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ON UNIVERSAL AND EPI-UNIVERSAL LOCALLY
NILPOTENT GROUPS

R. GÖBEL, S. SHELAH, AND S.L. WALLUTIS

This paper is dedicated to the memory of Reinhold Baer

Abstract. In this paper we are mainly concerned with the class LN
of all locally nilpotent groups. Using similar arguments as in [2] we

first show that there is no universal group in LNλ if λ is a cardinal
such that λ = λℵ0 ; here we call a group G universal (in LNλ) if any

group H ∈ LNλ can be embedded into G, where LNλ denotes the class

of all locally nilpotent groups of cardinality at most λ. However, our
main interest is in the construction of torsion-free epi-universal groups in

LNλ, where G ∈ LNλ is said to be epi-universal if any group H ∈ LNλ
is an epimorphic image of G. Thus we give an affirmative answer to a
question of Plotkin. To prove the torsion-freeness of the constructed

locally nilpotent group we adjust the well-known commutator collecting
process due to P. Hall to our situation. Finally, we briefly discuss how to

apply the methods we used for the class LN to other canonical classes
of groups to construct epi-universal objects.

1. Introduction

Many categories K in algebra or geometry share the property that, given
a cardinal λ, one can find a universal object G ∈ K, that is, any object in K
of cardinality ≤ λ embeds into G.

In this paper we shall restrict our attention to classes of groups. If the
class of groups is sufficiently homogeneous and if there are many embeddings,
then universal objects do exist. For example, in the case of abelian groups the
universal objects are obviously certain divisible groups. However, if we restrict
the number of embeddings, replacing monomorphisms by pure injections, then
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it can be shown that universal objects often do not appear; see the recent
papers by Kojman and Shelah [5] and Shelah [7]. On the other hand, if
the class of groups is less homogeneous, then it seems hopeless to search for
universal objects. A good example is the class of locally finite groups, as shown
by Grossberg and Shelah [2]. Modifying the proof in [2] we note that the class
of locally nilpotent groups has no universal objects (see Theorem 2.3). It is
thus natural to consider the dual notion, defined as follows. An object G of
a given class K of groups with |G| = λ is epi-universal in the subclass Kλ of
K consisting of all elements of cardinality at most λ, if any group in Kλ is
an epimorphic image of G. Clearly, all group varieties V have epi-universal
objects, namely their V-free groups. However, the class LN of all locally
nilpotent groups does not form a variety. Recall that a group G is said to be
locally nilpotent, if any finitely generated subgroup H ⊆ G is nilpotent.

In this paper we construct particular “pseudo-free” locally nilpotent groups,
which can be shown to be torsion-free by a modification of Hall’s commutator
collecting process. Moreover, any locally nilpotent group is the epimorphic
image of a suitable pseudo-free locally nilpotent group; this answers a question
of Plotkin (see [4, Problem 3.47]). For certain cardinals λ, namely cardinals
satisfying λ = λ<λ, we show that there is a pseudo-free locally nilpotent
group of cardinality λ which is also epi-universal in the class LNλ of all locally
nilpotent groups of cardinality ≤ λ. Note that, assuming GCH, all regular
cardinals satisfy the above condition.

Finally, an analysis of the proofs shows that the existence of epi-universal
objects follows similarly for the class LV consisting of all locally V groups
for any union V of an ascending chain {Vn | n < ω} of group varieties Vn,
where we call a group G locally V if all its finitely generated subgroups are
elements of V (cf. [6]). Clearly, LN is such a class if we take Vn to be the
variety of all nilpotent groups of class ≤ n. Another example is the class of
locally solvable groups with Vn being all solvable groups of length at most n.
Also the class of all torsion groups can obviously be described in this way and
thus the existence of epi-universal torsion groups follows. Note, however, that
there are no universal torsion groups for λ = λℵ0 (see Proposition 2.4).

We use standard notations from group theory with the exception that our
maps act on the right.

2. Non-existence of universal locally nilpotent groups

In this section we show that, for certain cardinals λ, there is no universal
member in the class LNλ of all locally nilpotent groups of cardinality at most
λ. The existence of universal objects in any class is strongly related to the
amalgamation property (see [1, Ch. 11, §3]). Thus, in order to show that there
is no universal element, we prove the failure of the amalgamation property by
giving an explicit example. Recall that a class K satisfies the amalgamation
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property if, for any A,B0, B1 ∈ K with embeddings f0 : A ↪→ B0, f1 : A ↪→ B1,
there are G ∈ K and embeddings h0 : B0 ↪→ G, h1 : B1 ↪→ G such that
f0h0 = f1h1.

