SOME SUBGROUPS DEFINED BY IDENTITIES

WOLFGANG P. KAPPE
Meinem verehrten Lehrer Reinhold Baer zum hundertsten Geburtstag gewidmet

Abstract

The subgroups studied in this paper are generalizations of the subgroup $R_{2}(G)=\{x \in G \mid[x, g, g]=1, \forall g \in G\}$ of right 2-Engel elements of G. It is shown that they are actually partial margins and their embedding in G is investigated.

1. Introduction

Let G be a group and $f\left(x_{0}, x_{1}, \ldots, x_{m}\right)$ a word in x_{0}, \ldots, x_{m}. Define a subset $B_{(f)}$ of G by

$$
B_{(f)}(G)=\left\{x \in G \mid f\left(x, g_{1}, \ldots, g_{m}\right)=1, \forall g_{1}, \ldots, g_{m} \in G\right\}
$$

In general $B_{(f)}(G)$ is not a subgroup, but it is always a characteristic set. The terms $Z_{m}(G)$ of the upper central series are familiar examples, and they are subgroups. On the other hand, $f\left(x_{0}\right)=x_{0}^{2}$ and $f\left(x_{0}, x_{1}\right)=\left[x_{0}, x_{1}, x_{0}\right]$ are simple examples where $B_{(f)}(G)$ is not a subgroup. The set $R_{n}(G)$ of right n-Engel elements of G is defined by

$$
R_{n}(G)=\left\{x \in G \mid\left[x,{ }_{n} g\right]=1, \forall g \in G\right\}
$$

so it is $B_{(f)}(G)$ for the word $f\left(x_{0}, x_{1}\right)=\left[x_{0, n} x_{1}\right]$. Here commutators are denoted by $[x, y]=x^{-1} y^{-1} x y=\left[x,{ }_{1} y\right],\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]=\left[\left[x_{1}, \ldots, x_{n}\right], x_{n+1}\right]$, and $\left[x,{ }_{n+1} y\right]=\left[\left[x,{ }_{n} y\right], y\right]$.

For $n=1$ this is a subgroup, namely $R_{1}(G)=Z_{1}(G)$. For $n=2$ again $R_{2}(G)$ is a subgroup [4], but for $n=3$, an example by I.D. Macdonald [8] shows that $R_{3}(G)$ is in general not a subgroup. More recently, Nickel [10] has shown that for any integer $n \geq 3$ there is a group G with $R_{n}(G)$ not a subgroup.

There are other ways of associating subsets of G with a given word $f\left(x_{0}, x_{1}, \ldots, x_{m}\right)$. The margin $F^{*}(G)$ introduced by P. Hall [2] and the partial margins $F_{i}^{*}(G)$ investigated by L.C. Kappe [3] are examples.

Received August 30, 2002.
2000 Mathematics Subject Classification. 20F45, 20F12.

Definition 1.1. For a given word $f\left(x_{0}, \ldots, x_{m}\right)$ define the i-th partial margin of G as

$$
\begin{gathered}
F_{i}^{*}(G)=\left\{x \in G \mid f\left(a_{0}, \ldots, x a_{i-1}, \ldots, a_{m}\right)=f\left(a_{0}, \ldots, a_{i-1}, \ldots, a_{m}\right)\right. \\
\left.\forall a_{0}, \ldots, a_{m} \in G\right\} .
\end{gathered}
$$

The margin $F^{*}(G)$ is then the intersection of all the $F_{i}^{*}(G)$.

Unlike the sets $B_{(f)}(G)$, the margin and the partial margins are always characteristic subgroups. If the word f satisfies $f\left(1, x_{1}, \ldots, x_{m}\right)=1$, then for $x \in F_{1}^{*}(G)$ and $a_{0}=1$ it follows from

$$
f\left(x, a_{1}, \ldots, a_{m}\right)=f\left(1, a_{1}, \ldots, a_{m}\right)=1
$$

that $F_{1}^{*}(G) \subseteq B_{(f)}(G)$. The subgroups $B_{n}(G)$ studied in this paper are generalizations of $R_{2}(G)$. To simplify notation for $B_{(f)}(G)$ and the first partial $\operatorname{margin} F_{1}^{*}(G)$ for the word

$$
f\left(x_{0}, x_{1}, \ldots, x_{n+1}\right)=\left[x_{0}, x_{1}, \ldots, x_{n+1}, x_{1}\right]
$$

we give the following definition.

