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UNIONS OF HYPERPLANES, UNIONS OF SPHERES, AND
SOME RELATED ESTIMATES

DANIEL M. OBERLIN

Abstract. We give estimates of the sizes of certain unions of hyper-
planes or of spheres.

By a hyperplane in Rd we mean any translate of a (d − 1)-plane. The
collection H of all hyperplanes P in Rd can be parametrized by Σ(d−1)×[0,∞)
if one identifies P with (σ, t) whenever P = σ⊥+tσ. Following the capacitarian
definition of Hausdorff dimension, we say that a compact set K of hyperplanes
has dimension α > 0 if, for each small ε, K carries a Borel probability measure
µ such that

(1H)
∫
K

∫
K

dµ(P1) dµ(P2)
(|σ1 − σ2|+ |t1 − t2|)α−ε

<∞.

Similarly, let S(x, r) stand for the sphere in Rd with center x and radius r.
Identifying the collection of all such spheres with S=̇Rd × (0,∞) ⊆ Rd+1, we
will say that a compact set K of spheres has dimension α > 0 if, for each small
ε, K carries a Borel probability measure µ such that

(1S)
∫
K

∫
K

dµ(S1)dµ(S2)
(|x1 − x2|+ |r1 − r2|)α−ε

<∞.

In both cases we are interested in what can be said about the size of

(2)
⋃

T∈K
T

in terms of the Hausdorff dimension of K. Since the dimension of a hyperplane
or sphere is d− 1, intuition suggests the conjectures that

(a) the union (2) should have positive d-dimensional Lebesgue measure
whenever dim(K) > 1, and

(b) if 0 < α < 1 and dim(K) = α, then (2) should have dimension at least
d− 1 + α.
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In these situations (though not always in similar ones), such intuition
appears to be correct. For example, considering hyperplanes and the case
dim(K) > 1, one may define a truncated Radon transform R0 by

R0f(σ, t) =
∫

σ⊥∩B(0,1)

f(p+ tσ) dLd−1(p).

The following theorem is from [1].

Theorem 1. Suppose µ is a nonnegative Borel measure on a compact set
K ⊆ H and suppose that µ satisfies (1) for α− ε > 1. Then

‖R0χE‖Lα−ε,∞
µ

. Ld(E)1/2

for Borel E ⊆ Rd.

Now suppose that K ⊆ H and dim(K) = α > 1. Let µ be a Borel proba-
bility measure satisfying (1H). If E is the set (2) then R0χE(σ, t) ≥ c > 0 for
each σ⊥+tσ ∈ K, and so it follows from Theorem 1 that Ld(E) ≥ c2 > 0. Thus
(a) is true for hyperplanes. For d ≥ 3 the paper [2] contains an analogue of
Theorem 1 for the spherical average operator Tf(x, r) =

∫
Σ(d−1) f(x− rσ)dσ.

It therefore follows that, when d ≥ 3, (a) is also true for spheres. (When d = 2
the circle version of (a) is a significantly more difficult question, answered in
the affirmative in Wolff’s paper [3].) The papers [1] and [2] also contain results
which imply the following theorem.

Theorem 2. Suppose that K is either a compact set of hyperplanes or, if
d ≥ 3, a compact set of spheres. Suppose that dim(K) = α ∈ (0, 1) and that
K either lies on a smooth curve or has a certain Cantor set structure. Then
if E =

⋃
T∈K T we have dim(E) ≥ d− 1 + α.

Theorem 2 verifies (b) for hyperplanes in case d = 2 but applies only in
special cases if d > 2. Another approach to results like (b) begins by recalling
that E ⊆ Rd has Hausdorff dimension β ∈ (0, d) if and only if, for each ε > 0,
E carries a Borel probability measure µ̃ satisfying∫

Rd

|̂̃µ(ξ)|2

|ξ|d−β+ε
dξ <∞.

That is, dim(E) = β if, for ε > 0, E supports a nontrivial nonnegative
distribution in the Sobolev space W 2,−(d−β+ε)/2. Thus, for example, (b) is
equivalent to the conjecture that, if 0 < α < 1, dim(K) = α, and ε > 0, then⋃

T∈K T should support a nonnegative distribution in W 2,(α−1)/2−ε. On the
other hand, the dimension of H = Σ(d−1) × [0,∞) is d ≥ 2 and the dimension
of S = Rd × (0,∞) is d+ 1 but if K has dimension as small as 1 + ε then we
know already that

⋃
T∈K T has positive measure. It is therefore natural to

wonder if more than this (i.e., more than that
⋃

T∈K T has positive measure)
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can be said when dim(K) > 1. In particular, in view of the just-mentioned
reformulation of (b), one might conjecture that, no matter the α ∈ (0, d), if
dim(K) = α, then, for any ε > 0,

⋃
T∈K T should support a nonnegative and

nontrivial measure in W 2,(α−1)/2−ε. Our main result is that this is true in
certain cases.

