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ON THE CONVERGENCE OF MEASURABLE PROCESSES
AND PREDICTION PROCESSES

HIDEATSU TSUKAHARA

Dedicated to the memory of Catherine Doléans-Dade and Frank Knight

Abstract. We study and characterize laws of measurable processes and
their convergence with general state space and parameter set. Using
those results, it is shown that convergence of the prediction processes
implies that of the given processes. We also give a simple condition for
convergence of the prediction processes when the given processes are
Markovian.

1. Introduction

We consider E-valued measurable processes on a σ-finite measure space
(T,T , ν), where E is a metrizable Lusin space. They induce the laws on the
space ME(T) of E-valued measurable functions on (T,T , ν). In Section 2,
we first study properties of probability measures on ME(T) and characterize
them in terms of their finite-dimensional distributions. The notions of pseudo-
path and pseudo-law (Dellacherie and Meyer [4]) are closely related, and it is
proved that two measurable processes are almost equivalent if they induce the
same law on ME(T). Furthermore, we remark that for measurable processes,
only the finite-dimensional convergence on a set of full measure is sufficient
for weak convergence in ME(T) and that its converse in a sense also holds.
These are rather straightforward extensions of well-known results and detailed
proofs of the unproved results in Section 2 may be found in Tsukahara [14].

In Section 3, we apply the results obtained in Section 2 to the prediction
process (see Knight (1981, 1992)). The prediction process Zz of a given
measurable process X with law z on ME(R+) is the process consisting of the
conditional distributions of the future of X given the past at each time t ∈ R+.
Our interest is in their convergence in law; specifically, we give an alternative
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proof of the fact that the convergence of the prediction processes is stronger
than that of the given processes. In the special case when the given processes
are all homogeneous Markov processes, we provide a simple condition on the
resolvents sufficient for the convergence of the associated prediction processes.

2. Laws of measurable processes

Let (T,T , ν) be a σ-finite measure space and (E, d) a metric space. We set
E = Bd(E), the Borel σ-field on E generated by the d-open sets. Furthermore,
we denote by ME(T,T ) the space of all T /E measurable E-valued functions
on T. We write x ∼ y for x, y ∈ ME(T,T ) if ν(t : x(t) 6= y(t)) = 0. Let
M̃E(T,T ) = ME(T,T )/∼ be the space of all equivalence classes of T /E
measurable functions.

Since (T,T , ν) is σ-finite, there exists a finite measure λ such that ν � λ
and λ(B) ≤ ν(B) for all B ∈ T . Suppose now that E is separable. A sequence
(wn) converges in λ-measure to w if and only if for every ε > 0 and every
A ∈ F with ν(A) < ∞ we have limn→∞ ν({d(wn(t), w(t)) ≥ ε}∩A) = 0. For
v, w ∈ ME(T,T ),

ρλ(v, w) ,
∫

T
1 ∧ d(v(t), w(t))λ(dt)

defines a pseudo-metric on ME(T,T ) and ρλ-convergence is convergence in
λ-measure. We write ME(λ) = (ME(T,T ), ρλ) (pseudo-metric space). The
corresponding metric space M̃E(λ) is defined in an obvious way. Denote by τλ

the topology induced by ρ̃λ. Dellacherie [3] showed that wn converges to w in
λ-measure if and only if

∫
A

f(wn(t))λ(dt) →
∫

A
f(w(t))λ(dt) for every f ∈

Cb(E) and every A ∈ T . Thus the topology τλ does not depend on the metric
d on E. It is well known that if (E, d) is a separable metric space and if T is
countably generated up to null sets, then ME(λ) is separable. If in addition
(E, d) is complete, then ME(λ) is complete and separable (see, e.g., Kurtz [8]).
When we discuss weak convergence of probability measures on M̃E(λ), it is
important, because of the Prohorov theorem, to find a compactness criterion
in M̃E(λ). For this type of result, see Kurtz [8] for the case (T,T , ν) =
(R+,B+,m), where m is the Lebesgue measure, and Tsukahara [14] for the
case where T has group structure.

