SOME SUBGROUPS DEFINED BY IDENTITIES

WOLFGANG P. KAPPE

Meinem verehrten Lehrer Reinhold Baer zum hundertsten Geburtstag gewidmet

ABSTRACT. The subgroups studied in this paper are generalizations of the subgroup $R_2(G) = \{x \in G | [x,g,g] = 1, \ \forall g \in G \}$ of right 2-Engel elements of G. It is shown that they are actually partial margins and their embedding in G is investigated.

1. Introduction

Let G be a group and $f(x_0, x_1, \ldots, x_m)$ a word in x_0, \ldots, x_m . Define a subset $B_{(f)}$ of G by

$$B_{(f)}(G) = \{x \in G \mid f(x, g_1, \dots, g_m) = 1, \forall g_1, \dots, g_m \in G\}.$$

In general $B_{(f)}(G)$ is not a subgroup, but it is always a characteristic set. The terms $Z_m(G)$ of the upper central series are familiar examples, and they are subgroups. On the other hand, $f(x_0) = x_0^2$ and $f(x_0, x_1) = [x_0, x_1, x_0]$ are simple examples where $B_{(f)}(G)$ is not a subgroup. The set $R_n(G)$ of right n-Engel elements of G is defined by

$$R_n(G) = \{x \in G \mid [x, ng] = 1, \ \forall g \in G\},\$$

so it is $B_{(f)}(G)$ for the word $f(x_0, x_1) = [x_{0,n}x_1]$. Here commutators are denoted by $[x, y] = x^{-1}y^{-1}xy = [x, y], [x_1, \dots, x_n, x_{n+1}] = [[x_1, \dots, x_n], x_{n+1}],$ and [x, y] = [[x, y], y].

For n=1 this is a subgroup, namely $R_1(G)=Z_1(G)$. For n=2 again $R_2(G)$ is a subgroup [4], but for n=3, an example by I.D. Macdonald [8] shows that $R_3(G)$ is in general not a subgroup. More recently, Nickel [10] has shown that for any integer $n\geq 3$ there is a group G with $R_n(G)$ not a subgroup.

There are other ways of associating subsets of G with a given word $f(x_0, x_1, \ldots, x_m)$. The margin $F^*(G)$ introduced by P. Hall [2] and the partial margins $F_i^*(G)$ investigated by L.C. Kappe [3] are examples.

Received August 30, 2002.

2000 Mathematics Subject Classification. 20F45, 20F12.

DEFINITION 1.1. For a given word $f(x_0, ..., x_m)$ define the *i*-th partial margin of G as

$$F_i^*(G) = \{ x \in G \mid f(a_0, \dots, xa_{i-1}, \dots, a_m) = f(a_0, \dots, a_{i-1}, \dots, a_m), \\ \forall a_0, \dots, a_m \in G \}.$$

The margin $F^*(G)$ is then the intersection of all the $F_i^*(G)$.

Unlike the sets $B_{(f)}(G)$, the margin and the partial margins are always characteristic subgroups. If the word f satisfies $f(1, x_1, \ldots, x_m) = 1$, then for $x \in F_1^*(G)$ and $a_0 = 1$ it follows from

$$f(x, a_1, \dots, a_m) = f(1, a_1, \dots, a_m) = 1$$

that $F_1^*(G) \subseteq B_{(f)}(G)$. The subgroups $B_n(G)$ studied in this paper are generalizations of $R_2(G)$. To simplify notation for $B_{(f)}(G)$ and the first partial margin $F_1^*(G)$ for the word

$$f(x_0, x_1, \dots, x_{n+1}) = [x_0, x_1, \dots, x_{n+1}, x_1]$$

we give the following definition.

