Q-DEGREES OF n-C.E. SETS

M. M. ARSLANOV AND R. SH. OMANADZE

Abstract

In this paper we study Q-degrees of n-computably enumerable (n-c.e.) sets. It is proved that n-c.e. sets form a true hierarchy in terms of Q-degrees, and that for any $n \geq 1$ there exists a $2 n$-c.e. Qdegree which bounds no noncomputable c.e. Q-degree, but any ($2 n+1$)c.e. non $2 n$-c.e. Q -degree bounds a c.e. noncomputable Q-degree.

Studying weak density properties of n-c.e. Q-degrees, we prove that for any $n \geq 1$, properly n-c.e. Q-degrees are dense in the ordering of c.e. Q-degrees, but there exist c.e. sets A and B such that $A-B<_{Q}$ $A \equiv{ }_{Q} \emptyset^{\prime}$, and there are no c.e. sets for which the Q-degrees are strongly between $A-B$ and A.

1. Introduction

In this paper we study Q-degrees of n-computably enumerable (n-c.e.) sets. Recall (Shoenfield [2]) that a set A is Q-reducible to a set B if there is a computable function f such that for every $x \in \omega, x \in A \Leftrightarrow W_{f(x)} \subseteq B$. In this case we say that $A \leq_{Q} B$ via f (or via a uniformly c.e. sequence of c.e. sets $U=\left\{U_{x}\right\}_{x \in \omega}$, if for all $\left.x U_{x}=W_{f(x)}\right)$.

The relation of Q-reducibility is transitive and reflexive, so that it generates a degree structure on 2^{ω}. It is not hard to show that in general Q-reducibility is incomparable with Turing (T-) reducibility, but in c.e. sets $A \leq_{Q} B$ implies $A \leq_{T} B$. Therefore, in c.e. sets the relation \leq_{Q} is strictly stronger than \leq_{T}, since if $A \leq_{Q} B$, then $\omega-A$ is B-c.e.

A set A is n-c.e. if there is a computable function $f(s, x)$ such that for every x :

$$
\begin{gathered}
f(0, x)=0 \\
A(x)=\lim _{s} f(s, x) \\
|\{s: f(s, x) \neq f(s+1, x)\}| \leq n .
\end{gathered}
$$

The 2-c.e. sets are also known as the d-c.e. sets as they are differences of c.e. sets.

[^0]A degree a is called n-c.e. degree for $n \geq 1$ if it contains an n-c.e. set, and it is called a properly n-c.e. degree if it contains an n-c.e. set but no m-c.e. set for any $m<n$.

We adopt the usual notational conventions, found, for instance, in Soare [3]. In particular, we write $[s]$ after functionals and formulas to indicate that every functional or parameter therein is evaluated at stage s. In particular, for an oracle X and a c.e. functional $\Phi, \Phi(X ; y, s)$ means only that at most s steps are allowed for the computation from the oracle X to converge, whereas $\Phi(X ; y)[s]$ means also that the approximation X_{s} is used as the oracle, and may mean as well that some function-value $y(s)$ is being used as the argument for the computation. As usual, $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ means the 1-1 enumeration of all n-tuples by integers.

2. Results

From our results it immediately follows that in n-c.e. sets (even for the case $n=2$) T-reducibility is incomparable with Q-reducibility. Therefore, the development of the structural theory of Q-degrees of n-c.e. sets in comparison with their T-degrees becomes one of the interesting directions in the study of Q-degrees of n-c.e. sets.

We begin with some pathologies of the upper-semilattice of the n-c.e. Qdegrees relative to the n-c.e. Turing degrees. It is well-known that for any n-c.e. set $(n>1) A$ of properly n-c.e. degree there exists a $(n-1)$-c.e. set B such that $B<_{T} A$ (this is called Lachlan's Proposition). In Theorem 1 we establish a similar result in Q-degrees, but in the opposite direction.