We begin by constructing suitable groups.

Construction 2.1. Let A be the elementary abelian 2-group generated
by the independent set {xn | n < ω}. We define mappings g0, g1 on A by

xng0 =

{
xnxn+1 for n even,
xn for n odd,

and

xng1 =

{
xn for n even,
xn xn+1 for n odd.

Clearly the mappings extend to automorphisms g0, g1 of A with g2
0 = g2

1 = 1.
We now define subgroups B0, B1 of the holomorph of A as follows (see

[6, p. 37] for the definition of holomorphs). Let A∗ denote the right regular
permutations of A and put B0 = 〈A∗, g0〉 and B1 = 〈A∗, g1〉. Obviously the
following relations are satisfied:

(1) (x∗n)g0 =

{
x∗n x

∗
n+1 for n even,

x∗n for n odd,

and

(2) (x∗n)g1 =

{
x∗n for n even,
x∗n x

∗
n+1 for n odd,

where (x∗n)gi = gix
∗
ngi denotes the conjugate. Note that g0 and g1 are now

inner automorphisms of B0 and B1, respectively. To simplify the notation,
we identify A∗ with A and write B0 = 〈A, y0〉, B1 = 〈A, y1〉, where y0, y1 are
elements of order 2 satisfying the corresponding relations (1) and (2). �

We now show that these groups are, indeed, suitable for proving the failure
of the amalgamation property.

Proposition 2.2. The groups B0, B1 as defined in Construction 2.1 are
locally finite 2-groups; in particular, they are locally nilpotent. Moreover, the
maps idA : A ↪→ B0, idA : A ↪→ B1 do not satisfy the amalgamation property
in LN .

Proof. First we show that B0 is a locally finite 2-group. Let U be any
finitely generated subgroup of B0. Then we can choose an odd integer k
such that U ⊆ 〈y0, x0, x1, . . . , xk〉 =: V . Let v ∈ V . Then either v ∈ Ak =
〈xn | n ≤ k〉 or v = y0w for some w ∈ Ak, where the latter follows from
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xy0
n ∈ Ak for all n ≤ k. Clearly the order of v is 2l for some l and thus V is a

finite 2-group. Therefore B0, and similarly B1, is a locally finite 2-group.
It remains to show that for any locally nilpotent group G there are no

embeddings h0 : B0 ↪→ G and h1 : B1 ↪→ G such that h0 �A = h1 �A, where “�”
denotes the restriction of a given map to a subset. Suppose for a contradiction
that there are such embeddings and let H be the subgroup of G generated by
the finite set {x0h0 = x0h1, z0, z1}, where z0 = y0h0, z1 = y1h1. Now,

x0h0 ∈ H = H0,

x1h0 = ([x0, y0])h0 = [x0h0, z0] ∈ H1 = [H,H],

x2h0 = x2h1 = [x1h1, z1] ∈ H2 = [H1,H] . . . ,

and so on, i.e.,
xnh0 ∈ Hn for all n < ω.

Therefore Hn 6= 1 since xnh0 6= 1 by the injectivity of h0 and so H is not
nilpotent, contradicting the local nilpotency of G. �

We are now ready to prove the main result of this section:

Theorem 2.3. Let λ be a cardinal with λ = λℵ0 . Then there is no uni-
versal group in LNλ.

Proof. Let G be an arbitrary locally nilpotent group of cardinality λ. We
shall construct a group H ∈ LNλ which cannot be embedded into G.

Let T be the tree given by all mappings τ with domain dom τ = n < ω and
range λ, i.e., T = ω>λ = {τ : n → λ | n < ω}. Note that we identify n < ω
with the set of its predecessors; n = {0, 1, . . . , n−1}. Moreover, let G0 be the
elementary abelian 2-group defined by

G0 := 〈xτ | τ ∈ T 〉 with x2
τ = 1 (τ ∈ T ).