In the special case where (T,T , ν) = (R+,B+,m), where m is the Lebesgue
measure, let us write ME = ME(R+,B+, λ), where B+ = B(R+) and λ(dt) =
e−tdt. It is shown in Knight [7] that if E is a metrizable Lusin space, M̃E is
also a metrizable Lusin space. The following lemma, due to Knight [7] and
Kurtz [8], gives us a way of picking a function from each equivalence class in
a measurable fashion.

Lemma 2.1. There exists a B(M̃E) ⊗ B(R+)/E measurable mapping G

from M̃E × R+ into E such that G(w̃, •) ∈ w̃ for all w̃ ∈ M̃E.
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Next, we discuss probability measures on ME. Let X = (Xt)t∈T be a
measurable process on (Ω,F , P ) with values in (E,E ). We assume until the
end of this section, unless otherwise stated, that E is a metrizable Lusin
space. Since X is measurable, the paths X•(ω) belong to ME(λ) for each
ω ∈ Ω. Let us denote by X̃(ω) the equivalence class containing X•(ω). If T
is countably generated up to ν-null sets, then it is easy to see that the mapping
ω 7→ X̃(ω) is F/B(M̃E(λ)) measurable. Thus the mapping ω 7→ X̃(ω) induces
a probability law on M̃E(λ). Conversely, we have the following lemma, whose
proof is inspired by Skorokhod [12].

Lemma 2.2. Suppose that T is countably generated up to ν-null sets.
Then for any M̃E(λ)-valued random variable X̃, there is a measurable process
X such that X•(ω) ∈ X̃(ω).

Proof. First let us assume E = [0, 1] and consider M[0,1] = M[0,1](λ) as a
subset of L2(T,T , λ). Since T is countably generated, L2(T,T , λ) is separa-
ble. Thus there exists a countable orthonormal basis (φ̃j)j∈N for L2(T,T , λ).
Pick a representative φj for each φ̃j and fix these. If w ∈ M[0,1], then we have
a representation

w(t) =
∞∑

j=1

〈w, φj〉φj(t),

where the limit is in L2(T,T , λ), the equality holds λ-a.e. and 〈w, φj〉 =∫
T w(t)φj(t)λ(dt). Note that the value of 〈w, φj〉 is the same for any w′ ∈ w̃,

so we may write 〈w̃, φj〉. Put

γn(w̃, t) ,
n∑

j=1

〈w̃, φj〉φj(t).

Clearly the mapping (w̃, t) 7→ γn(w̃, t) is B(M[0,1]) ⊗ T measurable. Define
nk(w̃) to be the smallest positive integer n for which

sup
m>n

λ

{
t ∈ T : |γn(w̃, t)− γm(w̃, t)| > 1

k2

}
≤ 1

k2

holds. Then one can easily see that the mapping w̃ 7→ nk(w̃) is B(M[0,1])
measurable. Set

g(w̃, t) ,

{
lim supk→∞ γnk( ew)(w̃, t), if lim supk→∞ γnk( ew)(w̃, t) ∈ [0, 1],
0, otherwise.

It is evident from the construction that g(w̃, •) ∈ w̃ and (w̃, t) 7→ g(w̃, t) is
B(M[0,1])⊗T measurable.

As a measurable space, (E,E ) is of course a measurable Lusin space. Thus,
by Kuratowski’s theorem (see Dellacherie and Meyer [4], III.20), there exists
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an isomorphism h on (E,E ) into [0, 1] with h(E) ∈ B[0, 1]. Let e0 ∈ E be
arbitrary but fixed. Define

G(w̃, t) ,

{
h−1(g(h̃ ◦ w, t)), if g(h̃ ◦ w, t) ∈ h(E),
e0, otherwise.

Clearly one has G(w̃, •) ∈ w̃ and (w̃, t) 7→ G(w̃, t) is B(ME(λ)) ⊗ T mea-
surable. It then follows that for any M̃E-valued random variable X̃, Xt(ω) ,
G(X̃(ω), t) defines a measurable process and X•(ω) ∈ X̃(ω). �

The notion of probability law on M̃E(λ) induced by X may not be easily
understood, but the following theorem clarifies its meaning in terms of the
finite-dimensional distributions of the process. For processes X and Y and

S ⊂ T, we write X
fd(S)
= Y if (Xt1 , . . . , Xtk

) and (Yt1 , . . . , Ytk
) have the same

law in Ek for all ti ∈ S, 1 ≤ i ≤ k, k ∈ N.