Definition 1.2. For a positive integer n let

$$
\begin{gathered}
B_{n}(G)=\left\{x \in G \mid\left[x, g, a_{1}, \ldots, a_{n}, g\right]=1, \forall g, a_{1}, \ldots, a_{n} \in G\right\} \\
C_{n}(G)=\left\{x \in G \mid\left[x a_{0}, g, a_{1}, \ldots, a_{n}, g\right]=\left[a_{0}, g, a_{1}, \ldots, a_{n}, g\right],\right. \\
\left.\forall g, a_{0}, \ldots, a_{n} \in G\right\} .
\end{gathered}
$$

As observed above, $C_{n}(G) \subseteq B_{n}(G)$. It will be shown that $C_{n}(G)=B_{n}(G)$. Thus $B_{n}(G)$ is a characteristic subgroup of G. The remaining questions concern the structure of $B_{n}(G)$ and the embedding of $B_{n}(G)$ in G. The structure of $B_{n}(G)$ has already been determined by I.D. Macdonald [6], [7]: $B_{n}(G)$ is nilpotent of class $n+2$ at most.

2. Preliminaries

Since $R_{2}(G)=\{x \in G \mid[x, g, g]=1, \forall g \in G\}$ is both a tool and a model for the investigation of $B_{n}(G)$, the relevant facts are summarized in the next theorem.

Theorem 2.1. Let G be a group. Then:
$R_{2}(G)$ is a characteristic subgroup of G, and $R_{2}(G)$ is the first partial margin of $\left[x_{0}, x_{1}, x_{1}\right]$.

For $x, y \in R_{2}(G)$ and $a, b, c \in G$ we have:
(a) The normal closure x^{G} of x is abelian.
(b) $[x, a, b]=[x, b, a]^{-1}$,
(c) $[x,[a, b]]=[x, a, b]^{2}$,
(d) $[x,[a, b, c]]=1$,
(e) $[[x, a],[b, c]]=1$,
(f) $[x, a, b, c]^{2}=1$,
(g) $[x, y, a]^{3}=1$,
(h) $[x, y, a, b]=1$.
$Z_{2}(G) \subseteq R_{2}(G)$, and if $\left[R_{2}(G),{ }_{3} G\right]$ has no elements of order 2, then $R_{2}(G) \subseteq Z_{3}(G)$.
For every positive integer m there exists a finite group G with $R_{2}(G) \nsubseteq Z_{m}(G)$.

Proof. The fact that $R_{2}(G)$ is a subgroup is proven in [4] and that it is the first partial margin of $\left[x_{0}, x_{1}, x_{1}\right]$ is due to Teague [11]. The identities (a) through (d) are from [4]. Concerning (f), it was noted in [9] that $[x, a, b, c]^{2}=$ 1 , improving on $[x, a, b, c]^{4}=[x,[a, b, c]]=1$. Furthermore, $[[x, a],[b, c]]=$ $[x, a, b, c]^{2}=1$ gives (e), since $[x, g] \in R_{2}(G)$ by (2.1.1). Identities (g) and (h) generalize Levi's results on 2-Engel groups [5]. We have $[x, y, a]=[x, a, y]^{-1}=$ $[y,[x, a]]=[y, x, a]^{2}=\left[[x, y]^{-1}, a\right]^{2}=[x, y, a]^{-2}$ from (b), (c), and (a). Hence $[x, y, a]^{3}=1$, proving (g). Further, $1=\left[[x, y, a]^{3}, b\right]=[x, y, a, b]^{3}$ combined with (f) yields (h).

For (2.1.3) note that $[x, a, b, c] \in\left[R_{2}(G),{ }_{3} G\right]$. The result then follows from (f) of (2.1.2).

Finally, (2.1.4) is due to Gruenberg [1]. Let G be the wreath product of a group of order 2 and a finite elementary abelian 2 -group H. If the base group of G is denoted by N, then both N and G / N have exponent 2 and $N \nsubseteq Z_{m}(G)$ for sufficiently large H. For $x \in N$ and $g \in G, g^{2} \in N$, and N abelian of exponent 2 gives $1=\left[x, g^{2}\right]=[x, g][x, g, g][x, g]=[x, g]^{2}[x, g, g]=[x, g, g]$, so $N \subseteq R_{2}(G)$ and $R_{2}(G) \nsubseteq Z_{m}(G)$.

In the next lemma and throughout the rest of the paper we will use the following familiar commutator expansion formulas without further reference:

$$
\begin{aligned}
& {[x y, z]=[x, z]^{y}[y, z]=[x, z][x, z, y][y, z] ;} \\
& {[x, y z]=[x, z][x, y]^{z}=[x, z][x, y][x, y, z] ;} \\
& {[x, y]^{z}=\left[x^{z}, y^{z}\right]=[x, y][x, y, z] .}
\end{aligned}
$$

Lemma 2.2. If $\left[b, g_{1}, \ldots, g_{m-1}, g_{m}, c\right]=1$ for fixed $b, g_{1}, \ldots, g_{m-1}, c \in G$ and all $g_{m} \in G$, then $\left[\left[b, g_{1}, \ldots, g_{m-1}, g_{m}\right]^{G}, c^{G}\right]=1$.