For any v : ω → λ we put Kv := 〈xτ | τ ∈ v〉 ⊆ G0, where we identify v with
{v �n | n < ω} ⊆ T . Note that the group Kv is isomorphic to the group A as
in Construction 2.1. We first show:

(+)
There exists a family {hv : Kv ↪→ G | v ∈ ωλ} of embeddings
such that, for any embedding h : G0 ↪→ G, there is v ∈ ωλ with
hv ⊆ h.

To prove (+) we inductively define monomorphisms hτ : 〈xτ�n | n <
dom τ〉 ↪→ G for any τ ∈ T . For dom τ = 0 we put hτ = 0. Suppose hτ
is already defined for some τ ∈ T with dom τ = k. We enumerate the set of
all embeddings

ϕ : 〈xτ�n | n ≤ k〉 ↪→ G with hτ ⊆ ϕ
as

{ϕα | α < λ}.
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For any α < λ we define

hτˆ<α> : 〈xτ�n | n ≤ k〉 ↪→ G

by
hτˆ<α> �〈xτ�n | n < k〉 = hτ

and
xτhτˆ<α> = xτϕα (τ = τ �k),

where τ 〈̂α〉 ∈ T denotes the mapping τ ′ : k+ 1→ λ with τ ⊆ τ ′ and kτ ′ = α.
Since hτ ⊆ hσ for τ ⊆ σ (in T ) we may now define hv =

⋃
n<ω hv�n for all

v ∈ ωλ.
Next we show that the hv’s really satisfy (+). To do so let h : G0 ↪→ G be

any embedding. We obtain v = {vn = v � n | n < ω} as follows. For n = 0
we have no choice, so v0 = ∅ (the empty mapping). Suppose we have found
vk for some k < ω with hvk ⊆ h. By the definition of the hτ ’s there exists
an ordinal α < λ such that ϕα = h � 〈xv �n | n ≤ k〉 = h(vk)ˆ<α>. We put
vk+1 = vk 〈̂α〉. Obviously we thus have hv =

⋃
n<ω hvn ⊆ h as required, i.e.,

(+) is proved.
We now want to apply Proposition 2.2 to the countable subgroups Kv

(v ∈ ωλ) of G0. For any v ∈ ωλ and ε = 0, 1 we define elements yvε as in
Construction 2.1 by

(yvε )2 = 1
and by the conjugates

x
yvε
v �k = yvε xv �k y

v
ε = xv �k xv �(k+1)

for k even, ε = 0 and for k odd, ε = 1; otherwise we put

x
yvε
τ = xτ .

By Proposition 2.2 there exist εv ∈ {0, 1} (v ∈ ωλ) such that hv cannot be
extended to an embedding from 〈Kv, y

v
εv 〉 into G. For simplicity we write

yv = yvεv . Now let H be defined by

H := 〈G0, yv | v ∈ ωλ〉.
Clearly |H| = λ since |ωλ| = λℵ0 = λ = |T |. Next we show that H is a locally
finite 2-group and hence H ∈ LNλ. A finitely generated subgroup U of H has
the form

U = 〈xτ (τ ∈ E) , yv (v ∈ F )〉
for some finite sets E ⊆ T, F ⊆ ωλ. Let k < ω be such that v �k 6= w �k for
all v 6= w ∈ F . Without loss of generality we may assume that v �n ∈ E for
all n ≤ k and all v ∈ F . Moreover, we may assume that, for any v ∈ F , the
element τ of maximal domain (≥ k) in E ∩ v satisfies xyvτ = xτ and τ �n ∈ E
for all n ≤ dom τ . Therefore we have that xyvσ ∈ UE = 〈xτ | τ ∈ E〉 for any
σ ∈ E and any v ∈ F . From this it follows immediately that any element u
of U can be written as u = yu′ with y ∈ UF = 〈yv | v ∈ F 〉 and u′ ∈ UE .
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Clearly UE is finite abelian and thus it is enough to show that UF is also
finite in order to prove the finiteness of U . We now recall that the elements
yv originally came from automorphisms gv of G0 = 〈xτ | τ ∈ T 〉 defined by

xτgv = xyvτ

(see Construction 2.1 for comparison). So we may identify UF with W0 =
〈gv | v ∈ F 〉 ⊆ Aut(G0). Let

E′ = {v �n | n ≤ k, v ∈ F}

and decompose G0 into G0 = C × C0 with

C = 〈xτ | τ ∈ E′〉

and

C0 = 〈xτ | τ ∈ T \ E′〉.