Theorem 2.3. Let X and Y be E-valued measurable processes, and sup-
pose that T is countably generated up to ν-null sets. Then X and Y induce
the same laws on M̃E(λ) if and only if there exists an S ∈ T with λ(S{) = 0

such that X
fd(S)
= Y .

Proof. First we prove the if part. Let G = {g ∈ b(T ⊗ E ) : {g(t, ·) : t ∈
T} is uniformly equicontinuous on E} and

ΦB,g(w) ,
∫

B

g(t, w(t))λ(dt), w ∈ ME, B ∈ T and g ∈ G .

We have ΦB,g(w) ∈ Cb(M̃E)). One can easily prove that the subalgebra A

in Cb(M̃E) generated by 1 and the ΦB,g, B ∈ T , g ∈ G , separates measures
on M̃E. Then by Fubini’s theorem, for each Φ ∈ A , we have

∫
Φ(X)dP =∫

Φ(Y )dP .
To show the only if part, we will use the function G constructed in the proof

of Lemma 2.2. Denote as earlier by X̃(ω) and Ỹ (ω) the equivalence classes
containing X•(ω) and Y•(ω), respectively. Then for each ω, G(X̃(ω), •) =
X•(ω), λ-a.e., so by an application of Fubini’s theorem there is an S1 ∈ T

with λ(S{
1 ) = 0 such that Xt(ω) = G(X̃(ω), t), ω-a.s. for all t ∈ S1. Similarly

we can find such a set S2 for Y . Put S = S1 ∩S2, so we have λ(S{) = 0. And
for all t ∈ S, Xt(ω) = G(X̃(ω), t), ω-a.s. and Yt(ω) = G(Ỹ (ω), t), ω-a.s. By
the assumption, X̃ and Ỹ have the same law on ME, so for any t1, . . . , tm ∈ S,(

G(X̃(ω), t1), . . . , G(X̃(ω), tm)
)

L=
(
G(Ỹ (ω), t1), . . . , G(Ỹ (ω), tm)

)
.

It therefore follows that (Xt1 , . . . , Xtm) and (Yt1 , . . . , Ytm) have the same law
on Em for any t1, . . . , tm ∈ S. �
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The above theorem connects the notion of probability measure on ME(λ)
with that of almost equivalence. Let X and Y be two E-valued measurable
processes defined on possibly different probability spaces. Then X and Y
are said to be ν-almost equivalent if for every finite system of pairs (φi, gi),
1 ≤ i ≤ n, where φi is a positive and integrable function on T and gi is a
bounded E /B(R) measurable function on E, the random vectors(∫

T
g1(Xt)φ1(t) ν(dt), . . . ,

∫
T

gn(Xt)φn(t) ν(dt)
)

and (∫
T

g1(Yt)φ1(t) ν(dt), . . . ,
∫

T
gn(Yt)φn(t) ν(dt)

)
have the same law on Rn. It is then easy to see from the proof of Theorem
2.3 that X and Y induce the same law on ME(λ) if and only if X and Y are
ν-almost equivalent.

The concepts of pseudo-path and pseudo-law have been introduced in Del-
lacherie and Meyer [4], IV.35-45 for the case T = R+, and they are closely
related to the notions of equivalence classes and probability laws on ME(λ).
They could be extended to a general parameter set T with a σ-field T and a
σ-finite measure ν, although the choice of ν, which should play the canonical
role, may not be evident.

Now we turn to the convergence in law of measurable processes. Let X =
(Xt)t∈T and Xn = (Xn

t )t∈T, n ∈ N, be measurable processes on (Ω,F , P )
with state space (E,E ) and parameter space (T,T , ν). It appears that we

would need to show Xn fd(S)−→ X for some S ∈ T with λ(S{) = 0 and the
tightness of (Xn)n∈N in order to get Xn L→ X in ME(λ). But the next theorem

shows that in fact it suffices to prove Xn fd(S)−→ X for some S ∈ T with λ(S{) =
0. That is, tightness is unnecessary, although we must know that the limiting
process X is measurable. One can prove the following theorem in a fashion
similar to Cremers and Kadelka [2].