Definition 1.2. For a positive integer n let

$$B_n(G) = \{x \in G \mid [x, g, a_1, \dots, a_n, g] = 1, \forall g, a_1, \dots, a_n \in G\}$$

$$C_n(G) = \{x \in G \mid [xa_0, g, a_1, \dots, a_n, g] = [a_0, g, a_1, \dots, a_n, g],$$

$$\forall g, a_0, \dots, a_n \in G\}.$$

As observed above, $C_n(G) \subseteq B_n(G)$. It will be shown that $C_n(G) = B_n(G)$. Thus $B_n(G)$ is a characteristic subgroup of G. The remaining questions concern the structure of $B_n(G)$ and the embedding of $B_n(G)$ in G. The structure of $B_n(G)$ has already been determined by I.D. Macdonald [6], [7]: $B_n(G)$ is nilpotent of class n+2 at most.

2. Preliminaries

Since $R_2(G) = \{x \in G \mid [x, g, g] = 1, \forall g \in G\}$ is both a tool and a model for the investigation of $B_n(G)$, the relevant facts are summarized in the next theorem.

Theorem 2.1. Let G be a group. Then:

(2.1.1) $R_2(G)$ is a characteristic subgroup of G, and $R_2(G)$ is the first partial margin of $[x_0, x_1, x_1]$.

- For $x, y \in R_2(G)$ and $a, b, c \in G$ we have: (2.1.2)
 - (a) The normal closure x^G of x is abelian.
 - (b) $[x, a, b] = [x, b, a]^{-1}$,
 - (c) $[x, [a, b]] = [x, a, b]^2$
 - (d) [x, [a, b, c]] = 1,
 - (e) [[x, a], [b, c]] = 1,
 - (f) $[x, a, b, c]^2 = 1,$ (g) $[x, y, a]^3 = 1,$

 - (h) [x, y, a, b] = 1.
- $Z_2(G) \subseteq R_2(G)$, and if $[R_2(G), {}_3G]$ has no elements of order 2, (2.1.3)then $R_2(G) \subseteq Z_3(G)$.
- (2.1.4)For every positive integer m there exists a finite group G with $R_2(G) \nsubseteq Z_m(G)$.

Proof. The fact that $R_2(G)$ is a subgroup is proven in [4] and that it is the first partial margin of $[x_0, x_1, x_1]$ is due to Teague [11]. The identities (a) through (d) are from [4]. Concerning (f), it was noted in [9] that $[x, a, b, c]^2 =$ 1, improving on $[x, a, b, c]^4 = [x, [a, b, c]] = 1$. Furthermore, [[x, a], [b, c]] = $[x, a, b, c]^2 = 1$ gives (e), since $[x, g] \in R_2(G)$ by (2.1.1). Identities (g) and (h) generalize Levi's results on 2-Engel groups [5]. We have $[x, y, a] = [x, a, y]^{-1} = [y, [x, a]] = [y, x, a]^2 = [[x, y]^{-1}, a]^2 = [x, y, a]^{-2}$ from (b), (c), and (a). Hence $[x, y, a]^3 = 1$, proving (g). Further, $1 = [[x, y, a]^3, b] = [x, y, a, b]^3$ combined with (f) yields (h).

For (2.1.3) note that $[x, a, b, c] \in [R_2(G), {}_3G]$. The result then follows from (f) of (2.1.2).

Finally, (2.1.4) is due to Gruenberg [1]. Let G be the wreath product of a group of order 2 and a finite elementary abelian 2-group H. If the base group of G is denoted by N, then both N and G/N have exponent 2 and $N \not\subseteq Z_m(G)$ for sufficiently large H. For $x \in N$ and $g \in G, g^2 \in N$, and N abelian of exponent 2 gives $1 = [x, g^2] = [x, g][x, g, g][x, g] = [x, g]^2[x, g, g] = [x, g, g]$, so $N \subseteq R_2(G)$ and $R_2(G) \not\subseteq Z_m(G)$.

In the next lemma and throughout the rest of the paper we will use the following familiar commutator expansion formulas without further reference:

$$[xy, z] = [x, z]^y[y, z] = [x, z][x, z, y][y, z];$$

$$[x, yz] = [x, z][x, y]^z = [x, z][x, y][x, y, z];$$

$$[x, y]^z = [x^z, y^z] = [x, y][x, y, z].$$

LEMMA 2.2. If $[b, g_1, \dots, g_{m-1}, g_m, c] = 1$ for fixed $b, g_1, \dots, g_{m-1}, c \in G$ and all $g_m \in G$, then $[[b, g_1, \dots, g_{m-1}, g_m]^G, c^G] = 1$.