Theorem 3H . If K ⊆ H and dim(K) = α ∈ (0, d] then, for ε > 0,⋃
P∈K P supports a nonnegative measure (function if α > 1) in W 2,(α−1)/2−ε.

We note that, for hyperplanes, Theorem 3H implies (a) as well as (b). For
spheres our result is less satisfactory.

Theorem 3S. If K ⊆ S and dim(K) = α ∈ (0, (d− 1)/2) then, for ε > 0,⋃
S∈K S supports a nonnegative measure in W 2,(α−1)/2−ε.

Theorem 3S implies (a) only when d ≥ 4 and (b) only when d ≥ 3 (though,
in its range of validity, the partial result for (b) in dimension 2 is a little more
general than Wolff’s observation in [3] that, for 0 < α < 1, the union of a set
of circles in the plane has dimension at least 1+α if the set of centers of those
circles has dimension α).

Results like Theorems 3H and 3S are often connected with estimates for
operators like R and T . That is the case here, and we begin with the Radon
transform estimate which goes with Theorem 3H . Suppose ψ ∈ S(Rd−1) is
a nonnegative radial function with Fourier transform ψ̂ equal to 1 on B(0, 1)
and supported in B(0, 2). For σ ∈ S(d−1) fix an orthogonal linear map Oσ

from σ⊥ ⊆ Rd to Rd−1. Define a Radon transform R̃ by

R̃f(σ, t) =
∫

σ⊥
f(p+ tσ)ψ(Oσ(p)) dLd−1(p).

The estimate we have in mind is the following.

Theorem 4H . Suppose µ is a nonnegative Borel measure on a compact
set K ⊆ H and suppose that µ satisfies the condition (slightly stronger than
(1H))

µ({(σ, t) : |σ − σ0|+ |t− t0| < τ}) . τα

for some α ∈ (0, d] and for all (σ0, t0) ∈ H and τ > 0. Then, for ε > 0,

‖R̃f‖L2,∞
µ

. ‖f‖W 2,(1−α)/2+ε .

If also α > 1, then, for small ε > 0 and
1
p

=
1
2

+
α− 1

2d
− ε

there is the estimate
‖R̃f‖L2,∞

µ
. ‖f‖Lp(Rd).
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Here is the corresponding result for spheres.

Theorem 4S. Suppose µ is a nonnegative Borel measure on a compact
set K ⊆ S and suppose that, for α ∈ (0, (d− 1)/2), µ satisfies the condition

µ({(x, r) : |x− x0|+ |r − r0| < τ}) . τα

for all (x0, r0) ∈ S and τ > 0. Then, for ε > 0,

‖Tf‖L2,∞
µ

. ‖f‖W 2,(1−α)/2+ε .

If also α > 1, then, for small ε > 0 and
1
p

=
1
2

+
α− 1

2d
− ε

there is the estimate
‖Tf‖L2,∞

µ
. ‖f‖Lp(Rd).

Proof of Theorem 3H . Suppose that µ is a measure on K satisfying∫
K

∫
K

dµ(P1) dµ(P2)
(|σ1 − σ2|+ |t1 − t2|)α

<∞.

With ψ as above, define a measure µ̃ on Rd by

〈f, µ̃〉 =
∫
K

∫
σ⊥
f(p+ tσ)ψ(Oσ(p)) dLd−1(p) dµ(σ, t) = 〈R̃f, µ〉.

We will show that, for ε > 0,

(3)
∫

Rd

|̂̃µ(ξ)|2|ξ|α−1−2εdLd(ξ) <∞.