Theorem 2.4. Let E be a separable metrizable space and T be countably
generated. Suppose that (Xn)n∈N and X are E-valued measurable processes

on (Ω,F , P ). If Xn fd(S)−→ X for some S ∈ T with λ(S{) = 0, then Xn L→ X
in ME(λ).

The converse of the above theorem in a sense also holds; the following
results are straightforward extensions of Meyer and Zheng [9] and Sadi [11].

Theorem 2.5. Suppose that T is countably generated up to ν-null sets
and that E is a metrizable Lusin space. Let (Xn)n∈N and X be E-valued
measurable processes with parameter set T on some (Ω,F , P ). If Xn L→ X in



1236 HIDEATSU TSUKAHARA

ME, then there exist an S ∈ T with λ(S{) = 0 and a subsequence (n′) such

that Xn′ fd(S)−→ X.

Corollary 2.6. Let (Xn)n∈N and X be E-valued measurable processes
with parameter set T on some (Ω,F , P ). For Xn L→ X in ME, it is necessary
and sufficient that for any subsequence (n′), there exist a further subsequence

(n′′) and an S ∈ T with λ(S{) = 0 such that Xn′′ fd(S)−→ X.

3. Convergence of the prediction processes

Let X = (Xt)t∈R+ be a measurable process with values in E. We as-
sume that E is a metrizable Lusin space with E = B(E), and let ME =
ME(R+,B+,m), where B+ = B(R+) and m is the Lebesgue measure. Set-
ting λ(dt) = e−tdt, we give ME the topology of convergence in λ-measure.

We define the pseudo-path filtration F ′
t by

F ′
t = σ

(∫ s

0

f(w(u)) du; s < t, f ∈ bE

)
,

and set F ′ , F ′
∞ =

∨
t>0 F ′

t . It is obvious that F ′ = B(ME). Moreover,
the shift operator θt on ME is defined by θtw(s) = w(t + s) for s, t ∈ R+

and is F ′
t+s/F ′

s measurable. For the state space of the prediction process,
let Π , P(ME), the set of probability measures on (ME,F ′) endowed with
the topology of weak convergence. This topology is called the prediction
topology in Knight [7], with which Π becomes a metrizable Lusin space. We
set G = B(Π). A generic element of Π is usually denoted by z, and we
sometimes write P z for z; it is actually redundant but intuitively helpful.

According to Corollary 2.5 of Knight [7], the prediction process Zz =
(Zz

t )t∈R+ for z ∈ Π is the process with values in (Π,G ) that is P z-a.s. uniquely
determined by the following two requirements:

(1) Zz
r (A) = P z( θ−1

r A | F ′
r+ ), r ∈ Q+, A ∈ F ′;

(2) Zz
t is càdlàg for the prediction topology on Π defined above.

Thus the prediction process is defined for the law z ∈ Π induced by X rather
than for the process X itself. In terms of the generalized coordinate process X̃

on ME defined by X̃t(w) , G(w̃, t), where w̃ is the equivalence class containing
w and G is the function in Lemma 2.1, (i) may then be written as

Zz
r (A) = P z( X̃t+• ∈ A | F ′

r+ ).

3.1. Convergence of the given processes. We shall now show that the
convergence of the prediction processes implies that of the given processes.
Let Xn, n ∈ N, and X be measurable processes with values in E and with
laws zn and z, and let Zn and Z be the prediction processes of Xn and
X, respectively. Since ME is a metrizable Lusin space, so is Π (Dellacherie
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and Meyer [4], III.60). Then the path space MΠ = MΠ(R+,B+, λ) of the
prediction process is also a metrizable Lusin space.

Theorem 3.1. If (Zn)n∈N converges in law to Z in MΠ, then (Xn)n∈N
converges in law to X in ME.

Proof. By Corollary 2.6, for any subsequence (n′), there is a further sub-

sequence (n′′) and an S ⊂ R+ with λ(S{) = 0 such that Zn′′ fd(S)−→ Z. Also for
any φ ∈ Cb(ME), the mapping µ 7→ µ(φ) =

∫
φdµ from Π into R is continuous.

It thus follows that for any t ∈ S and any φ ∈ Cb(ME),

Ezn′′ [φ(X̃t+•) | F ′
t+ ] L−→ Ez[φ(X̃t+•) | F ′

t+ ] in R.