Proof. Commutator expansion gives

$$1 = [[b, g_1, \dots, g_{m-1}, g_m d], c] = [[b, g_1, \dots, g_{m-1}, d][b, g_1, \dots, g_{m-1}, g_m]^d, c]$$
$$= [[b, g_1, \dots, g_{m-1}, g_m]^d, c].$$

LEMMA 2.3. Let $x \in B_n(G)$. Then for all $g, a_1, \ldots, a_n, w_0, \ldots, w_n \in G$ we have

$$(2.3.1) [[x, g, a_1, \dots, a_n]^G, g^G] = 1,$$

$$[[x, g, a_1, \dots, a_n]^G, x^G] = 1,$$

$$[\dots[x,g]^{w_0},a_1]^{w_1},\dots,a_n]^{w_n},g]=1.$$

Proof. For $x \in B_n(x)$ we have $[x, g, a_1, \ldots, a_n, g] = 1$. Thus (2.3.1) follows directly from Lemma 2.2 for $m = n + 1, b = x, g_1 = c = g$ and $g_2 = a_1, \ldots, g_m = a_n$. For (2.3.2) note that

$$1 = [x, xg, a_1, \dots, a_n, xg] = [x, g, a_1, \dots, a_n, g][x, g, a_1, \dots, a_n, x]^g$$
$$= [x, g, a_1, \dots, a_n, x]^g,$$

and (2.3.2) follows from Lemma 2.2.

To prove (2.3.3), note that

$$[\dots[x,g]^{w_0},a_1]^{w_1},\dots,a_n]^{w_n}=[[x,g],a_1^{v_1},\dots,a_n^{v_n}]^{v_{n+1}}$$

for suitable $v_1, \ldots, v_{n+1} \in G$, and observe that (2.3.1) holds for all $a_i \in G$. Thus (2.3.3) follows.

For $f \in G$, define $[f, G] = \langle [f, h] \mid h \in G \rangle$. Then $[f, h]^k = [f, k]^{-1}[f, hk]$ for $f, h, k \in G$ shows that [f, G] is a normal subgroup of G. If N is normal, define inductively $[N, {}_{i+1}G] = [[N, {}_iG], G]$ and note that $[N, G_i] \subseteq [N, {}_iG]$, where G_i is the i-th term of the lower central series. For $x \in B_n(G)$ and $N = [x, g]^G$ we have $[N, {}_iG] = \langle [x, g, g_1, \ldots, g_i] \mid g_1, \ldots, g_i \in G \rangle$, and so (2.3.1) says that $[N, {}_nG, g] = 1$. In the following lemma a simplification is given for some terms that occur in commutator expansions.

LEMMA 2.4. If $x \in B_n(G), v_1, \ldots, v_n \in [x, g]^G$ and $a, b, a_1, \ldots, a_n \in G$, then

$$[\dots[a,b,a_1]^{v_1},\dots,a_n]^{v_n},g]=[[a,b,a_1,\dots,a_n],g].$$

Proof. Set $N = [x,g]^G$ and observe that $[a,b,a_1]^{v_1} = [a,b,a_1][a,b,a_1,v_1] \equiv [a,b,a_1] \mod [N,_3G]$, since $[v_1,[a,b,a_1]] \in [N,G_3] \subseteq [N,_3G]$. Assume inductively that $y^v \equiv y \mod [N,_{k+2}G]$ for $y \in G_{k+2}$ and $v \in N$. Then $y^v = zy$ for some $z \in [N,_{k+2}G]$ and

$$[y^v, h] = [zy, h] = [z, h]^y [y, h] \equiv [y, h] \text{ modulo } [N, {}_{k+3}G].$$

Since $[N, {}_{n}G], g] = 1$ by (2.3.1), this proves the lemma.

3. Basic results for $B_n(G)$

The goal of this section is to prove the following results for $B_n(G)$.