Theorem 1. Let $R_{1} \supseteq R_{2} \supseteq \ldots \supseteq R_{2 n+1}$ be c.e. sets, $R_{1} \neq \omega$, and let

$$
P_{k}=\bigcup_{1 \leq i \leq\left[\frac{k+1}{2}\right]}\left\{A_{2 i-1}-A_{2 i}\right\}, k=1,2, \ldots, 2 n+1
$$

where for all $i, A_{i}=R_{i}$, except when k is an odd number, in which case we have $A_{i}=R_{i}$ for $1 \leq i \leq k$, but $A_{k+1}=\emptyset$. Then, for all $k, k \geq 1$,
(a) $P_{2 k} \leq_{Q} P_{2 k-1}$,
(b) $P_{2 k} \leq_{Q} P_{2 k+1}$,
(c) $P_{2 k} \leq_{Q} P_{2 k+2}$.

In particular, for all c.e. sets A and $B, A-B \leq_{Q} A$.
The proof of this theorem immediately follows from the following proposition.

Proposition 2. Let $X \subset \omega$ be a set, let A, B be c.e. sets, $A \supseteq B$, $X \cap A=\varnothing$ and $\overline{X \cup A} \neq \varnothing$. Then
(1) $X \leq_{Q} X \cup(A-B)$,
(2) $X \cup(A-B) \leq_{Q} X \cup A$.

Proof. (1) Let f be a computable function such that for all x

$$
W_{f(x)}= \begin{cases}\{x\} & \text { if } x \notin A \\ \{x, b\} & \text { otherwise }\end{cases}
$$

Here b is a fixed element from $\overline{X \cup A}$.
If $x \in X$, then $x \notin A$ and $W_{f(x)}=\{x\} \rightarrow W_{f(x)} \subseteq X \cup(A-B)$.
If $x \notin X$, then either $x \in A$ or $x \notin A$. If $x \in A$, then $W_{f(x)}=\{x, b\} \rightarrow$ $W_{f(x)} \nsubseteq X \cup(A-B)$.

If $x \notin A$, then $W_{f(x)}=\{x\} \rightarrow W_{f(x)} \nsubseteq X \cup(A-B)$. Therefore, $X \leq_{Q} X \cup$ $(A-B)$.
(2) In this case we define the function f as follows:

$$
W_{f(x)}= \begin{cases}\{x\} & \text { if } x \notin B \\ \{x, b\} & \text { otherwise }\end{cases}
$$

Here again b is a fixed element from $\overline{X \cup A}$.
If $x \in X \cup(A-B)$, then $W_{f(x)}=\{x\} \rightarrow W_{f(x)} \subseteq X \cup A$. If $x \notin X \cup(A-B)$, then either $x \in B$ or $x \notin B$.

If $x \notin B$, then $W_{f(x)}=\{x\} \rightarrow W_{f(x)} \nsubseteq X \cup A$. If $x \in B$, then $W_{f(x)}=$ $\{x, b\} \rightarrow W_{f(x)} \nsubseteq X \cup A$.

Therefore, $x \in X \cup(A-B) \leftrightarrow W_{f(x)} \subseteq X \cup A$.
It follows from Theorem 3 below that n-c.e. sets form a true hierarchy in terms of Q-degrees. We prove the existence of a 3-c.e. set $M=\left(A_{1}-A_{2}\right) \cup A_{3}$ of properly 3 -c.e. Q -degree. The proof easily generalizes to prove the existence of a properly n-c.e. Q-degrees for all $n>1$.

Theorem 3. There exists a 3-c.e. set $M=\left(A_{1}-A_{2}\right) \cup A_{3}$ of properly 3-c.e. Q-degree.

Proof. We construct c.e. sets A_{1}, A_{2} and $A_{3}, A_{1} \supseteq A_{2} \supseteq A_{3}$ such that the Q-degree of $M=\left(A_{1}-A_{2}\right) \cup A_{3}$ does not contain d-c.e. sets.

To ensure that M is not of d-c.e. Q-degree, we meet for all $e, i, j \in \omega$ the requirements

$$
\mathcal{R}_{e, i, j}: M \not \leq_{Q} W_{i}-W_{j} \text { via } \Theta_{e} \vee W_{i}-W_{j} \not \leq_{Q} M \text { via } \Phi_{e} \vee W_{i} \nsupseteq W_{j} .
$$

Here $\left\{\left(W_{i}, W_{j}, \Theta_{e}, \Phi_{e},\right)\right\}_{e, i, j \in \omega}$ is some enumeration of all possible quadruples of c.e. sets W_{i}, W_{j} and partial computable functionals Θ and Φ.