The sequence (Ezn′′ [φ(X̃t+•) | F ′
t+ ]) is bounded, so it is uniformly integrable.

Hence we get Ezn′′ [φ(X̃t+•)] → Ez[φ(X̃t+•)] for any t ∈ S and any φ ∈
Cb(ME). In other words, Xn′′

t+•
L→ Xt+• in ME for each t ∈ S. Using the

translation operator θt, we may write this as θtX
n′′ L→ θtX in ME for each

t ∈ S.
It is clear that θt is continuous since if wn → w in λ-measure, then wn(t +

•) → w(t + •) in λ-measure. Set A = {θ−1
t G : G open in ME, t ∈ S}. Then

it is straightforward to verify that A is a base for the topology for ME and
that A is closed under finite unions. It hence follows that the family {θt}t∈S

satisfies the conditions of Pollard’s theorem (Pollard(1977)). Consequently we
obtain Xn′′ L→ X in ME. We have shown that for any subsequence (n′), there
exists a further subsequence (n′′) for which Xn′′ L→ X in ME, which obviously
implies that the sequence (Xn) of the given processes converges in law to X
in ME. �

Remark 3.2. The assertion of Theorem 3.1 is in fact equivalent to that
of Lemma 2.21 (1) of Knight [7]. Our proof here is different from his, and the
point of our proof is that the result can be shown without using the Markov
property of the prediction process; only the defining property of the prediction
process is necessary.

3.2. Markovian case. In this subsection, we assume that E is Polish.
Let p(t, x, B), t ∈ R+, x ∈ E, B ∈ E , be a Markov transition function which
satisfies

(3.1) (t, x) 7→ p(t, x, B) is B(0,∞)⊗ E measurable for each B ∈ E ;
(3.2) {x 7→ p(t, x, B) : t > 0, B ∈ E } separates points of E.

From Lemma 2.8 in Knight [7], for each x ∈ E, there is a measurable Markov
process X = (Xt)t∈R+ with finite-dimensional distributions determined by
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p(t, x, B). Namely, for 0 ≤ t1 < · · · < tk, we have

(3.3) P x(Xt1 ∈ B1, . . . , Xtk
∈ Bk)

=
∫

Bk−1

· · ·
∫

B1

p(t1, x, dx1) · · · p(tk−1 − tk−2, xk−2, dxk−1) ·

· p(tk − tk−1, xk−1, Bk).

Note that we do not assume p(0, x, •) = δx(•). Thus the process X may not
start at x under P x. We call the above process X the measurable Markov
process having the P x-law with transition function p(t, x, B). This process
induces a law on ME, which we denote by ϕ(x). This is uniquely determined
by p(t, x, B) (see Knight [7], p. 53). We look at ϕ as a mapping from E into Π.
Lemma 2.9 of Knight [7] shows that ϕ is E /B(Π) measurable. Furthermore,
Theorem 2.36 of Knight [7] states that σ(x 7→ p(t, x, B) : t > 0, B ∈ E ) =
σ(x 7→ Rλf(x) : λ > 0, f ∈ bE ), where Rλ is the resolvent defined by

Rλf(x) ,
∫ ∞

0

e−λtTtf(x) dt

and Ttf(x) ,
∫

p(t, x, dy)f(y) is the semigroup associated with p(t, x, B).
Thus (3.2) amounts to assuming that {x 7→ Rλf(x) : λ > 0, f ∈ bE } separates
points of E. It is clear that ϕ is 1-1. The key result is Theorem 2.10 of Knight
[7], which says that for each x ∈ E, we have

Pϕ(x)
[
ϕ(X̃t) = Z

ϕ(x)
t for a.e. t

]
= 1;

that is, the process ϕ(X) = (ϕ(Xt))t∈R+ and Zϕ(x) induce the same law on
MΠ.