Theorem 3.1. For all positive integers n and a group G we have:

- (3.1.1) $B_n(G) = C_n(G)$ and hence $B_n(G)$ is a characteristic subgroup of G.
- (3.1.2) $R_2(G) \subseteq B_1(G) \text{ and } B_n(G) \subseteq B_{n+1}(G).$
- (3.1.3) $[x, g, a_1, \dots, a_n, h, h] = 1 \text{ for } x \in B_n(G) \text{ and all } g, a_1, \dots, a_n, h \in G, i.e., [x, g, a_1, \dots, a_n] \in R_2(G).$
- (3.1.4) $[x, g, g, a_1, \dots, a_n, h] = 1 \text{ for } x \in B_n(G) \text{ and all } g, a_1, \dots, a_n, h \in G, i.e., <math>xZ_{n+1}(G)/Z_{n+1}(G) \subseteq R_2(G/Z_{n+1}(G)).$
- (3.1.5) $[x, g, a_1, \dots, a_n, b, c, d]^2 = 1 \text{ for } x \in B_n(G), \\ g, a_1, \dots, a_n, b, c, d \in G.$
- (3.1.6) $[x, g, a_1, \dots, a_n, h] = [x, h, a_1, \dots, a_n, g]^{-1} for x \in B_n(G),$ $g, a_1, \dots, a_n, h \in G.$

Proof. We have $[xa, g] = [x, g]^a [a, g]$ and by induction

$$[xa, g, a_1, \dots, a_n] = [[[x, g]^{w_0}, a_1]^{w_1}, \dots, a_n]^{w_n} [a, g, a_1, \dots, a_n]$$

for suitable $w_0, w_1, \ldots, w_n \in G$. Since $x \in B_n(G)$, the first factor on the right commutes with g by (2.3.3). Hence $[xa, g, a_1, \ldots, a_n, g] = [a, g, a_1, \ldots, a_n, g]$, i.e., $B_n(G) \subseteq C_n(G)$, and (3.1.1) follows since $C_n(G) \subseteq B_n(G)$ was noted before.

To prove (3.1.2), let $x \in R_2(G)$. Since $R_2(G)$ is normal in G, also $[x, g] \in R_2(G)$ and from (b) of (2.1.2) we have

$$[[x,g],a,g] = [[x,g],g,a]^{-1} = [1,a]^{-1} = 1,$$

proving $R_2(G) \subseteq B_1(G)$. For $x \in B_n(G)$ we have $[x, g, a_1, \ldots, a_n, a_{n+1}] \in [x, g, a_1, \ldots, a_n]^G$, so (2.3.2.) yields $[x, g, a_1, \ldots, a_n, a_{n+1}, g] = 1$ and $B_n(G) \subseteq B_{n+1}(G)$. Commutator expansion of $[x, gh, a_1, \ldots, a_n]$ yields

$$[x, gh, a_1, \dots, a_n] = [[x, h][x, g]^h, a_1, \dots, a_n] = y_1 y_2,$$
$$y_1 = [\dots [x, h, a_1]^{w_1}, \dots, a_n]^{w_n},$$
$$y_2 = [[x, g]^h, a_1, \dots, a_n]$$

for suitable $w_1, \ldots, w_n \in G$. By (2.3.3) we have $[y_1, h] = 1$ and $[y_2, g] = 1$. Then the commutator expansion of $1 = [x, gh, a_1, \ldots, a_n, gh]$ gives

$$1 = [y_1, gh]^{y_2}[y_2, gh] = [y_1, h]^{y_2}[y_1, g]^{hy_2}[y_2, h][y_2, g]^h.$$

Hence $1 = [y_1, g]^{hy_2}[y_2, h]$.

Commuting with h and observing that $[[y_1, g]^{hy_2}, h] = 1$ by (2.3.3), we obtain $[y_2, h, h] = 1$. The substitution of a_i^h for a_i finally gives

$$1 = [[x, g]^h, a_1^h, \dots, a_n^h, h, h] = [x, g, a_1, \dots, a_n, h, h]^h,$$

proving (3.1.3)

To prove (3.1.4), substitute [x, g] for x in $1 = [y_1, g]^{hy_2}[y_2, h]$ and note that $[y_1, g] = 1$ by (2.3.3). Thus $1 = [y_2, h] = [[x, g, g]^h, a_1, \ldots, a_n, h]$ for all $a_i \in G$, proving (3.1.4).