Proof. Commutator expansion gives

$$
\begin{aligned}
1 & =\left[\left[b, g_{1}, \ldots, g_{m-1}, g_{m} d\right], c\right]=\left[\left[b, g_{1}, \ldots, g_{m-1}, d\right]\left[b, g_{1}, \ldots, g_{m-1}, g_{m}\right]^{d}, c\right] \\
& =\left[\left[b, g_{1}, \ldots, g_{m-1}, g_{m}\right]^{d}, c\right] .
\end{aligned}
$$

Lemma 2.3. Let $x \in B_{n}(G)$. Then for all $g, a_{1}, \ldots, a_{n}, w_{0}, \ldots, w_{n} \in G$ we have

$$
\begin{align*}
& {\left[\left[x, g, a_{1}, \ldots, a_{n}\right]^{G}, g^{G}\right]=1} \tag{2.3.1}\\
& {\left[\left[x, g, a_{1}, \ldots, a_{n}\right]^{G}, x^{G}\right]=1} \tag{2.3.2}\\
& \left.\left.\left[\ldots[x, g]^{w_{0}}, a_{1}\right]^{w_{1}}, \ldots, a_{n}\right]^{w_{n}}, g\right]=1 \tag{2.3.3}
\end{align*}
$$

Proof. For $x \in B_{n}(x)$ we have $\left[x, g, a_{1}, \ldots, a_{n}, g\right]=1$. Thus (2.3.1) follows directly from Lemma 2.2 for $m=n+1, b=x, g_{1}=c=g$ and $g_{2}=a_{1}, \ldots, g_{m}=a_{n}$. For (2.3.2) note that

$$
\begin{aligned}
1 & =\left[x, x g, a_{1}, \ldots, a_{n}, x g\right]=\left[x, g, a_{1}, \ldots, a_{n}, g\right]\left[x, g, a_{1}, \ldots, a_{n}, x\right]^{g} \\
& =\left[x, g, a_{1}, \ldots, a_{n}, x\right]^{g}
\end{aligned}
$$

and (2.3.2) follows from Lemma 2.2.
To prove (2.3.3), note that

$$
\left.\left[\ldots[x, g]^{w_{0}}, a_{1}\right]^{w_{1}}, \ldots, a_{n}\right]^{w_{n}}=\left[[x, g], a_{1}^{v_{1}}, \ldots, a_{n}^{v_{n}}\right]^{v_{n+1}}
$$

for suitable $v_{1}, \ldots, v_{n+1} \in G$, and observe that (2.3.1) holds for all $a_{i} \in G$. Thus (2.3.3) follows.

For $f \in G$, define $[f, G]=\langle[f, h] \mid h \in G\rangle$. Then $[f, h]^{k}=[f, k]^{-1}[f, h k]$ for $f, h, k \in G$ shows that $[f, G]$ is a normal subgroup of G. If N is normal, define inductively $\left[N,{ }_{i+1} G\right]=\left[\left[N,{ }_{i} G\right], G\right]$ and note that $\left[N, G_{i}\right] \subseteq\left[N,{ }_{i} G\right]$, where G_{i} is the i-th term of the lower central series. For $x \in B_{n}(G)$ and $N=[x, g]^{G}$ we have $\left[N,{ }_{i} G\right]=\left\langle\left[x, g, g_{1}, \ldots, g_{i}\right] \mid g_{1}, \ldots, g_{i} \in G\right\rangle$, and so (2.3.1) says that $\left[N,{ }_{n} G, g\right]=1$. In the following lemma a simplification is given for some terms that occur in commutator expansions.

Lemma 2.4. If $x \in B_{n}(G), v_{1}, \ldots, v_{n} \in[x, g]^{G}$ and $a, b, a_{1}, \ldots, a_{n} \in G$, then

$$
\left.\left[\ldots\left[a, b, a_{1}\right]^{v_{1}}, \ldots, a_{n}\right]^{v_{n}}, g\right]=\left[\left[a, b, a_{1}, \ldots, a_{n}\right], g\right] .
$$

Proof. Set $N=[x, g]^{G}$ and observe that $\left[a, b, a_{1}\right]^{v_{1}}=\left[a, b, a_{1}\right]\left[a, b, a_{1}, v_{1}\right] \equiv$ $\left[a, b, a_{1}\right]$ modulo $\left[N,{ }_{3} G\right]$, since $\left[v_{1},\left[a, b, a_{1}\right]\right] \in\left[N, G_{3}\right] \subseteq\left[N,{ }_{3} G\right]$. Assume inductively that $y^{v} \equiv y$ modulo $\left[N,{ }_{k+2} G\right]$ for $y \in G_{k+2}$ and $v \in N$. Then $y^{v}=z y$ for some $z \in\left[N,{ }_{k+2} G\right]$ and

$$
\left[y^{v}, h\right]=[z y, h]=[z, h]^{y}[y, h] \equiv[y, h] \text { modulo }\left[N,{ }_{k+3} G\right]
$$

Since $\left[\left[N,{ }_{n} G\right], g\right]=1$ by (2.3.1), this proves the lemma.