The basic module for the requirement $\mathcal{R}_{e, i, j}$. For a convenience we again first rewrite the requirements $\mathcal{R}_{e, i, j}$ as follows:

$$
\begin{gathered}
\mathcal{R}_{e, i, j}:(\exists x)\left(x \notin M \& W_{\Theta_{e}(x)} \subseteq\left(W_{i}-W_{j}\right) \vee x \in M \& W_{\Theta_{e}(x)} \nsubseteq\left(W_{i}-W_{j}\right)\right) \\
\vee(\exists x)\left(x \notin\left(W_{i}-W_{j}\right) \& W_{\Phi_{e}(x)} \subseteq M \vee x \in\left(W_{i}-W_{j}\right) \& W_{\Phi_{e}(x)} \nsubseteq M\right) \\
\vee W_{i} \nsupseteq W_{j} .
\end{gathered}
$$

Now we proceeds as follows:
(1) Choose an unused candidate $x=x_{e, i, j}$ for $\mathcal{R}_{e, i, j}$ greater than any number mentioned in the construction thus far.
(2) Wait for a stage s such that $\Theta_{e}(x) \downarrow$, and for some (least) $y=y_{e, i, j}$ such that

$$
y \in W_{\Theta_{e}(x)}-\left(W_{i}-W_{j}\right) .
$$

There are the following two possibilities:

Case 1. $y \in W_{j}$. Obviously, in this case the requirement $\mathcal{R}_{e, i, j}$ is satisfied via the witness x.

Case 2. $y \notin W_{i}$. In this case:
(3) Wait for a stage s^{\prime} and for some (least) $z=z_{e, i, j}$ such that $\Phi_{e}(y) \downarrow$ and

$$
z \in W_{\Phi_{e}\left(y_{e}\right)}-M
$$

Again, there are the following two possibilities:

Case $a . x \neq z$. In this case:
(4a) Put x into M.
(5a) Force y to enter into W_{i}.
(Otherwise the requirement $\mathcal{R}_{e, i, j}$ is satisfied.)
(6a) Protect z from other strategies from now on.
(7a) Wait for y to enter into W_{j}. (Now y is a permanent witness to the success of $\mathcal{R}_{e, i, j}$ because

$$
y \in W_{i}-W_{j} \& z \in W_{\Phi_{e}\left(y_{e}\right)}-M,
$$

which means that $W_{i}-W_{j} \not_{Q} M$ via Φ_{e}.)
Case $b . x=z$. In this case:
(4b) Put x into M.
(5b) Force y to enter into W_{i}.
(6b) Remove $z(=x)$ from M.
Now there are following two possibilities:

Subcase (b_{1}). y enters into W_{j}. In this case:
($7 b_{1}$) Enumerate x into M and stop.

Subcase (b_{2}). $y \in W_{i}-W_{j}$. In this case the requirement $\mathcal{R}_{e, i, j}$ is satisfied via the witness x.

The explicit construction and the remaining parts of the proof now straightforward, so we will not give them here.

It is easy to see that if A is a c.e. noncomputable set, then $\omega-A$ in Q degrees bounds no c.e. sets except computable sets. It immediately follows that the partial orderings of T- and Q- degrees of d-c.e. sets are elementarily non-equivalent, since by Lachlan's proposition each noncomputable d-c.e. set in T-degrees bounds some noncomputable c.e. set. Below in Proposition 4 we show that any $(2 n+1)$-c.e. non $(2 n)$-c.e. set in Q-degrees also bounds a noncomputable c.e. set for any $n \geq 1$.

Proposition 4. Let M be a $(2 n+1)$-c.e. set which is not $(2 n)$-c.e., and $M=\left(A_{1}-A_{2}\right) \cup \ldots \cup A_{2 n+1}$, where $A_{1} \supseteq A_{2} \ldots \supseteq A_{2 n+1}$ are c.e. sets. Then there is a c.e. noncomputable set P which is Q-reducible to M.