Next, (3.1.5) follows from (3.1.3) and (f) of (2.1.2). Finally, for (3.1.6), commutator expansion of $1 = [x, gh, a_1, \ldots, a_n, gh]$, as in the proof of (3.1.3), leads to $1 = [y_1, g]^{hy_2}[y_2, h]$, where $y_1 = [\ldots [x, h, a_1]^{w_1}, \ldots, a_n]^{w_n}$ with

$$w_1 = [x, g]^h, w_2 = [w_1, a_1], \dots, w_n = [w_{n-1}, a_{n-1}],$$

which are all elements of $[x,g]^G$. Thus Lemma 2.4 implies that $[y_1,g]=[x,h,a_1,\ldots,a_n,g]$. We have $[y_1,g]^{hy_2}=[y_1,g]$ by (2.3.1) and (2.3.2), since $y_2=[[x,g]^h,a_1,\ldots,a_n]\in x^G$. To simplify $[y_2,h]$, write $[x,g]^h=[x,g][x,g,h]$ and expand

$$[y_2, h] = [\dots [x, g, a_1]^{v_1}, \dots, a_n]^{v_n}, h]^{v_{n+1}} [x, g, h, a_1, \dots, a_n, h],$$

where

$$v_1 = [x, g, h], v_2 = [v_1, a_1], \dots, v_n = [v_{n-1}, a_{n-1}], v_{n+1} = [v_n, a_n].$$

Here $[x, g, h, a_1, \dots, a_n, h] = 1$, since $[x, g] \in B_n(G)$ and

$$[\dots[x,g,a_1]^{v_1},\dots,a_n]^{v_n},h]^{v_{n+1}}=[x,g,a_1,\dots,a_n,h]^{v_{n+1}}$$

by Lemma 2.4 and (2.3.2), since $v_1, \ldots, v_n \in [x, g, h]^G$ and $v_{n+1} \in x^G$. Altogether we have

$$1 = [y_1, g]^{hy_2}[y_2, h] = [x, h, a_1, \dots, a_n, g][x, g, a_1, \dots, a_n, h],$$
 proving (3.1.6).

4. The embedding of $B_n(G)$

The following simple observation leads to an estimate of the embedding of $B_n(G)$ in the upper central series. From (3.1.5) we have

$$[x, g, a_1, \dots, a_n, b, c, d]^2 = 1$$

for $x \in B_n(G)$. So, if $R_2(G)$ or $B_n(G)$ have no elements of order 2, then $B_n(G) \subseteq Z_{n+4}(G)$. We will show next that this can be improved for even n.

LEMMA 4.1. Let N be a normal subgroup of G and $i \geq 1$. If $y_1, y_2 \in [N, {}_iG], a \in G$ and $y \equiv y_1y_2 \mod [N, {}_{i+2}G],$ then $[y, a] \equiv [y_1, a][y_2, a] \mod [N, {}_{i+3}G].$

Proof. By assumption $y = zy_1y_2$ with $z \in [N, {}_{i+2}G]$ and $y_1, y_2 \in [N, {}_{i}G]$. Then $[z, a]^{y_1y_2} \in [N, {}_{i+3}G]$ and $[y_1, a, y_2] \in [N, {}_{i+1}G, G'] \subseteq [N, {}_{i+3}G]$ so that $[y, a] = [z, a]^{y_1y_2}[y_1, a][y_1, a, y_2][y_2, a] \equiv [y_1, a][y_2, a] \mod [N, {}_{i+3}G]$.