Replacing α by α − ε then shows that Theorem 3H is true. Suppose ρ is a
nonnegative C∞ function supported in [1/2, 4] and equal to one on [1, 2]. We
will establish (3) by showing that

(4)
∫

Rd

|̂̃µ(ξ)|2ρ2(2−j |ξ|)dLd(ξ)

is . 2−j(α−1). Thus we begin by fixing j. If, for σ ∈ S(d−1), πσ denotes the
projection of Rd into σ⊥ and Πσ = Oσ ◦ πσ, then (4) is equal to∫

Rd

∫
K

∫
Ke

−iξ·(t1σ1−t2σ2)ψ̂
(
Πσ1(ξ)

)
ψ̂

(
Πσ2(ξ)

)
×(5)

× dµ(σ1, t1) dµ(σ2, t2)ρ2(2−j |ξ|)dLd(ξ)

=
∫
K

∫
K
b(σ1, σ2, t1σ1 − t2σ2)dµ(σ1, t1) dµ(σ2, t2)

where

b(σ1, σ2, x) =
∫

Rd

e−iξ·xψ̂(Πσ1(ξ))ψ̂(Πσ2(ξ))ρ
2(2−j |ξ|)dLd(ξ).
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If b(σ1, σ2, ·) is not identically 0, then the tubes of radius 2 through the origin
in the directions of σ1 and σ2 must intersect at some ξ satisfying |ξ| ∼ 2j . This
implies that |σ1±σ2| . 2−j . There is no loss of generality in assuming that if
(σ1, t1) and (σ2, t2) are both in the support of µ, then |σ1 + σ2| ≥ 1 (for this
can be achieved by decomposing µ into a finite sum of measures with small
supports). Thus we may assume that, unless b(σ1, σ2, ·) ≡ 0, |σ1 − σ2| . 2−j .
Now, with

a(σ, x) =
∫

Rd

e−iξ·xψ̂(Πσ(ξ))ρ(2−j |ξ|)dLd(ξ),

we have b(σ1, σ2, ·) = a(σ1, ·) ∗ a(σ2, ·). Let Pσ be the plate

B(0, 1) ∩ {x ∈ Rd : |x · σ| ≤ 2−j}.

Assume for the moment the following standard result (which will be proved
later):

Lemma 1. For N ∈ N we have

(6) |a(σ, ·)| ≤ CN2j
∞∑

n=1

2−nNχ2nPσ
.

Then it follows that

(7) |b(σ1, σ2, ·)| . 22j
∞∑

m,n=1

2−(m+n)Nχ2nPσ1
∗ χ2mPσ2

.

If |σ1 − σ2| . 2−j and m ≤ n, we have

χ2nPσ1
∗ χ2mPσ2

. 2dm−jχ2n+2Pσ1

and so, if N > d,

22j
∞∑

n=1

n∑
m=1

2−(m+n)Nχ2nPσ1
∗ χ2mPσ2

. 22j
∞∑

n=1

n∑
m=1

2−(n+m)N2dm−jχ2n+2Pσ1

. 2j
∞∑

n=1

2−nNχ2n+2Pσ1
.

It therefore follows from (7) that (5), and so (4), is controlled by

(8) 2j
∞∑

n=1

2−nN

∫∫
{|σ1−σ2|.2−j}

χ2n+2Pσ1
(t1σ1 − t2σ2)dµ(σ1, t1)dµ(σ2, t2).
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Now if t1σ1 − t2σ2 ∈ 2n+2Pσ1 , then

|t1 − t2 + t2(σ1 − σ2) · σ1| = |(t1σ1 − t2σ1) · σ1 + t2(σ1 − σ2) · σ1|(8)

= |(t1σ1 − t2σ2) · σ1| . 2n−j .

If also |σ1 − σ2| . 2−j , then |t2| . 1 gives |t1 − t2| . 2n−j and so

|σ1 − σ2|+ |t1 − t2| . 2n−j .

Thus (8) is bounded by

(9)
∞∑

n=1

2−nN2j

∫∫
{|σ1−σ2|+|t1−t2|.2n−j}

dµ(σ1, t1)dµ(σ2, t2).

Since ∫∫
{|σ1−σ2|+|t1−t2|≤τ}

dµ(σ1, t1)dµ(σ2, t2)

≤ τα

∫
K

∫
K

dµ(σ1, t1)dµ(σ2, t2)
(|σ1 − σ2|+ |t1 − t2|)α

. τα,

we may bound (9), and so (4), by
∞∑

n=1

2−nN2j2(n−j)α . 2−j(α−1).

This completes the proof of Theorem 3H . �

Proof of Lemma 1. Without loss of generality let σ = (1, 0, . . . , 0). Writing
ξ = (ξ1, ξ′) and identifying σ⊥ with Rd−1, we have

(10) a(σ, x) =
∫∫

e−iξ·xψ̂(ξ′)ρ(2−j |ξ|)dLd−1(ξ′)dL1(ξ1).

