 z6 z6v
−1 z6 z6 z6 z6 z6 z6 z6 z6

z7 z7 z7 z7 z7v
−1 z7 z7 z7 z7 z7 z7

z8 z8 z8 z8v z8 z8 z8 z8 z8 z8 z8

z9 z9 z9v
−1 z9 z9 z9 z9 z9 z9 z9 z9

z10 z10v
−1 z10 z10 z10 z10 z10 z10 z10 z10 z10

z11 z11v z11 z11 z11 z11 z11 z11 z11 z11 z11

z12 z12v z12 z12 z12 z12 z12 z12 z12 z12 z12

v v v v v v v v v v v
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