Proof. Let $A_{2 n}=\{f(x): x \in \omega\}$ for some computable function f, and let g be a computable function such that for any $x, W_{g(x)}=\{f(x)\}$. Define $P=f^{-1}\left(A_{2 n+1}\right)$. Then we have:

$$
\begin{gathered}
x \in P \rightarrow f(x) \in A_{2 n+1} \rightarrow W_{g(x)} \subseteq M \\
x \notin P \rightarrow f(x) \in A_{2 n}-A_{2 n+1} \rightarrow W_{g(x)} \nsubseteq M
\end{gathered}
$$

Therefore, $P \leq_{Q} M$.
If the set P is computable, then $A_{2 n}-A_{2 n+1}$ is c.e., since

$$
A_{2 n}-A_{2 n+1}=\{x:(\exists y)((x=f(y)) \& y \notin P\}
$$

Therefore, M is a $(2 n)$-c.e. set, since

$$
\left(A_{2 n-1}-A_{2 n}\right) \cup A_{2 n+1}=A_{2 n-1}-\left(A_{2 n}-A_{2 n+1}\right)
$$

Let $A_{2 n}^{\prime}=A_{2 n}-A_{2 n+1}$. Then $A_{2 n}^{\prime}$ is c.e., $A_{2 n}^{\prime} \subseteq A_{2 n-1}$ and $M=\left(A_{1}-A_{2}\right) \cup$ $\ldots \cup\left(A_{2 n-1}-A_{2 n}^{\prime}\right)$, which contradicts to the assumption of the theorem.

Therefore, any n-c.e. for some odd $n \geq 2$ set which is not an m-c.e. set for some even $m<n$ bounds in Q-degrees some noncomputable c.e. set. As noted above, there are 2-c.e. sets which bound in Q-degrees no noncomputable c.e. sets. Generalizing this observation, we now prove that for any even $n>2$ there is a n-c.e. set of properly n-c.e. degree which in Q-degrees does not bound any noncomputable c.e. sets.

Theorem 5. For any $n \geq 2$ there is a (2n)-c.e. set M of properly $(2 n)$ c.e. Q-degree such that for any c.e. set W, if $W \leq_{Q} M$, then W is computable.

Proof. For simplicity we will consider the case $n=2$. The general case has the same proof with obvious changes.

We construct c.e. sets A_{1}, A_{2}, A_{3} and $A_{4}, A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq A_{4}$, such that the Q-degree of $M=\left(A_{1}-A_{2}\right) \cup\left(A_{3}-A_{4}\right)$ does not contain 3-c.e. sets, and for any c.e. set W, if $W \leq_{Q} M$, then W is computable.

To ensure that M is not of 3-c.e. Q-degree, we meet for all $e \in \omega$ the requirements

$$
\mathcal{R}_{e}: M \not Z_{Q} V_{e} \text { via } \Theta_{e} \vee V_{e} \not Z_{Q} M \text { via } \Phi_{e} .
$$

To ensure the last condition we meet for any $e \in \omega$ the following requirements:

$$
\mathcal{S}_{e}: W_{e} \not \leq_{Q} M \text { via } \Phi_{e} \vee W_{e} \text { is computable. }
$$

Here $\left\{\left(W_{e}, \Phi_{e},\right)\right\}_{e \in \omega}$ is some enumeration of all possible pairs c.e. sets W_{e} and partial computable functionals Φ.

The basic module for the requirement \mathcal{R}_{e}. This is similar to the appropriate module from Theorem 3. For a convenience again we first rewrite the requirements \mathcal{R}_{e} as follows:

$$
\begin{gathered}
\mathcal{R}_{e}:(\exists x)\left(x \notin M \& W_{\Theta_{e}(x)} \subseteq V_{e} \vee x \in M \& W_{\Theta_{e}(x)} \nsubseteq V_{e}\right) \\
\vee(\exists y)\left(y \notin V_{e} \& W_{\Phi_{e}(y)} \subseteq M \vee y \in V_{e} \& W_{\Phi_{e}(y)} \nsubseteq M\right)
\end{gathered}
$$

Now we proceed as follows:
(1) Choose an unused candidate $x=x_{e}$ for \mathcal{R}_{e} greater than any number mentioned in the construction thus far.
(2) Wait for a stage s such that $\Theta_{e}(x) \downarrow$, and for some (least) $y=y_{e}$ such that

$$
y \in W_{\Theta_{e}(x)}-V_{e}
$$

(3) Wait for a stage s^{\prime} and for some (least) $z=z_{e}$ such that $\Phi_{e}(y) \downarrow$ and

$$
z \in W_{\Phi_{e}\left(y_{e}\right)}-M
$$

Again, there are the following two possibilities:
Case $a . x \neq z$. In this case:
(4a) Put x into M, protect z from other strategies from now on.
(5a) Wait for y to enter into V_{e}.
Now the requirement is satisfied since $y \in V_{e}$ and $z \in W_{\Phi_{e}(y)}-M$. If later y leaves V_{e}, then the requirement is again satisfied since $x \in M$ and $y \in W_{\Theta_{e}(x)}-V_{e}$.