We define automorphisms fv, hv of G0 (v ∈ F ) by

fv �C = gv �C, fv �C0 = idC0

and

hv �C = idC , hv �C0 = gv �C0.

Obviously we thus have gv = fvhv = hvfv for all v ∈ F . Hence, if we show
that

W = 〈fv, hv | v ∈ F 〉

is finite, then we also deduce that W0 ⊆ W is finite. So let us show that W
is finite. For any v, w ∈ F we have fvhw = hwfv by definition. Moreover,
by the choice of k, we have that hvhw = hwhv for any v, w ∈ F . Therefore,
any element of W can be written as fhv1 . . . hvl with v1, . . . , vl ∈ F and
f ∈ 〈fv | v ∈ F 〉 = W ∗. But W ∗ can be viewed as a subgroup of Aut(C) and
C is finite. Therefore W ∗ and thus U is finite and obviously a 2-group, i.e.,
H is a locally finite 2-group.

Finally, suppose that there is an embedding h : H ↪→ G. By property
(+) there exists v ∈ ωλ such that hv ⊆ h � G0 ⊆ h. This implies that
h�〈Kv, yv = yvεv 〉 is an embedding, contradicting the choice of εv. Therefore H
cannot be embedded into G and so the conclusion of the theorem follows. �

We finish this section with proving the following proposition using argu-
ments similar to those above.

Proposition 2.4. Let λ be a cardinal satisfying λ = λℵ0 . Then there
does not exist a universal torsion group of cardinality λ, or even one that is
universal for locally finite groups.
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Proof. It is clear that all we need to show is the failure of the amalgamation
property; the non-existence then follows as in the proof of Theorem 2.4.

To do so we again consider the locally finite 2-groups A,B0, B1 as given
by Construction 2.1 (see also Proposition 2.2). Suppose there exist a group
G and embeddings h0 : B0 ↪→ G, h1 : B1 ↪→ G such that h0 �A = h1 �A. We
show that G contains a torsion-free element, i.e., G cannot be torsion. For
any n < ω we let zn = xnh0 = xnh1 and v0 = y0h0, v1 = y1h1. Moreover, we
put p2n = (v1v0)n, p′2n = (v0v1)n and p2n+1 = v0p2n = p′2nv0 = p′2n+1. We
inductively prove that, for any k ≥ 1, the following holds:

(∗) pkz0p
′
k = zε00 z

ε1
1 . . . z

εk−1
k−1 zk

for some ε0, ε1, . . . , εk−1 ∈ {0, 1}. First note that

(1) v0ziv0 = (xy0
i )h0 =

{
zizi+1 for i even,
zi for i odd,

and

(2) v1ziv1 = (xy1
i )h1 =

{
zi for i even,
zizi+1 for i odd.

Now let us consider (∗). For k = 1 we have p1z0p
′
1 = v0z0v0 = z0z1 by (1),

i.e., (∗) is true for k = 1. Now suppose that (∗) holds for k ≥ 1 and consider
k + 1. Obviously, we have to distinguish between k even or odd. Let us first
assume that k is even, say k = 2n. Then, by the induction hypothesis and by
(1), we have

p2n+1z0p
′
2n+1 = v0p2nz0p

′
2nv0

= v0z
ε0
0 . . . z

εk−1
k−1 zkv0

=
(
v0z

ε0
0 v0v0z

ε1
1 . . . z

εk−1
k−1 v0

)
v0zkv0

=
(
z
ε′0
0 z

ε′1
1 . . . z

ε′k−1
k−1

)
zkzk+1

for some ε′i ∈ {0, 1} (i = 0, . . . , k − 1). Now suppose that k is odd, say
k = 2n− 1. Then, again by the induction hypothesis and by (2), we have:

p2nz0p
′
2n = v1p2n−1z0p2n−1v1

=
(
v1z

ε0
0 v1v1z

ε1
1 . . . z

εk−1
k−1 v1

)
v1zkv1

=
(
z
ε′0
0 z

ε′1
1 . . . z

ε′k−1
k−1

)
zkzk+1

for some ε′i ∈ {0, 1} (i = 0, . . . k − 1). Therefore property (∗) is proven.
Finally it follows that the element v0v1 ∈ G is torsion-free since otherwise

p′2n = (v0v1)n = 1 = (v1v0)n = p2n



230 R. GÖBEL, S. SHELAH, AND S.L. WALLUTIS

for some n ≥ 1 and so

x0h0 = z0 = p2nz0p
′
2n = zε00 z

ε1
1 . . . z

ε2n−1
2n−1 z2n =

(
xε00 x

ε1
1 . . . x

ε2n−1
2n−1

)
h0 x2nh0

contradicting the injectivity of h0 together with the unique representations of
elements of A as product of the xi’s. �

We would like to mention that the methods used in this section follow the
pattern of [2]. In particular, the result that there is no universal locally finite
group of cardinality λ = λℵ0 follows from Proposition 2.4 (see [2, Theorem
12]).