3. Basic results for $B_{n}(G)$

The goal of this section is to prove the following results for $B_{n}(G)$.
Theorem 3.1. For all positive integers n and a group G we have:
(3.1.1) $\quad B_{n}(G)=C_{n}(G)$ and hence $B_{n}(G)$ is a characteristic subgroup of G.
$R_{2}(G) \subseteq B_{1}(G)$ and $B_{n}(G) \subseteq B_{n+1}(G)$.
$\left[x, g, a_{1}, \ldots, a_{n}, h, h\right]=1$ for $x \in B_{n}(G)$ and all
$g, a_{1}, \ldots, a_{n}, h \in G$, i.e., $\left[x, g, a_{1}, \ldots, a_{n}\right] \in R_{2}(G)$.
$\left[x, g, g, a_{1}, \ldots, a_{n}, h\right]=1$ for $x \in B_{n}(G)$ and all
$g, a_{1}, \ldots, a_{n}, h \in G$,
i.e., $x Z_{n+1}(G) / Z_{n+1}(G) \subseteq R_{2}\left(G / Z_{n+1}(G)\right)$.
$\left[x, g, a_{1}, \ldots, a_{n}, b, c, d\right]^{2}=1$ for $x \in B_{n}(G)$,
$g, a_{1}, \ldots, a_{n}, b, c, d \in G$.
$\left[x, g, a_{1}, \ldots, a_{n}, h\right]=\left[x, h, a_{1}, \ldots, a_{n}, g\right]^{-1}$ for $x \in B_{n}(G)$, $g, a_{1}, \ldots, a_{n}, h \in G$.

Proof. We have $[x a, g]=[x, g]^{a}[a, g]$ and by induction

$$
\left[x a, g, a_{1}, \ldots, a_{n}\right]=\left[\left[[x, g]^{w_{0}}, a_{1}\right]^{w_{1}}, \ldots, a_{n}\right]^{w_{n}}\left[a, g, a_{1}, \ldots, a_{n}\right]
$$

for suitable $w_{0}, w_{1}, \ldots, w_{n} \in G$. Since $x \in B_{n}(G)$, the first factor on the right commutes with g by (2.3.3). Hence $\left[x a, g, a_{1}, \ldots, a_{n}, g\right]=\left[a, g, a_{1}, \ldots, a_{n}, g\right]$, i.e., $B_{n}(G) \subseteq C_{n}(G)$, and (3.1.1) follows since $C_{n}(G) \subseteq B_{n}(G)$ was noted before.

To prove (3.1.2), let $x \in R_{2}(G)$. Since $R_{2}(G)$ is normal in G, also $[x, g] \in$ $R_{2}(G)$ and from (b) of (2.1.2) we have

$$
[[x, g], a, g]=[[x, g], g, a]^{-1}=[1, a]^{-1}=1
$$

proving $R_{2}(G) \subseteq B_{1}(G)$. For $x \in B_{n}(G)$ we have $\left[x, g, a_{1}, \ldots, a_{n}, a_{n+1}\right] \in$ $\left[x, g, a_{1}, \ldots, a_{n}\right]^{G}$, so (2.3.2.) yields $\left[x, g, a_{1}, \ldots, a_{n}, a_{n+1}, g\right]=1$ and $B_{n}(G) \subseteq$ $B_{n+1}(G)$. Commutator expansion of $\left[x, g h, a_{1}, \ldots, a_{n}\right]$ yields

$$
\begin{aligned}
{\left[x, g h, a_{1}, \ldots, a_{n}\right] } & =\left[[x, h][x, g]^{h}, a_{1}, \ldots, a_{n}\right]=y_{1} y_{2} \\
y_{1} & =\left[\ldots\left[x, h, a_{1}\right]^{w_{1}}, \ldots, a_{n}\right]^{w_{n}} \\
y_{2} & =\left[[x, g]^{h}, a_{1}, \ldots, a_{n}\right]
\end{aligned}
$$

for suitable $w_{1}, \ldots, w_{n} \in G$. By (2.3.3) we have $\left[y_{1}, h\right]=1$ and $\left[y_{2}, g\right]=1$. Then the commutator expansion of $1=\left[x, g h, a_{1}, \ldots, a_{n}, g h\right]$ gives

$$
1=\left[y_{1}, g h\right]^{y_{2}}\left[y_{2}, g h\right]=\left[y_{1}, h\right]^{y_{2}}\left[y_{1}, g\right]^{h y_{2}}\left[y_{2}, h\right]\left[y_{2}, g\right]^{h} .
$$

Hence $1=\left[y_{1}, g\right]^{h y_{2}}\left[y_{2}, h\right]$.