Case b. $x=z$. In this case:
(4b) Put x into M.
(5b) Force y to enter into V_{e}.
(6b) Remove $z(=x)$ from M.
Now there are the following two possibilities:

Subcase (b_{1}). y leaves V_{e}. In this case:
$\left(7 b_{1}\right)$ Enumerate x into M.
$\left(8 b_{1}\right)$ Force y to enter into V_{e}.
$\left(9 b_{1}\right)$ Remove x from M.
Now we have $y \in V_{e}$ and $z \in W_{\Phi_{e}\left(y_{e}\right)}-M$, and the requirement \mathcal{R}_{e} is satisfied.

Subcase $\left(b_{2}\right) . y$ remains in V_{e}. In this case we have $z \in W_{\Phi_{e}\left(y_{e}\right)}-M$, and again the requirement \mathcal{R}_{e} is satisfied.

The basic module for the requirement \mathcal{S}_{e}. We use an ω-sequence of "cycles", where each cycle k proceeds as follows:
(1) While $k \notin W_{e}$ wait either for k to enter into W_{e} or for some $y_{k} \in$ $W_{\Phi_{e}(k)}-M$.
(2) Restrain y_{k} (if any) from being enumerated into M and stop.

Now suppose that $W_{e} \leq_{Q} M$ via Φ_{e}. To prove that in this case W_{e} is computable, for any $k \in \omega$ go through the k-th cycle of the strategy until a stage s is reached where either k enters into $W_{e, s}$ or some $y_{k} \notin M_{s}$ is enumerated into $W_{\Phi_{e}(k)}[s]$. Then $k \in W_{e}$ iff $k \in W_{e, s}$. Indeed, if $k \in W_{e}-$ $W_{e, s}$, then we have $k \in W_{e}$ and $y_{k} \in W_{\Phi_{e}(k)}-M$, which means that $W_{e} \not Z_{Q} M$ via Φ_{e}, a contradiction.

Interactions between the requirements. We only need to consider the case when the \mathcal{S}-strategies activity of higher priority interfere with the activity of \mathcal{R}-strategies of lower priority.

The only possible conflict in activities of these strategies is the following: an \mathcal{S}-strategy of higher priority restrains some integer y_{k} against M (at step 2 of the \mathcal{S}-module), but an \mathcal{R}-strategy of lower priority needs to enumerate y_{k} into M (at steps $4 a, 4 b$ and $7 b_{1}$). The obvious solution of this conflict is the following: enumerate y_{k} into M for the \mathcal{R}-strategy, wait for k to enter into W_{e} in the \mathcal{S}-strategy (if this never happens, then obviously this is okay for the \mathcal{S}-strategy), then remove y_{k} from M, satisfying the requirement \mathcal{S}, and possibly injuring the activity of the \mathcal{R}-strategy. For the latter we now choose a new witness and start the activity of the \mathcal{R}-strategy from the beginning. The crucial point here is that we construct a n-c.e. set M for an even n, and we can always remove the element y_{k} from M which was previously enumerated into M by the \mathcal{R}-strategy.

Construction. We order the requirements $\mathcal{R}_{e}, \mathcal{S}_{e}$ in an ω type list $\left\langle P_{n}\right\rangle$ and at stage s we consider the requirement $P_{n}, s=\langle n, k\rangle$, in our list.

Case 1. $P_{n}=R_{e}$ for some e.
If there is no witness associated with this requirement, we choose an integer x_{e} bigger than all integers so far mentioned during the construction as a witness associated with the requirement $\mathcal{R}\rceil$ and go to the next stage. Otherwise, we check which step of the basic module for this requirement holds, and act accordingly. If for an integer m in this stage we have $M_{s}(m) \neq M_{s-1}(m)$, then we initialize all requirements of lower priority. (An \mathcal{S}-requirement is initialized by cancelling all its cycles. An \mathcal{R}-requirement is initialized by cancelling of its witness and, therefore, cancelling all its restraints.)