3. Existence of epi-universal locally nilpotent groups

Here we show that, for certain cardinals λ, there exist epi-universal groups
in LNλ. In fact, we shall construct an epi-universal group which is also torsion-
free. As mentioned before we thus obtain an affirmative answer to a question
of Plotkin (see [4, 3.47]).

First we define locally nilpotent groups which are freely generated except
for the necessary relations.

Definition 3.1. Let M be any set and c : [M ]<ℵ0 → ω an increasing
function, where [M ]<ℵ0 denotes the family of all finite subsets of M . For all
U ⊆ M we let FU = 〈xm | m ∈ U〉 be the free group generated by the xm’s;
we write F = FM . We define the pseudo-free locally nilpotent group Fr(M, c)
by

Fr(M, c) = F/K,

where K = K(M, c) is the normal subgroup generated by

{FUcU | U ∈ [M ]<ℵ0}.

Recall that, for any group G, Gn is inductively defined by G0 = G, Gn+1 =
[Gn, G] and Gn is generated by {[g0, . . . , gn] | gi ∈ G}, where the commutator
brackets accumulate on the left.

Note that it is immediate from the definition that Fr(M, c) is, indeed,
locally nilpotent.

We order the pairs (M, c) by (M1, c1) ≤ (M2, c2) if M1 ⊆ M2 and c2
extends c1. For such ordered pairs we first show:

Lemma 3.2. Let (M1, c1) ≤ (M2, c2) be as above. Then

Fr(M2, c2) = D oG1 where G1
∼= Fr(M1, c1).

Proof. Let F1 = FM1 , F2 = FM2 ,K1 = K(M1, c1),K2 = K(M2, c2),H1 =
Fr(M1, c1) = F1/K1 and H2 = Fr(M2, c2) = F2/K2. We define h : F2 → F1 to
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be the canonical projection, i.e.,

xmh =

{
xm for m ∈M1,

1 else.

Obviously K1 ⊆ K2h by Definition 3.1. Conversely, a typical generator of
K2 has the form kf = f−1kf for some f ∈ F2 and k = [k0, . . . , kn] with
ki ∈ FU , i ≤ n = Uc2 for some finite U ⊆ M2. Then kh = [k0, . . . , kn]h =
[k0h, . . . , knh], where kih ∈ FU∩M1 and (U ∩M1)c1 = (U ∩M1)c2 ≤ Uc2 = n.

Hence kh ∈ FnU∩M1
⊆ F

(U∩M1)c1
U∩M1

⊆ K1 and so (kf )h = (kh)fh ∈ K1 since
fh ∈ F1. Therefore we have shown that K1 = K2h and thus h induces an
epimorphism

h : F2/K2 = H2 → H1 = F1/K1.

Moreover, h � F1 = idF1 and K2h = K1 imply K1 = F1 ∩ K2 and thus
H1
∼= (F1K2)/K2 =: G1. Also G1 ∩ Kerh = 1 since, for f ∈ F1 with fK2 ∈

Kerh = (Kerh K2)/K2, we obtain fK2 = fhK2 = K2. Hence H2 = F2/K2 =
KerhoG1 since F2 = F1 ∗ FM2\M1 and FM2\M1 ⊆ Kerh. Thus the assertion
follows with D = Kerh. �

Next we show that the pseudo-free locally nilpotent groups are torsion-
free. For this we need the commutator collecting process due to P. Hall (see
[3, Ch. 10]). For the convenience of the reader we here recall the definition of
basic commutators and the main result concerning them. However, we shall
not go into the details of the “collecting process”.