Now consider a sequence of Markov transition functions (pn(t, x, B))n∈N
and p(t, x, B) satisfying (3.1) and (3.2) above, and denote by Xn, n ∈ N,
and X the measurable Markov processes having the P x-law with pn(t, x, B),
n ∈ N, and p(t, x, B), respectively. Let ϕn(x) and ϕ(x) be the laws on ME
induced by Xn and X with (3.3), as defined above, and put Zn = Zϕn(x) and
Z = Zϕ(x). Our problem is to find under which conditions on (pn(t, x, B)),
Xn L→ X in ME implies Zn L→ Z in MΠ (note that the dependence on x is
suppressed here). More precisely, if Xn L→ X in ME for each x ∈ E, then
what additional conditions are necessary for Zn to converge in law to Z in
MΠ for each x? The assumption amounts to ϕn(x) → ϕ(x) for each x ∈ E.
From the above observation, we know that ϕn(Xn) and Zn induce the same
distribution on MΠ, so what we need is ϕn(Xn) L→ ϕ(X) in MΠ for each x ∈ E.
Thus the problem is reduced to a familiar one of preservation of convergence
in law under mappings. This is discussed in Section 5 of Billingsley [1] and
a necessary and sufficient condition was obtained in Topsøe [13]. Here we
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use a simple condition, which is an easy consequence of H. Rubin’s theorem
(Billingsley [1], Theorem 5.5).

Proposition 3.3. Let Xn and X be S-valued random variables with S a
separable metric space, and let hn and h be measurable mappings from S into
a metric space S′. If h is continuous and if hn converges to h uniformly on
compact sets, then Xn L→ X implies hn(Xn) L→ h(X).

To apply this proposition to our problem, let us define Φ: ME → MΠ

by Φ(w)(t) = ϕ(w(t)), w ∈ ME, and similarly define Φn. The processes
(ϕn(Xn

t ))t∈R+ , n ∈ N, are then written as Φn(Xn), n ∈ N. It is clear that if
ϕ is continuous, so is Φ. Denote the metrics on Π and MΠ by d′ and ρ′ so
that we have

ρ′ (Φn(x),Φ(x)) =
∫ ∞

0

1 ∧ d′ (ϕn(w(t)), ϕ(w(t))) λ(dt).

Let Γ be a compact subset on ME and let ε > 0 be given. Choose T > 0
satisfying λ(T,∞) < ε. It follows from Kurtz [8], Theorem 4.1 (this is the
only place where the Polish assumption is used), that we can find a compact
K ⊂ E such that supw∈Γ λ(t ≤ T : w(t) /∈ K) ≤ ε. Now assume for the
moment that ϕn → ϕ uniformly on compact sets. Then

ρ′ (Φn(w),Φ(w)) ≤
∫

[0,T ]∩{w(t)∈K}
1 ∧ d′ (ϕn(w(t)), ϕ(w(t))) λ(dt)

+
∫

[0,T ]∩{w(t)/∈K}
1 ∧ d′ (ϕn(w(t)), ϕ(w(t))) λ(dt) + ε

≤
∫

[0,T ]∩{w(t)∈K}
1 ∧ d′ (ϕn(w(t)), ϕ(w(t))) λ(dt) + 2ε.

The integral converges to 0 uniformly in w ∈ Γ by the bounded convergence
theorem. Hence, as n →∞,

sup
w∈Γ

ρ′ (Φn(w),Φ(w)) → 0.

In view of Proposition 3.2, Zn L→ Z will follow.
We would like to express the assumed compact convergence of ϕn to ϕ in

terms of resolvents Rn
λ and Rλ of Xn and X, respectively. First, by Lemma

2.15 of Knight [7], ϕ is continuous if and only if Rλf is continuous on E for
f ∈ Cb(E). Compact convergence of ϕn to ϕ means

sup
x∈K

∣∣∣Eϕn(x)(g)− Eϕ(x)(g)
∣∣∣ → 0
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for each compact K ⊂ E and each g ∈ Cb(ME). We may replace g by a
member of a convergence determining class. We use the following class:{

m∏
k=1

∫ ∞

0

e−λksfjk
(w(s)) ds : m ∈ N, λk ∈ Q+, fjk

∈ {fj}, 1 ≤ k ≤ m

}
,

where (fj) is dense in C(Ê) ∩ {f : Ê → [0, 1]}. So we need to find a condition
for

(3.4) Eϕn(x)

[
m∏

k=1

∫ ∞

0

e−λktfjk
(X̃t) dt

]
→ Eϕ(x)

[
m∏

k=1

∫ ∞

0

e−λktfjk
(X̃t) dt

]
uniformly in x ∈ K for a compact K and m ∈ N, λk ∈ Q+ and fjk

∈ (fj).
Let us look at the case m = 1. The left-hand side is

Eϕn(x)

[∫ ∞

0

e−λtfjk
(X̃t) dt

]
= Rn

λfj(x).