Commuting with h and observing that $\left[\left[y_{1}, g\right]^{h y_{2}}, h\right]=1$ by (2.3.3), we obtain $\left[y_{2}, h, h\right]=1$. The substitution of a_{i}^{h} for a_{i} finally gives

$$
1=\left[[x, g]^{h}, a_{1}^{h}, \ldots, a_{n}^{h}, h, h\right]=\left[x, g, a_{1}, \ldots, a_{n}, h, h\right]^{h},
$$

proving (3.1.3).
To prove (3.1.4), substitute $[x, g]$ for x in $1=\left[y_{1}, g\right]^{h y_{2}}\left[y_{2}, h\right]$ and note that $\left[y_{1}, g\right]=1$ by (2.3.3). Thus $1=\left[y_{2}, h\right]=\left[[x, g, g]^{h}, a_{1}, \ldots, a_{n}, h\right]$ for all $a_{i} \in G$, proving (3.1.4).

Next, (3.1.5) follows from (3.1.3) and (f) of (2.1.2). Finally, for (3.1.6), commutator expansion of $1=\left[x, g h, a_{1}, \ldots, a_{n}, g h\right]$, as in the proof of (3.1.3), leads to $1=\left[y_{1}, g\right]^{h y_{2}}\left[y_{2}, h\right]$, where $y_{1}=\left[\ldots\left[x, h, a_{1}\right]^{w_{1}}, \ldots, a_{n}\right]^{w_{n}}$ with

$$
w_{1}=[x, g]^{h}, w_{2}=\left[w_{1}, a_{1}\right], \ldots, w_{n}=\left[w_{n-1}, a_{n-1}\right],
$$

which are all elements of $[x, g]^{G}$. Thus Lemma 2.4 implies that $\left[y_{1}, g\right]=$ $\left[x, h, a_{1}, \ldots, a_{n}, g\right]$. We have $\left[y_{1}, g\right]^{h y_{2}}=\left[y_{1}, g\right]$ by (2.3.1) and (2.3.2), since $y_{2}=\left[[x, g]^{h}, a_{1}, \ldots, a_{n}\right] \in x^{G}$. To simplify $\left[y_{2}, h\right]$, write $[x, g]^{h}=[x, g][x, g, h]$ and expand

$$
\left.\left[y_{2}, h\right]=\left[\ldots\left[x, g, a_{1}\right]^{v_{1}}, \ldots, a_{n}\right]^{v_{n}}, h\right]^{v_{n+1}}\left[x, g, h, a_{1}, \ldots, a_{n}, h\right],
$$

where

$$
v_{1}=[x, g, h], v_{2}=\left[v_{1}, a_{1}\right], \ldots, v_{n}=\left[v_{n-1}, a_{n-1}\right], v_{n+1}=\left[v_{n}, a_{n}\right] .
$$

Here $\left[x, g, h, a_{1}, \ldots, a_{n}, h\right]=1$, since $[x, g] \in B_{n}(G)$ and

$$
\left.\left[\ldots\left[x, g, a_{1}\right]^{v_{1}}, \ldots, a_{n}\right]^{v_{n}}, h\right]^{v_{n+1}}=\left[x, g, a_{1}, \ldots, a_{n}, h\right]^{v_{n+1}}
$$

by Lemma 2.4 and (2.3.2), since $v_{1}, \ldots, v_{n} \in[x, g, h]^{G}$ and $v_{n+1} \in x^{G}$. Altogether we have

$$
1=\left[y_{1}, g\right]^{h y_{2}}\left[y_{2}, h\right]=\left[x, h, a_{1}, \ldots, a_{n}, g\right]\left[x, g, a_{1}, \ldots, a_{n}, h\right],
$$

proving (3.1.6)

4. The embedding of $B_{n}(G)$

The following simple observation leads to an estimate of the embedding of $B_{n}(G)$ in the upper central series. From (3.1.5) we have

$$
\left[x, g, a_{1}, \ldots, a_{n}, b, c, d\right]^{2}=1
$$

for $x \in B_{n}(G)$. So, if $R_{2}(G)$ or $B_{n}(G)$ have no elements of order 2 , then $B_{n}(G) \subseteq Z_{n+4}(G)$. We will show next that this can be improved for even n.

Lemma 4.1. Let N be a normal subgroup of G and $i \geq 1$. If $y_{1}, y_{2} \in$ $\left[N,{ }_{i} G\right], a \in G$ and $y \equiv y_{1} y_{2} \bmod \left[N_{, i+2} G\right]$, then $[y, a] \equiv\left[y_{1}, a\right]\left[y_{2}, a\right] \bmod$ $\left[N,{ }_{i+3} G\right]$.

Proof. By assumption $y=z y_{1} y_{2}$ with $z \in\left[N,{ }_{i+2} G\right]$ and $y_{1}, y_{2} \in\left[N,{ }_{i} G\right]$. Then $[z, a]^{y_{1} y_{2}} \in\left[N,{ }_{i+3} G\right]$ and $\left[y_{1}, a, y_{2}\right] \in\left[N,{ }_{i+1} G, G^{\prime}\right] \subseteq\left[N,{ }_{i+3} G\right]$ so that $[y, a]=[z, a]^{y_{1} y_{2}}\left[y_{1}, a\right]\left[y_{1}, a, y_{2}\right]\left[y_{2}, a\right] \equiv\left[y_{1}, a\right]\left[y_{2}, a\right] \bmod \left[N,{ }_{i+3} G\right]$.