LEMMA 4.2. For $x \in B_n(G)$ and $g, t, h, a_1, \ldots, a_n \in G$ we have

$$[x, t, h, a_1, \dots, a_n, g] \equiv [x, g, a_1, \dots, a_n, t, h]^{-1} \mod [B_n(G)_{n+4} G].$$

Proof. This result is obtained from (3.1.6) by substituting th for h and commutator expansion. Let $N = x^G$. Then [x, th] = [x, h][x, t][x, t, h] with $[x, h], [x, t], [x, t, h] \in [N, G]$. Apply Lemma 4.1 to obtain

$$[x, th, a_1] \equiv [x, h, a_1][x, t, a_1][x, t, h, a_1] \mod [N, {}_4G]$$

and by induction,

 $[x, th, a_1, \dots, a_n, g] \equiv [x, h, a_1, \dots, a_n, g][x, t, a_1, \dots, a_n, g][x, t, h, a_1, \dots, a_n, g]$ modulo [N, n+4G]. We also have

 $[x, g, a_1, \dots, a_n, th] = [x, g, a_1, \dots, a_n, h][x, g, a_1, \dots, a_n, t][x, g, a_1, \dots, a_n, t, h].$

All these commutators commute by (2.3.2), and (3.1.5) gives

$$[x, y, a_1, \dots, a_n, g] = [x, g, a_1, \dots, a_n, y]^{-1}$$

for y = th, t and h. Together this yields

$$[x,t,h,a_1,\ldots,a_n,g] \equiv [x,g,a_1,\ldots,a_n,t,h]^{-1} \mod [B_n(G),_{n+4}G],$$
the desired result.

That some restrictions on elements of order 2 are needed for our estimates follows from $R_2(G) \subseteq B_n(G)$ and (2.1.4).

THEOREM 4.3. Let G be a group with $[B_n(G), {}_{n+4}G]$ having no elements of order 2. Then:

- (4.3.1) $B_n(G) \subseteq Z_{n+4}(G).$
- $(4.3.2) [x, t, h, a_1, \dots, a_n, g] = [x, g, a_1, \dots, a_n, t, h]^{-1}.$
- (4.3.3) If n is even and $[B_n(G), {}_{n+3}G]$ has no elements of order 2, then $B_n(G) \subseteq Z_{n+3}(G)$.

Proof. From (3.1.5) we have $[x, g, a_1, \ldots, a_n, b, c, d]^2 = 1$ and $[x, g, a_1, \ldots, a_n, b, c, d] \in [B_n(G), {n+4}G]$. The assumption gives $[x, g, a_1, \ldots, a_n, b, c, d] = 1$ and so (4.3.1) holds. For (4.3.2) note that the elements $[x, g, a_1, \ldots, a_n, b, c, d]$ generate $[B_n(G), {n+4}G]$; hence $[B_n(G), {n+4}G] = 1$ and (4.3.2) follows by Lemma 4.2.

Finally, since $[B_n(G),_{n+4}G] \subseteq [B_n(G),_{n+3}G]$ and by assumption $[B_n(G),_{n+3}G]$ has no elements of order 2, we have from (4.3.2) that

$$[x, t, h, a_1, \dots, a_n, g] = [x, g, a_1, \dots, a_n, t, h]^{-1}.$$

So repeated application gives

$$[x, g, a_1, \dots, a_n, t, h] = [x, g, a_1, \dots, a_n, t, h]^{(-1)^{n+3}}$$

since the permutation of the arguments is a cycle of length n+3. For n even we have $[x,g,a_1,\ldots,a_n,t,h]^2=1$ and $[x,g,a_1,\ldots,a_n,t,h]=1$, since $[x,g,a_1,\ldots,a_n,t,h]\in [B_n(G),_{n+3}G]$, which has no elements of order 2 by assumption, proving (4.3.3).

5. An example

From Theorem 4.3 we see that both $B_1(G)$ and $B_2(G)$ are contained in $Z_5(G)$ if there are no elements of order 2. The following example shows that this can not be improved to $B_1(G) \subseteq Z_4(G)$.

Let p be an odd prime and N an elementary abelian group of order p^{30} with generators $x_1, \ldots, x_5, y_1, \ldots, y_{12}, z_1, \ldots, z_{12}, v$.