Hence we need the uniform convergence on compact sets of the resolvents,
that is,

(3.5) Rn
λf(x) → Rλf(x) uniformly in x ∈ K

for each λ and f ∈ C(Ê). For a general m, we use the argument given in the
proof of Lemma 2.15 of Knight [7]. Write the left-hand side of (3.4) as

Eϕn(x)

[∫ ∞

0

· · ·
∫ ∞

0

e−
Pm

k=1 λkskfj1(X̃s1) · · · fjm(X̃sm) ds1 · · · dsm

]
.

Express this multiple integral as a sum of m! integrals corresponding to the
m! possible orderings of s1, . . . , sm. Then it is enough to look at, for instance,
the case s1 < · · · < sm:
(3.6)

Eϕn(x)

[∫ ∞

0

∫ ∞

s1

· · ·
∫ ∞

sm−1

e−
Pm

k=1 λkskfj1(X̃s1) · · · fjm(X̃sm) ds1 · · · dsm

]
.

Using the Markov property, this is equal to∫ ∞

0

e−λ1s1Eϕn(x)

[
fj1(X̃s1)E

ϕn(x)

(∫ ∞

s1

e−λ2s2fj2(X̃s2)∫ ∞

s2

· · ·
∫ ∞

sm−1

e−λmsmfjm(X̃sm) dsm · · · ds2

∣∣∣∣F ′
s1+

)]
ds1

=
∫ ∞

0

e−λ1s1Eϕn(x)

[
fj1(X̃s1)E

ϕn(x)

(∫ ∞

0

e−λ2(t2+s1)fj2(X̃t2+s1)∫ ∞

t2

· · ·
∫ ∞

tm−1

e−λm(tm+s1)fjm(X̃tm+s1) dtm · · · dt2

∣∣∣∣F ′
s1+

)]
ds1
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=
∫ ∞

0

e−λ1s1Eϕn(x)

[
fj1(X̃s1)e

−(λ2+···+λm)s1

Eϕn( eXs1 )

(∫ ∞

0

e−λ2t2fj2(X̃t2)
∫ ∞

t2

. . .∫ ∞

tm−1

e−λmtmfjm(X̃tm) dtm · · · dt2

)]
ds1

=Eϕn(x)

[∫ ∞

0

e−λs1fj1(X̃s1)g
n(X̃s1) ds1

]
,

where λ , λ1 + · · ·+ λm and

gn(x)

, Eϕn(x)

[∫ ∞

0

e−λ2t2fj2(X̃t2)
∫ ∞

t2

· · ·
∫ ∞

tm−1

e−λmtmfjm
(X̃tm

) dtm · · · dt2

]
.

Note that gn is of the form (3.6) with m− 1 in place of m. Thus if we assume
that (3.4) holds for m− 1 as the induction hypothesis, gn(s) will converge to
g(x), defined similarly, uniformly in x ∈ K. Writing hn(x) = fj1(x)gn(x), the
above expectation is equal to Rn

λ
hn(x). Assuming the induction hypothesis,

hn(x) converges to h(x) = fj1(x)g(x) uniformly in x ∈ K. So the condition
we need is the following:

Rn
λhn(x) → Rλh(x) uniformly in x ∈ K for each λ > 0,

whenever hn → h uniformly on compact sets.
As is seen by the above argument, the sequence (hn) may be restricted to be
uniformly bounded and we may assume that h is continuous and bounded.

We have therefore obtained the following theorem.

Theorem 3.4. In the setting of this subsection, suppose that Rn
λhn con-

verges to Rλh uniformly on compact sets for each λ > 0 whenever a uniformly
bounded sequence (hn) converges to a continuous bounded h uniformly on com-
pact sets, and that Rλf is continuous for f ∈ Cb(E). Then Zn converges in
law to Z in MΠ for each x ∈ E.
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