Definition 3.3. Let F be the free group generated by x0, x1, . . . , xr (r <
ω). We define the basic commutators (for F ) of weight n ≥ 1 as follows:

(1) The xi’s (i = 0, 1, . . . , r) are the basic commutators of weight 1.
(2) Having defined the basic commutators of weight less than n, the basic

commutators of weight n are the elements of the form [y1, y2], where
(a) y1, y2 are basic commutators of weights n1, n2, respectively, with

n1 + n2 = n, and
(b) y1 > y2, and if y1 = [z1, z2] with z1, z2 basic commutators, then

y2 ≥ z2,
where the commutators are ordered according to their weight, but arbitrarily
well ordered among those of the same weight.

The use of the word “basic” in the above definition is due to the following
result. For a proof we refer to [3, Theorem 11.2.4].

Lemma 3.4. Let F be a finitely generated free group and let b0 < b1 <
. . . < bt be the basic commutators of weight ≤ n+ 1. Then, any element f of
F has a unique representation

f ≡ be00 . . . bett mod Fn+1
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(e0, . . . , et ∈ Z). Moreover, the basic commutators of weight n+1 form a basis
for the free abelian group Fn/Fn+1. �

We are now ready to prove the torsion-freeness of the pseudo-free locally
nilpotent groups.

Proposition 3.5. Let (M, c) and Fr(M, c) be as in Definition 3.1. Then
Fr(M, c) is a torsion-free group.

Proof. By Lemma 3.2 it is enough to consider Fr(M, c) = FM/K(M, c)
for a finite set M . So, let M be finite, c : P(M) → ω increasing, F = FM
and K = K(M, c), where P(M) denotes the power set of M . Then K is the
normal subgroup generated by the set {FUcU | U ⊆M}, in particular we have
that FMc ⊆ K. First we show that, for any n < ω, the group

(+) Kn =
(
(K ∩ Fn)Fn+1

) /
Fn+1 is a direct summand of the free

abelian group Fn/Fn+1.

To do so we define basic commutators for K as follows (cf. Definition 3.3):
(1) xm is a basic commutator for K of weight 1 if {m}c = 0.
(2) Having defined the basic commutators for K of weight less than n (≥

1), the basic commutators for K of weight n are the basic commutators
for FU of weight n for all U ⊆ M with Uc < n and the elements of
the form [y1, y2] such that
(a) y1, y2 are basic commutators for K of weights n1, n2 with n1 +

n2 = n, and
(b) y1 > y2, and if y1 = [z1, z2] with z1, z2 basic commutators for K,

then y2 ≥ z2.
It follows immediately from this definition that the basic commutators for
K form a subset of the basic commutators for F; we may assume that the
ordering of the basic commutators for the FU ’s, for K and for F = FM is the
same.

We show that the basic commutators for K of weight n+1 form a basis for
the free abelian group Kn; the assertion (+) then follows. Clearly, the basic
commutators for K of weight n+ 1 are linearly independent elements of Kn.
It remains to show that they generate Kn. For any k ∈ Fn and any f ∈ F
we have kf ≡ k[k, f ] ≡ k mod Fn+1 since [k, f ] ∈ Fn+1. Hence

Kn =
((〈

FUcU | U ⊆M, Uc ≤ n
〉
∩ Fn

)
Fn+1

) /
Fn+1 .

It follows from Lemma 3.4 that any element of FUcU can be uniquely expressed
as a product of powers of basic commutators for FU of weights Uc+1, . . . , n+1
modulo Fn+1

U ⊆ Fn+1. By definition these basic commutators are also basic
commutators for K. Therefore, any element f of

〈
FUcU | U ⊆M, Uc ≤ n

〉
can

be expressed as a product of powers of basic commutators for K of weights



ON UNIVERSAL AND EPI-UNIVERSAL LOCALLY NILPOTENT GROUPS 233

≤ n+ 1 modulo Fn+1. To obtain the correct ordering, and thus a unique rep-
resentation, we replace a product cd with c > d by dc[c, d], where [c, d] is also a
basic commutator for K. On the other hand, if f ∈ Fn then f can be uniquely
expressed as a product of powers of basic commutators for F of weight n+ 1
modulo Fn+1. Hence, for an element f of

〈
FUcU | U ⊆M, Uc ≤ n

〉
∩ Fn we

conclude, comparing both possible representations, that f is a product of
powers of basic commutators for K of weight n + 1, i.e., Kn is generated by
these commutators, and so (+) follows.