Lemma 4.2. For $x \in B_{n}(G)$ and $g, t, h, a_{1}, \ldots, a_{n} \in G$ we have

$$
\left[x, t, h, a_{1}, \ldots, a_{n}, g\right] \equiv\left[x, g, a_{1}, \ldots, a_{n}, t, h\right]^{-1} \bmod \left[B_{n}(G),_{n+4} G\right]
$$

Proof. This result is obtained from (3.1.6) by substituting th for h and commutator expansion. Let $N=x^{G}$. Then $[x, t h]=[x, h][x, t][x, t, h]$ with $[x, h],[x, t],[x, t, h] \in[N, G]$. Apply Lemma 4.1 to obtain

$$
\left[x, t h, a_{1}\right] \equiv\left[x, h, a_{1}\right]\left[x, t, a_{1}\right]\left[x, t, h, a_{1}\right] \quad \bmod \left[N,{ }_{4} G\right]
$$

and by induction,

$$
\left[x, t h, a_{1}, \ldots, a_{n}, g\right] \equiv\left[x, h, a_{1} \ldots, a_{n}, g\right]\left[x, t, a_{1}, \ldots, a_{n}, g\right]\left[x, t, h, a_{1}, \ldots, a_{n}, g\right]
$$

modulo $\left[N,{ }_{n+4} G\right]$. We also have
$\left[x, g, a_{1}, \ldots, a_{n}, t h\right]=\left[x, g, a_{1}, \ldots, a_{n}, h\right]\left[x, g, a_{1}, \ldots, a_{n}, t\right]\left[x, g, a_{1}, \ldots, a_{n}, t, h\right]$.
All these commutators commute by (2.3.2), and (3.1.5) gives

$$
\left[x, y, a_{1}, \ldots, a_{n}, g\right]=\left[x, g, a_{1}, \ldots, a_{n}, y\right]^{-1}
$$

for $y=t h, t$ and h. Together this yields

$$
\left[x, t, h, a_{1}, \ldots, a_{n}, g\right] \equiv\left[x, g, a_{1}, \ldots, a_{n}, t, h\right]^{-1} \bmod \left[B_{n}(G),_{n+4} G\right]
$$

the desired result.
That some restrictions on elements of order 2 are needed for our estimates follows from $R_{2}(G) \subseteq B_{n}(G)$ and (2.1.4).

ThEOREM 4.3. Let G be a group with $\left[B_{n}(G),{ }_{n+4} G\right]$ having no elements of order 2. Then:

$$
\begin{align*}
& B_{n}(G) \subseteq Z_{n+4}(G) \tag{4.3.1}\\
& {\left[x, t, h, a_{1}, \ldots, a_{n}, g\right]=\left[x, g, a_{1}, \ldots, a_{n}, t, h\right]^{-1}} \tag{4.3.2}
\end{align*}
$$

If n is even and $\left[B_{n}(G),{ }_{n+3} G\right]$ has no elements of order 2, then $B_{n}(G) \subseteq Z_{n+3}(G)$.

Proof. From (3.1.5) we have $\left[x, g, a_{1}, \ldots, a_{n}, b, c, d\right]^{2}=1$ and $\left[x, g, a_{1}, \ldots\right.$, $\left.a_{n}, b, c, d\right] \in\left[B_{n}(G),{ }_{n+4} G\right]$. The assumption gives $\left[x, g, a_{1}, \ldots, a_{n}, b, c, d\right]=1$ and so (4.3.1) holds. For (4.3.2) note that the elements $\left[x, g, a_{1}, \ldots, a_{n}, b, c, d\right]$ generate $\left[B_{n}(G),{ }_{n+4} G\right]$; hence $\left[B_{n}(G),{ }_{n+4} G\right]=1$ and (4.3.2) follows by Lemma 4.2.

Finally, since $\left[B_{n}(G),{ }_{n+4} G\right] \subseteq\left[B_{n}(G),{ }_{n+3} G\right]$ and by assumption [$\left.B_{n}(G),{ }_{n+3} G\right]$ has no elements of order 2, we have from (4.3.2) that

$$
\left[x, t, h, a_{1}, \ldots, a_{n}, g\right]=\left[x, g, a_{1}, \ldots, a_{n}, t, h\right]^{-1}
$$

So repeated application gives

$$
\left[x, g, a_{1}, \ldots, a_{n}, t, h\right]=\left[x, g, a_{1}, \ldots, a_{n}, t, h\right]^{(-1)^{n+3}}
$$

since the permutation of the arguments is a cycle of length $n+3$. For n even we have $\left[x, g, a_{1}, \ldots, a_{n}, t, h\right]^{2}=1$ and $\left[x, g, a_{1}, \ldots, a_{n}, t, h\right]=1$, since $\left[x, g, a_{1}, \ldots, a_{n}, t, h\right] \in\left[B_{n}(G),{ }_{n+3} G\right]$, which has no elements of order 2 by assumption, proving (4.3.3).