Suppose x ∈ 2n+1Pσ ∼ 2nPσ. Writing x = (x1, x
′) ∈ R × Rd−1, assume first

that |x| ≥ 2n so that, if j > 1, |x′| ≥ 2n−1. Then, considering the support of
ψ̂, ∣∣∣ ∫

e−iξ′·x′ ψ̂(ξ′)ρ(2−j |ξ|)dLd−1(ξ′)
∣∣∣

=
∣∣∣ ∫

B(0,2)

e−iξ′·x′ ψ̂(ξ′)ρ(2−j |ξ|)dLd−1(ξ′)
∣∣∣.

Integrating by parts N times, this is bounded by CN2−nN . Thus (10) is
bounded by CN2j2−nN since |ξ1| . 2j . Suppose now that x ∈ 2n+1Pσ\2nPσ

and |x| < 2n. Then |x1| > 2n−j . Now

(11)
∫
e−iξ1x1ρ(2−j |ξ|)dξ1 = 2j

∫
e−ieξ12

jx1ρ
(√

ξ̃21 + |2−jξ′|2
)
dξ̃1.

Since |2jx1| ∼ 2n, integrating by parts N times bounds (11) by CN2j−nN .
Since ψ̂ is supported in B(0, 2), the same bound applies to (10). �
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Proof of Theorem 4H . Theorem 4H will follow from the estimate

‖R̃∗χE‖W 2,(α−1)/2−ε . (µ(E))1/2, E ⊆ H,

dual to

‖R̃f‖L2,∞
µ

. ‖f‖W 2,(1−α)/2+ε

and, if α > 1, the Sobolev embedding theorem. Thus, for Borel E ⊆ H and
for suitable f , we note that

〈f, R̃∗χE〉 = 〈R̃f, χEµ〉 =
∫
E

∫
σ⊥
f(p+ tσ)ψ(Oσ(p)) dLd−1(p) dµ(σ, t).

Following the proof of Theorem 3 with µ replaced by χEµ (see (9)) shows that

‖R̃∗χE‖2
W 2,(α−1)/2−ε

is controlled by the sum on j of the terms

2j(α−1−2ε)
∞∑

n=1

2−nN2j

∫
E

∫
{|σ1−σ2|+|t1−t2|.2n−j}

dµ(σ1, t1)dµ(σ2, t2)

. 2j(α−1−2ε)
∞∑

n=1

2−nN2jµ(E)2α(n−j) . 2−2jεµ(E).

This yields the desired result. �

Proof of Theorem 3S. Here we write σ for Lebesgue measure on S(d−1).
The proof is generally parallel to that of Theorem 3H . Thus suppose that µ
is a measure on K satisfying∫

K

∫
K

dµ(S1) dµ(S2)
(|x1 − x2|+ |r1 − r2|)α

<∞

and define µ̃ on Rd by

〈f, µ̃〉 =
∫
K

∫
S(d−1)

f(x+ rζ) dσ(ζ) dµ(x, r) = 〈T̃ f, µ〉.

With ρ as in the proof of Theorem 3, we would like to show that

(12)
∫

Rd

|̂̃µ(ξ)|2ρ(2−j |ξ|)dLd(ξ) . 2−j(α−1).

We begin by rewriting (12) as∫
Rd

∫
K

∫
K
σ̂(r1ξ) σ̂(r2ξ) e−i(x1−x2)·ξdµ(x1, r1) dµ(x2, r2)ρ(2−j |ξ|)dLd(ξ).
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Changing to polar coordinates on Rd and abusing notation by writing σ̂(|ξ|)
to stand for σ̂(ξ), this is∫

K

∫
K

∫ ∞

0

σ̂(r1r) σ̂(r2r) σ̂(|x1 − x2|r)ρ(2−jr)rd−1×(13)

× dr dµ(x1, r1) dµ(x2, r2)

=
∫
K

∫
K
b(r1, r2, |x1 − x2|) dµ(x1, r1) dµ(x2, r2)

if

b(r1, r2, s) =
∫ ∞

0

σ̂(r1r) σ̂(r2r) σ̂(sr)ρ(2−jr)rd−1dr.