Automorphisms a, b, c, d of N of order p are defined in the table below. Let $H = \langle a, b, c, d \rangle$ and $G = H \cdot N$, the semidirect product of N by H. The six commutators [a, b], [a, c], [a, d], [b, c], [b, d], [c, d] are calculated, the results also being listed in the table. From this one can see that [s, t] commutes with r for any $s, t, r \in \{a, b, c, d\}$. This proves that H has class 2 and order p^{10} . Each element $h \in H$ can then be written as

$$h = a^{i_1}b^{i_2}c^{i_3}d^{\ i_4}[a,b]^{j_1}[a,c]^{j_2}[a,d]^{j_3}[b,c]^{j_4}[b,d]^{j_5}[c,d]^{j_6}$$

with integers $i_1, \ldots, i_4, j_1, \ldots, j_6$ which are unique mod p. Since

$$[x_1, a, b, c, d] = [x_2, b, c, d] = [y_1, c, d] = [z_1, d] = v \neq 1,$$

we have $x_1 \notin Z_4(G)$. To show that $x_1 \in B_1(G)$, it suffices to prove $[x_1, g, h, g] = 1$ for $g, h \in H$, since N is abelian. The verification of $[x_1, g, h, g] = 1$ is straightforward but rather lengthy and omitted here.

	a	b	c	d	[a,b]	[a, c]	[a,d]	[b, c]	[b,d]	[c,d]
x_1	$x_1 x_2$	$x_{1}x_{3}$	$x_{1}x_{4}$	x_1x_5	$x_1y_1y_4^{-1}$	$x_1y_2y_7^{-1}$	$x_1y_3y_{10}^{-1}$	$x_1y_5y_8^{-1}$	$x_1y_6y_{11}^{-1}$	$x_1y_9y_{12}^{-1}$
x_2	x_2	x_2y_1	$x_{2}y_{2}$	x_2y_3	x_2	x_2	x_2	$x_2 z_1 z_3^{-1}$		
x_3	$x_{3}y_{4}$	x_3	$x_{3}y_{5}$	x_3y_6	x_3	$x_3 z_3 z_7$	$x_3 z_4 z_8$	x_3	x_3	$x_3 z_{10} z_{11}^{-1}$
x_4	x_4y_7	x_4y_8	x_4	x_4y_9	$x_4 z_1 z_7^{-1}$	x_4	$x_4 z_6 z_9$	x_4	$x_4 z_4 z_{12}$	x_4
x_5	x_5y_{10}	x_5y_{11}	x_5y_{12}	x_5	$x_5 z_2 z_8^{-1}$	$x_5 z_5 z_9^{-1}$	x_5	$x_5 z_{10} z_{12}^{-1}$	x_5	x_5
y_1	y_1	y_1	y_1z_1	y_1z_2	y_1	y_1	y_1	y_1	y_1	y_1v^2
y_2	y_2	$y_2 z_3$	y_2	$y_2 z_5$	y_2	y_2	y_2	y_2	y_2v^{-2}	y_2
y_3	y_3	$y_{3}z_{4}$	$y_{3}z_{6}$	y_3	y_3	y_3	y_3	y_3v^2	y_3	y_3
y_4	y_4	y_4	$y_4 z_7$	$y_4 z_8$	y_4	y_4	y_4	y_4	y_4	$y_4 v^{-2}$
y_5	$y_5 z_3^{-1}$	y_5	y_5	$y_5 z_{10}$	y_5	y_5	y_5v^2	y_5	y_5	y_5
y_6	$y_6 z_4^{-1}$	y_6	$y_6 z_{11}$	y_6	y_6	$y_6 v^{-2}$	y_6	y_6	y_6	y_6
y_7	y_7	$y_7 z_7^{-1}$	y_7	$y_7 z_9$	y_7	y_7	y_7	y_7	y_7v^2	y_7
y_8	$y_8 z_1^{-1}$		y_8	$y_8 z_{12}$	y_8	y_8	y_8v^{-2}	y_8	y_8	y_8
y_9	$y_9 z_6^{-1}$	$y_9 z_{11}^{-1}$	y_9	y_9	y_9v^2	y_9	y_9	y_9	y_9	y_9
y_{10}	y_{10}	$y_{10}z_8^{-1}$	$y_{10}z_9^{-1}$	y_{10}	y_{10}	y_{10}	y_{10}	$y_{10}v^{-2}$	y_{10}	y_9
y_{11}	$y_{11}z_2^{-1}$	y_{11}	$y_{11}z_{12}^{-1}$	y_{11}	y_{11}	$y_{11}v^2$	y_{11}	y_{11}	y_{11}	y_{11}
y_{12}	$y_{12}z_5^{-1}$	$y_{12}z_{10}^{-1}$	y_{12}	y_{12}	$y_{12}v^{-2}$	y_{12}	y_{12}	y_{12}	y_{12}	y_{12}
z_1	z_1	z_1	z_1	z_1v	z_1	z_1	z_1	z_1	z_1	z_1
z_2	z_2	z_2	$z_2 v^{-1}$	z_2	z_2	z_2	z_2	z_2	z_2	z_2
z_3	z_3	z_3	z_3	z_3v^{-1}	z_3	z_3	z_3	z_3	z_3	z_3
z_4	z_4	z_4	z_4v	z_4	z_4	z_4	z_4	z_4	z_4	z_4
z_5	z_5	z_5v	z_5	z_5	z_5	z_5	z_5	z_5	z_5	z_5
z_6	z_6	$z_6 v^{-1}$	z_6	z_6	z_6	z_6	z_6	z_6	z_6	z_6
z_7	z_7	z_7	z_7	$z_7 v^{-1}$	z_7	z_7	z_7	z_7	z_7	z_7
z_8	z_8	z_8	z_8v	z_8	z_8	z_8	z_8	z_8	z_8	z_8
z_9	z_9	z_9v^{-1}	z_9	z_9	z_9	z_9	z_9	z_9	z_9	z_9
z_{10}	$z_{10}v^{-1}$	z_{10}	z_{10}	z_{10}	z_{10}	z_{10}	z_{10}	z_{10}	z_{10}	z_{10}
z_{11}	$z_{11}v$	z_{11}	z_{11}	z_{11}	z_{11}	z_{11}	z_{11}	z_{11}	z_{11}	z_{11}
z_{12}	$z_{12}v$	z_{12}	z_{12}	z_{12}	z_{12}	z_{12}	z_{12}	z_{12}	z_{12}	z_{12}
v	v	v	v	v	v	v	v	v	v	v