5. An example

From Theorem 4.3 we see that both $B_{1}(G)$ and $B_{2}(G)$ are contained in $Z_{5}(G)$ if there are no elements of order 2 . The following example shows that this can not be improved to $B_{1}(G) \subseteq Z_{4}(G)$.

Let p be an odd prime and N an elementary abelian group of order p^{30} with generators $x_{1}, \ldots, x_{5}, y_{1}, \ldots, y_{12}, z_{1}, \ldots, z_{12}, v$.

Automorphisms a, b, c, d of N of order p are defined in the table below. Let $H=\langle a, b, c, d\rangle$ and $G=H \cdot N$, the semidirect product of N by H. The six commutators $[a, b],[a, c],[a, d],[b, c],[b, d],[c, d]$ are calculated, the results also being listed in the table. From this one can see that $[s, t]$ commutes with r for any $s, t, r \in\{a, b, c, d\}$. This proves that H has class 2 and order p^{10}. Each element $h \in H$ can then be written as

$$
h=a^{i_{1}} b^{i_{2}} c^{i_{3}} d^{i_{4}}[a, b]^{j_{1}}[a, c]^{j_{2}}[a, d]^{j_{3}}[b, c]^{j_{4}}[b, d]^{j_{5}}[c, d]^{j_{6}}
$$

with integers $i_{1}, \ldots, i_{4}, j_{1}, \ldots, j_{6}$ which are unique $\bmod p$. Since

$$
\left[x_{1}, a, b, c, d\right]=\left[x_{2}, b, c, d\right]=\left[y_{1}, c, d\right]=\left[z_{1}, d\right]=v \neq 1
$$

we have $x_{1} \notin Z_{4}(G)$. To show that $x_{1} \in B_{1}(G)$, it suffices to prove $\left[x_{1}, g, h, g\right]=$ 1 for $g, h \in H$, since N is abelian. The verification of $\left[x_{1}, g, h, g\right]=1$ is straightforward but rather lengthy and omitted here.