We will use the following notation: if S1 = S(x1, r1) and S2 = S(x2, r2) are
spheres, then δ = δ(S1, S2) will stand for the distance |x1 − x2| + |r1 − r2|
between S1 and S2 while ∆ = ∆(S1, S2) will stand for ||x1 − x2| − |r1 − r2||.
We also observe that on the compact subset K of S, r is bounded away from
0. We will estimate (13), and therefore establish (12), by considering the
different cases which result from splitting the integral in a certain way.

Case I.
∫∫
{∆<δ/2} b(r1, r2, |x1 − x2|) dµ(x1, r1) dµ(x2, r2).

If ∆ < δ/2 then δ ∼ |x1 − x2|. Now |b(r1, r2, |x1 − x2|)| . 2j follows from

(14) |σ̂(s)| . s(1−d)/2

(recall that the rj are bounded away from 0 and that |σ̂| is bounded). Thus
the portion of the Case I integral where |x1 − x2| ≤ 2−j is controlled by

2j

∫∫
{δ.2−j}

dµ(x1, r1) dµ(x2, r2) . 2−j(α−1),

where the last inequality follows (as in the proof of Theorem 3H) from the
capacitarian assumption on µ. If |x1 − x2| & 2−j then (14) and δ ∼ |x1 − x2|
imply that the relevant integral is controlled by

2j

(2j |x1 − x2|)(d−1)/2
.

1
δ(d−1)/22j(d−3)/2

.
1

δα2−j[(d−1)/2−α]

1
2j(d−3)/2

=
1

δα2j(−1+α)
.

Here the second inequality follows from δ & 2−j and α ≤ (d− 1)/2. Thus the
Case I integral is controlled by 2−j(α−1).
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Case II.
∫∫
{δ<4·2−j} b(r1, r2, |x1 − x2|) dµ(x1, r1) dµ(x2, r2).

Since ∫∫
{δ<4·2−j}

dµ(x1, r1) dµ(x2, r2) . 2−jα

and |b(r1, r2, |x1 − x2|)| . 2j , the desired bound of 2−j(1−α) is immediate.

Case III.
∫∫
{4·2−j≤δ≤2∆} b(r1, r2, |x1 − x2|) dµ(x1, r1) dµ(x2, r2).

Recall that

b(r1, r2, |x1 − x2|) =
∫ b

a

σ̂(r1r) σ̂(r2r) σ̂(|x1 − x2|r)ρ(2−jr)rd−1dr

where a & 2j . Utilizing the asymptotic expansion of σ̂ and recalling that
r1 and r2 are bounded away from 0, the principal term in this integral is
controlled by the largest of

(15)
∣∣∣ ∫ b

a

ei(±r1±r2±|x1−x2|)r

(r|x1 − x2|)(d−1)/2
dr

∣∣∣.
After rescaling and then multiplying µ by a cutoff function of x, we may
assume that r1, r2 ≥ 1/2 and |x1 − x2| ≤ 1/2. One can check that then
∆ = ||r1 − r2| − |x1 − x2|| minimizes | ± r1 ± r2 ± |x1 − x2||. An integration
by parts bounds (15) by some multiple of

|x1 − x2|−(d−1)/2
(∣∣∣ ∫ b

a

∫ r

a

ei∆sds r−(d+1)/2dr
∣∣∣ + 2−j(d−1)/2

∣∣∣ ∫ b

a

ei∆sds
∣∣∣).

Since a ≥ 2j , it follows that

|(15)| . 2−j(d−1)/2

∆ · |x1 − x2|(d−1)/2
.

2−j(d−1)/2

∆(d+1)/2
.

2−j(d−1)/2

∆α 2−j[(d+1)/2−α]
,

where the last inequality follows from ∆ & 2−j and α ≤ (d−1)/2 < (d+1)/2.
Thus ∫∫

{4·2−j≤δ≤2∆}
|(15)| dµ(x1, r1) dµ(x2, r2) . 2−j(1−α)

by the capacitarian assumption on µ. The nonprincipal terms are controlled
similarly. For example, the term coming from the principal terms of σ̂(rir)
and the second order term from σ̂(|x1 − x2|r) is controlled by∫ b

1

dr

(r|x1 − x2|)(d+1)/2
.

1
∆(d+1)/22j(d−1)/2

and so may be treated as was |(15)|. This completes the proof of Theorem
3S . �

The changes to the proof of Theorem 3S which are required in order to
prove Theorem 4S are analogous to the changes in the proof of Theorem 3H

which yield the proof of Theorem 4H .
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