Finally we show, by induction on n, that F/(KFn) is torsion-free for any
n < ω. It then follows that Fr(M, c) = F/K is torsion-free since KFn = K
for n ≥ Mc. For n = 0 we have F/(KF 0) = F/F = 1 which is clearly
torsion-free. Suppose F/(KFn) is torsion-free and consider the canonical
epimorphism π : F/(KFn+1) → F/(KFn). Then the torsion-freeness of
F/(KFn+1) follows from the torsion-freeness of Kerπ. Now

Kerπ = (KFn)/(KFn+1) ∼= Fn/((K ∩ Fn)Fn+1),

where the latter is isomorphic to(
Fn/Fn+1

) /(
((K ∩ Fn)Fn+1)/Fn+1

)
=
(
Fn/Fn+1

)
/Kn

which is torsion-free, and in fact free abelian by (+). Therefore F/(KFn) is
torsion-free for any n and hence so is Fr(M, c) = F/K as required. �

Next we show that the pseudo-free LN -groups have a property in common
with the V-free groups in a variety V.

Proposition 3.6. Any locally nilpotent group is an epimorphic image of
a pseudo-free locally nilpotent group.

Proof. Let G ∈ LN and let {yi | i ∈ I} be a set of generators for G.
Moreover, let Uc be the nilpotency class of GU = 〈yi | i ∈ U〉 for any finite
U ⊆ I. Then cG = c : [I]<ℵ0 → ω is an increasing function.

We show that G is an epimorphic image of the pseudo-free locally nilpotent
group Fr(I, c) = F/K (see Definition 3.1). First we define π : F = FI → G by
xiπ = yi (i ∈ I). Clearly, π is surjective. Moreover, a typical generator of K
is of the form kf for f ∈ F and k = [k0, . . . , kn] with ki ∈ FU = 〈xi | i ∈ U〉
for some finite U ⊆ I with Uc = n. Hence kπ = [k0π, . . . , knπ], where
kiπ ∈ FUπ = GU and thus kπ = 1 = (kπ)(fπ) = (kf )π since Uc is the
nilpotency class of GU . Therefore Kπ = 1 and so π induces an epimorphism
π : Fr(I, cG) = F/K → G, which completes the proof. �

As an immediate consequence of Propositions 3.5 and 3.6 we obtain an
affirmative answer to Plotkin’s question:

Corollary 3.7. Any locally nilpotent group is an epimorphic image of a
torsion-free locally nilpotent group. �
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We are finally ready to prove the main result of this section:

Theorem 3.8. Let λ be a cardinal such that λ = λ<λ. Then there exists
an epi-universal group in the class LNλ.

Note that, assuming the generalized continuum hypothesis GCH, any reg-
ular cardinal λ satisfies λ = λ<λ.

Proof of Theorem 3.8. Let λ be as above. First we consider the class

K = {(M, c) | ∅ 6= M a set, c : [M ]<ℵ0 → ω an increasing function}.
It is easy to check that the class K satisfies the assumptions of Jónsson’s
Theorem (see [1, p.213]). Hence there exists a universal element (Mu, cu) ∈
Kλ, where Kλ is the subclass of K consisting of those elements (M, c) with
|M | ≤ λ.

We define Gu to be the pseudo-free locally nilpotent group Gu = Fr(Mu, cu)
(see Definition 3.1). Then Gu is clearly an element of LNλ. We show that
Gu is epi-universal in LNλ. To do so let G ∈ LNλ be arbitrary. By Propo-
sition 3.6 there exist a pseudo-free locally nilpotent group G̃ = Fr(I, cG)
and an epimorphism π : G̃ � G such that |G̃| = |I| · ℵ0 = |G| ≤ λ, i.e.,
G̃ ∈ LNλ and (I, cG) ∈ Kλ. Now, since (Mu, cu) is universal in Kλ, there
exists M ⊆ Mu such that (M, c = cu � [M ]<ℵ0) is isomorphic to (I, cG), i.e.,
there is a bijection ϕ : M → I such that (Nc)ϕ = (Nϕ)cG for any finite
subset N of M . Therefore ϕ induces an isomorphism ϕ : FM → FI such that
K(M, c)ϕ = K(I, cG) by the definition of the K’s (see Definition 3.1). Hence
ϕ induces ϕ̃ : Fr(M, c) = FM/K(M, c)→ FI/K(I, cG) = Fr(I, cG) = G̃, which
is obviously also an isomorphism.