	a	b	c	d	$[a, b]$	$[a, c]$	$[a, d]$	[b, c]	$[b, d]$	$[c, d]$
x_{1}	$x_{1} x_{2}$	$x_{1} x_{3}$	$x_{1} x_{4}$	$x_{1} x_{5}$	$x_{1} y_{1} y_{4}^{-1}$	$x_{1} y_{2} y_{7}^{-1}$	$x_{1} y_{3} y_{10}^{-1}$	$x_{1} y_{5} y_{8}^{-1}$	$x_{1} y_{6} y_{11}^{-1}$	$x_{1} y_{9} y_{12}^{-1}$
x_{2}	x_{2}	$x_{2} y_{1}$	$x_{2} y_{2}$	$x_{2} y_{3}$	x_{2}	x_{2}	x_{2}	$x_{2} z_{1} z_{3}^{-1}$	$x_{2} z_{2} z_{4}^{-1}$	$x_{2} z_{5} z_{6}^{-1}$
x_{3}	$x_{3} y_{4}$	x_{3}	$x_{3} y_{5}$	$x_{3} y_{6}$	x_{3}	$x_{3} z_{3} z_{7}$	$x_{3} z_{4} z_{8}$	x_{3}	x_{3}	$x_{3} z_{10} z_{11}^{-1}$
x_{4}	$x_{4} y_{7}$	$x_{4} y_{8}$	x_{4}	$x_{4} y_{9}$	$x_{4} z_{1} z_{7}^{-1}$	x_{4}	$x_{4} z_{6} z_{9}$	x_{4}	$x_{4} z_{4} z_{12}$	x_{4}
x_{5}	$x_{5} y_{10}$	$x_{5} y_{11}$	$x_{5} y_{12}$	x_{5}	$x_{5} z_{2} z_{8}^{-1}$	$x_{5} z_{5} z_{9}^{-1}$	x_{5}	$x_{5} z_{10} z_{12}^{-1}$	x_{5}	x_{5}
y_{1}	y_{1}	y_{1}	$y_{1} z_{1}$	$y_{1} z_{2}$	y_{1}	y_{1}	y_{1}	y_{1}	y_{1}	$y_{1} v^{2}$
y_{2}	y_{2}	$y_{2} z_{3}$	y_{2}	$y_{2} z_{5}$	y_{2}	y_{2}	y_{2}	y_{2}	$y_{2} v^{-2}$	y_{2}
y_{3}	y_{3}	$y_{3} z_{4}$	$y_{3} z_{6}$	y_{3}	y_{3}	y_{3}	y_{3}	$y_{3} v^{2}$	y_{3}	y_{3}
y_{4}	y_{4}	y_{4}	$y_{4} z_{7}$	$y_{4} z_{8}$	y_{4}	y_{4}	y_{4}	y_{4}	y_{4}	$y_{4} v^{-2}$
y_{5}	$y_{5} z_{3}^{-1}$	y_{5}	y_{5}	$y_{5} z_{10}$	y_{5}	y_{5}	$y_{5} v^{2}$	y_{5}	y_{5}	y_{5}
y_{6}	$y_{6} z_{4}^{-1}$	y_{6}	$y_{6} z_{11}$	y_{6}	y_{6}	$y_{6} v^{-2}$	y_{6}	y_{6}	y_{6}	y_{6}
y_{7}	y_{7}	$y_{7} z_{7}^{-1}$	y_{7}	$y_{7} z_{9}$	y_{7}	y_{7}	y_{7}	y_{7}	$y_{7} v^{2}$	y_{7}
y_{8}	$y_{8} z_{1}^{-1}$	y_{8}	y_{8}	$y_{8} z_{12}$	y_{8}	y_{8}	$y_{8} v^{-2}$	y_{8}	y_{8}	y_{8}
y_{9}	$y_{9} z_{6}^{-1}$	$y_{9} z_{11}^{-1}$	y_{9}	y_{9}	$y_{9} v^{2}$	y_{9}	y_{9}	y_{9}	y_{9}	y_{9}
y_{10}	y_{10}	$y_{10} z_{8}^{-1}$	$y_{10} z_{9}^{-1}$	y_{10}	y_{10}	y_{10}	y_{10}	$y_{10} v^{-2}$	y_{10}	y_{9}
y_{11}	$y_{11} z_{2}^{-1}$	y_{11}	$y_{11} z_{12}^{-1}$	y_{11}	y_{11}	$y_{11} v^{2}$	y_{11}	y_{11}	y_{11}	y_{11}
y_{12}	$y_{12} z_{5}^{-1}$	$y_{12} z_{10}^{-1}$	y_{12}	y_{12}	$y_{12} v^{-2}$	y_{12}	y_{12}	y_{12}	y_{12}	y_{12}
z_{1}	z_{1}	z_{1}	z_{1}	$z_{1} v$	z_{1}	z_{1}	z_{1}	z_{1}	z_{1}	z_{1}
z_{2}	z_{2}	z_{2}	$z_{2} v^{-1}$	z_{2}						
z_{3}	z_{3}	z_{3}	z_{3}	$z_{3} v^{-1}$	z_{3}	z_{3}	z_{3}	z_{3}	z_{3}	z_{3}
z_{4}	z_{4}	z_{4}	$z_{4} v$	z_{4}						
z_{5}	z_{5}	$z_{5} v$	z_{5}							
z_{6}	z_{6}	$z_{6} v^{-1}$	z_{6}							
z_{7}	z_{7}	z_{7}	z_{7}	$z_{7} v^{-1}$	z_{7}	z_{7}	z_{7}	z_{7}	z_{7}	z_{7}
z_{8}	z_{8}	z_{8}	$z_{8} v$	z_{8}						
z_{9}	z_{9}	$z_{9} v^{-1}$	$z 9$	z_{9}	z_{9}	z_{9}	$z 9$	$z 9$	$z 9$	z_{9}
z_{10}	$z_{10} v^{-1}$	z_{10}								
z_{11}	$z_{11} v$	z_{11}								
z_{12}	$z_{12} v$	z_{12}								
v										

References

[1] K.W. Gruenberg, The Engel elements of a soluble group, Illinois J. Math. 3 (1959), 151-168.
[2] P. Hall, Verbal and marginal subgroups, J. Reine Angew. Math. 182 (1940), 156-157.
[3] L.C. Kappe, Engel margins in metabelian groups, Comm. Algebra 11 (1983), 165-187.
[4] W.P. Kappe, Die A-Norm einer Gruppe, Illinois J. Math. 5 (1961), 187-197.
[5] F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. (N.S.) 6 (1942), 87-97.
[6] I.D. Macdonald, On certain varieties of groups, Math. Z. 76 (1961), 270-282.
[7] _ On certain varieties of groups II, Math. Z. 78 (1962), 175-188.
[8] , Some examples in the theory of groups, Mathematical Essays Dedicated to A.J. MacIntyre, Ohio University Press, Athens, Ohio, 1970, pp. 263-269.
[9] I.D. Macdonald and B.H. Neumann, A third Engel 5-group, J. Austral. Math. Soc. 7 (1967), 555-569.
[10] W. Nickel, Some groups with right Engel elements, Groups St. Andrews 1997, London Math. Soc. Lecture Notes Ser., vol. 261, Cambridge Univ. Press, Cambridge, 1999, pp. 571-578.
[11] T.K. Teague, On the Engel margin, Pacific J. Math. 50 (1974), 205-214.
Department of Mathematical Sciences, SUnY at Binghamton, Binghamton, NY 13902, USA

E-mail address: wolfgang@math.binghamton.edu