References

- [1] K.W. Gruenberg, The Engel elements of a soluble group, Illinois J. Math. 3 (1959),
- [2] P. Hall, Verbal and marginal subgroups, J. Reine Angew. Math. 182 (1940), 156-157.
- [3] L.C. Kappe, Engel margins in metabelian groups, Comm. Algebra 11 (1983), 165–187.
- [4] W.P. Kappe, Die A-Norm einer Gruppe, Illinois J. Math. 5 (1961), 187–197.
- [5] F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. (N.S.) 6 (1942), 87-97.
- [6] I.D. Macdonald, On certain varieties of groups, Math. Z. 76 (1961), 270–282.
- _____, On certain varieties of groups II, Math. Z. **78** (1962), 175–188. _____, Some examples in the theory of groups, Mathematical Essays Dedicated to A.J. MacIntyre, Ohio University Press, Athens, Ohio, 1970, pp. 263–269.
- [9] I.D. Macdonald and B.H. Neumann, A third Engel 5-group, J. Austral. Math. Soc. 7 (1967), 555-569.
- [10] W. Nickel, Some groups with right Engel elements, Groups St. Andrews 1997, London Math. Soc. Lecture Notes Ser., vol. 261, Cambridge Univ. Press, Cambridge, 1999, pp. 571-578.
- [11] T.K. Teague, On the Engel margin, Pacific J. Math. 50 (1974), 205–214.

DEPARTMENT OF MATHEMATICAL SCIENCES, SUNY AT BINGHAMTON, BINGHAMTON, NY 13902, USA

 $E ext{-}mail\ address: wolfgang@math.binghamton.edu}$