Case 2. $P_{n}=S_{e}$ for some e.
(a) If for each $k \leq s$ such that $k \notin W_{e, s}$ either there is an integer y_{k} such that y_{k} is associated with k in a stage $s^{\prime}<s$ or $\neg \exists y\left(y \in W_{\Phi_{e}(k)}-\right.$ $M)[s]$, then go to stage $s+1$.
(b) Otherwise, but for some (least) $k \leq s$ we have $k \notin W_{e, s}$. Then let $y_{k}=\mu y\left(y \in W_{\Phi_{e}(k)}-M\right)[s]$. Associate y_{k} with k, restrain y_{k} from other strategies from now on, and go to stage $s+1$.
(c) If there is a (least) $k \in W_{e, s}$ such that an associated with k in a stage $s^{\prime}<s$ integer y_{k} is enumerated into M by a requirement $R_{e^{\prime}}, e^{\prime}>e$, then remove y_{k} from M, and initialize the requirement $R_{e^{\prime}}$.
(d) Otherwise, go to stage $s+1$.

This ends the construction.

Verification.

Lemma 6. Each requirement P_{e} is satisfied.
Proof. Let P_{n} be the first requirement which is not satisfied and let s be the first stage after which no requirement initializes it. (It follows from the choice of n that there is such a stage s.)

Case 1. $P_{n}=R_{e}$ for some e. In this case the requirement P_{n} is satisfied with the first witness x_{e} chosen after the stage s.

Case 2. $P_{n}=S_{e}$ for some e. Suppose that $W_{e} \leq_{Q} M$ via Φ_{e}. To effectively compute $W_{e}(k)$ for an (arbitrary) k, continue the construction until a stage $s^{\prime}>s$ such that either $k \in W_{s^{\prime}}$ or an integer y_{k} is associated with k at stage s^{\prime}. Then $k \in W_{e}$ iff $k \in W_{e, s^{\prime}}$. Indeed, suppose that $k \in W_{e}-W_{e, s^{\prime}}$. Since $W_{e} \leq_{Q} M$, we have $y_{k} \in M$, which means that a requirement \mathcal{R}_{i} of lower priority enumerates y_{k} into M. But since k enters into W_{e} after the stage s^{\prime}, by the construction we remove y_{k} from M, a contradiction.

The first significant result concerning the partial-ordering of the c.e. Qdegrees was provided by Downey, LaForte and Nies [1]. They proved that
the c.e. Q -degrees form a dense partial order, just as in the case of the c.e. T-degrees.

For the n-c.e. degrees, the density problem has some variants. Namely, studying so-called weak density properties one may investigate the existence of n-c.e. degrees $\mathbf{a}<\mathbf{b}$ such that there is no m-c.e. degree \mathbf{c} between \mathbf{a} and b for any $m<n$.

We have mentioned already that it follows from Proposition 2 that, in particular, for all c.e. sets A and B, we have $A-B \leq_{Q} A$. In Theorem 7 we construct c.e. sets A and B such that the strong reducibility $A-B<_{Q} A$ holds with several additional properties. Here we note that for c.e. sets A and B the strong reducibility $A-B<_{Q} A$ is the most prevailing case. First note, as can easily be shown, that if A is computable and infinite, then for any c.e. noncomputable subset $B \subseteq A$ and any noncomputable c.e. set C we have $C \not \AA_{Q} A-B$. Further, let A be any infinite noncomputable c.e. set and B its c.e. subset such that $A-B$ is immune (obviously, for any such A there exists such a B). Then $A \not \not_{Q} A-B$. Indeed, if $A \leq_{Q} A-B$ via some computable function f, then the c.e. set $\left\{\cup W_{f(x)}: x \in A\right\}$ must be finite. Let $\left\{a_{0}, \ldots, a_{n}\right\}$ be all its elements. Then for any $x, x \in \omega-A$ if and only if $\exists s, y(\forall i \leq n)\left(y \in W_{f(x), s} \& y \neq a_{i}\right)$. Therefore, $\omega-A$ is a Σ_{1}^{0}-set and A is computable, a contradiction.