Finally, there is an epimorphism π′ : Gu → Fr(M, c) by Lemma 3.2 and
thus the composition π′ϕ̃π is an epimorphism from Gu onto G, i.e., Gu is
epi-universal as required. �

4. An observation

In this final section we slightly generalize the methods from Section 3 to
other “local classes”. We observe that results similar to Lemma 3.2, Proposi-
tion 3.6 and Theorem 3.8 hold. However, since the proof of the torsion-freeness
of the pseudo-free locally nilpotent groups heavily uses typical properties of
nilpotent groups (see Proposition 3.5), there will be no corresponding state-
ment in this more general context.

Throughout let {Vn | n < ω} be an ascending chain of group varieties.
Moreover, let En be a set of identities generating the variety Vn (n < ω),
where we assume En ⊇ En+1. We put V =

⋃
n<ω Vn and define LV to be the

class of all locally V groups (or LV-groups), that is, all groups G such that
any finitely generated subgroup of G belongs to V.

As before in Section 3 we first define pseudo-free LV-groups:
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Definition 4.1. Let {En | n < ω} be the descending chain of the sets
En of identities, say En = {τ = 1 | τ = τ(X0, . . . , Xnτ ) ∈ Tn}. Moreover,
let M be any set and let c : [M ]<ℵ0 → ω be an increasing function. For all
U ⊆ M let FU = 〈xm |m ∈ U〉 and put F = FM . We define the pseudo-free
LV-group FrLV(M, c) by

FrLV(M, c) = F/K,

where K = KLV(M, c) is the normal subgroup generated by⋃
U∈[M ]<ℵ0

{τ(f0, . . . , fnτ ) | τ ∈ TUc, f0, . . . , fnτ ∈ FU}.

It follows immediately from the definition that FrLV(M, c) is an LV-group
since, for any finite set U ⊆ M , we have that τ(f̄0, . . . , f̄nτ ) = 1 for any
τ ∈ TUc and f̄0, . . . , f̄nτ ∈ (FUK)/K, i.e., (FUK)/K ∈ VUc.

We order the pairs (M, c) as before.

Lemma 4.2. If (M1, c1) ≤ (M2, c2) then

FrLV(M2, c2) = D oG1 where G1
∼= FrLV(M1, c1).

Proof. The proof is the same as that of Lemma 3.2 on replacing the com-
mutators by the identities τ = 1 ∈ En and using the fact that En ⊇ En+1. �

The next result corresponds to Proposition 3.6. Although the arguments
to prove it are basically the same as before, we want to include the proof to
illustrate the minor differences.

Proposition 4.3. Any LV-group is an epimorphic image of some pseudo-
free LV-group.

Proof. Let G be any LV-group and let {yi | i ∈ I} be a set of generators
for G. Moreover, for any finite U ⊆ I, let Uc be the minimal n < ω such
that 〈yi | i ∈ U〉 ∈ Vn, which exists since G ∈ LV, V =

⋃
n<ω Vn. Then

cG = c : [I]<ℵ0 → ω is increasing since any Vn is closed under subgroups.
We show that G is an epimorphic image of the pseudo-free LV-group

FrLV(I, c). As in the proof of Proposition 3.6 we first define an epimorphism
π : F = FI → G by xiπ = yi. Now a typical generator of K = KLV(I, c) is of
the form kf for f ∈ F and k = τ(k0, . . . , knτ ) with τ ∈ TUc, k0, . . . , knτ ∈ FU
for some finite U ⊆ I. Then kπ = τ(k0π, . . . , knτπ) = 1 = (kf )π since
kiπ ∈ 〈yi | i ∈ U〉 ∈ Vn. Therefore Kπ = 1 and so π induces an epimorphism
π′ : FrLV(I, cG) = F/K → G, which completes the proof. �

Finally, the existence of epi-universal LV-groups follows by exactly the
same arguments as in the proof of Theorem 3.8, using Jónsson’s Theorem,
Lemma 4.2 and Proposition 4.3.
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Theorem 4.4. Let λ be a cardinal such that λ = λ<λ. Then there exists
an epi-universal group in the class LVλ of all LV-groups of cardinality ≤
λ. �

Notice that, as mentioned in the introduction, we thus obtain the existence
of, for example, epi-universal locally solvable and epi-universal torsion groups.
Further examples are left to the reader.
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