Below combining weak density questions with the above mentioned property of n-c.e. sets we prove the following result:

Theorem 7. There exists a d-c.e. set $A_{1}-A_{2}$ such that $A_{1}-A_{2}<Q A_{1}$, and for every c.e. set W, if $A_{1}-A_{2} \leq_{Q} W$, then $A_{1} \leq_{Q} W$.

Proof. We construct c.e. sets $A_{1}, A_{2}, A_{2} \subseteq A_{1}$, such that $A=A_{1}-A_{2} \leq_{Q}$ A_{1}, the Q-degree of A does not contain c.e. sets, and $(\forall$ c.e. $W)\left(A \leq_{Q} W \rightarrow\right.$ $\left.A_{1} \leq W\right)$. Obviously, this is enough to prove the theorem.

To ensure that A is not of c.e. Q-degree we meet for all $e \in \omega$ the following requirements:

$$
\mathcal{R}_{e}: A \not \leq_{Q} W_{e} \text { via } \Theta_{e} \vee W_{e} \not \leq_{Q} A \text { via } \Phi_{e} .
$$

To satisfy the second property we meet the following requirements for all $e \in \omega$:

$$
\begin{gathered}
\qquad \mathcal{S}_{e}: A_{1}-A_{2} \leq_{Q} W_{e} \text { via } \Phi_{e} \Rightarrow \\
\Rightarrow\left(\exists \text { uniformly c.e. sequence of c.e. sets } U_{e}\right)\left(A_{1} \leq_{Q} W_{e} \text { via } U_{e}\right) .
\end{gathered}
$$

Here $\left\{\left(W_{e}, \Theta_{e}, \Phi_{e},\right)\right\}_{e \in \omega}$ is an effective enumeration of all possible triples of c.e. sets W and partial computable functionals Θ and Φ.

The basic module for the requirement \mathcal{R}_{e}. This is similar to the appropriate modules from Theorems 3 and 5 . Again for a convenience we
rewrite the requirements \mathcal{R}_{e} as follows:

$$
\begin{gathered}
\mathcal{R}_{e}:(\exists x)\left(x \notin A \& W_{\Theta_{e}(x)} \subseteq W_{e} \vee x \in A \& W_{\Theta_{e}(x)} \nsubseteq W_{e}\right) \\
\vee(\exists x)\left(x \notin W_{e} \& W_{\Phi_{e}(x)} \subseteq A \vee x \in W_{e} \& W_{\Phi_{e}(x)} \nsubseteq A\right)
\end{gathered}
$$

Now we proceed as follows:
(1) Choose an unused candidate x_{e} for \mathcal{R}_{e} greater than any number mentioned in the construction thus far.
(2) Wait for a stage s such that $\Theta_{e}\left(x_{e}\right) \downarrow$, and for some least y_{e} such that $y_{e} \in W_{\Theta_{e}\left(x_{e}\right)}-W_{e}$. (If this never happens, then x_{e} is a witness to the success of \mathcal{R}_{e}).
(3) Wait for a stage s^{\prime} such that $\Phi_{e}\left(y_{e}\right) \downarrow$, and for some least z_{e} such that $z_{e} \in W_{\Phi_{e}\left(y_{e}\right)}-A$. (Again, if this never happens, then y_{e} is a witness to the success of \mathcal{R}_{e}.)
There are following two possibilities:
Case a. $x_{e} \neq z_{e}$. In this case:
(4a) Put x_{e} into A_{1}.
(5a) Force y_{e} to enter into W_{e}. (If this never happens, then x_{e} is a witness to the success of \mathcal{R}_{e}.)
(6a) Protect z_{e} from other strategies from now on. (Now y_{e} is a permanent witness to the success of \mathcal{R}_{e} because $y_{e} \in W_{e} \& z_{e} \in W_{\Phi_{e}\left(y_{e}\right)}-A$, which means that $W_{e} \not \leq_{Q} A$ via $\left.\Phi_{e}.\right)$

Case b. $x_{e}=z_{e}$. In this case:
(4b) Put x_{e} into A_{1}.
(4b) Force y_{e} to enter into W_{e}. (If this never happens, then x_{e} is a witness to the success of \mathcal{R}_{e}).
(6b) Put $z_{e}\left(=x_{e}\right)$ into A_{2}. (Now again y_{e} is a permanent witness to the success of \mathcal{R}_{e} because $y_{e} \in W_{e} \& z_{e} \in W_{\Phi_{e}\left(y_{e}\right)}-A$, which means that $W_{e} \not \leq_{Q} A$ via $\left.\Phi_{e}.\right)$

The basic module for the requirement \mathcal{S}_{e}. Again, for convenience we first rewrite the requirements S_{e} as follows:

$$
\begin{gathered}
\mathcal{S}_{e}:(\exists x)\left(x \notin A \& W_{\Phi_{e}(x)} \subseteq W_{e} \vee x \in A \& W_{\Phi_{e}(x)} \nsubseteq W_{e}\right) \\
\vee(\forall x)\left(x \in A_{1} \leftrightarrow U_{e, x} \subseteq W_{e}\right)
\end{gathered}
$$

Now the strategy proceeds as follows: we use an ω-sequence of "cycles", where each cycle k proceeds as follows:
(1) While $k \notin A_{1}$ wait for $\Phi_{e}(k) \downarrow$ and some $u_{k} \in W_{\Phi_{e}(k)}-W_{e}$. (It is clear that otherwise the requirement is satisfied via the cycle k.)
(2) Enumerate u_{k} into $U_{e, k}$, open cycle $k+1$.
(3) Wait for a stage s when k enters A_{1}. (If between steps (2) and (3) u_{k} enters W_{e}, then close all cycles $>k$ and go to step (1) for a new u_{k}.)
(4) Close all cycles $>k$ and wait for a stage s^{\prime} when u_{k} enters W_{e}. (If there is no such stage s^{\prime}, then again the requirement \mathcal{S}_{e} satisfied via the cycle k.)
(5) Open cycles $>k$ and close the cycle k.

The module has the following possible outcomes:
(A) Some (least) cycle k eventually waits either at step (1), or at step (4) forever. This means that we were successful in satisfying \mathcal{S}_{e} through the cycle k since in this case $A \not \Sigma_{Q} W_{e}$ via Φ_{e}.
(B) Some cycle k loops from step (3) to step (1) infinitely often. This means that $k \notin A$ and $W_{\Phi_{e}(x)} \subseteq W_{e}$, and again we were successful in satisfying \mathcal{S}_{e} through the cycle k.
(C) Otherwise, for each cycle k, either it eventually waits at step (3) forever, or proceeds through step (5). This obviously means that for all $k, k \in A_{1} \leftrightarrow U_{e, k} \subseteq W_{e}$. Indeed, for each k there are following two possibilities:

Case 1. $k \notin A_{1}$. Then cycle k eventually waits at step (3), which means that $k \notin A_{1}$ and $u_{k} \in U_{e, k}-W_{e}$.

Case 2. $k \in A_{1}$. Then cycle k achieves step (5), which means that $U_{e, k} \subseteq W_{e}$.

Interactions between the requirements. Note that we enumerate integers into A_{1} and A_{2} only by the \mathcal{R}-strategy. But nevertheless the \mathcal{S}-strategies activity interferes with the \mathcal{R}-strategies. How do we get $U_{e, k} \subseteq W_{e}$, which is needed in cycle k of the basic module for \mathcal{S}_{e}, when $k \in A_{1}$, if, by a \mathcal{R}_{i}-strategy, we enumerate k into A_{2}, and if u_{k} never enters W_{e} ?

There are following two possibilities:
Case 1. $i \leq e$. In this case the \mathcal{R}_{i}-requirements have higher priority, and in the \mathcal{S}_{e}-strategy we simply close this cycle k. Since there are only finitely many \mathcal{R}-requirements of higher priority, this is enough for the \mathcal{S}_{e}-requirement to be satisfied: if $A \leq_{Q} W_{e}$, then $k \in A_{1} \leftrightarrow U_{e, k} \subseteq W_{e}$ for all except finitely many k.

Case 2. $e<i$. First note that by the \mathcal{R}_{i} - strategy we may enumerate k into A_{2} only in step (6b) of case b. This means that at step (3) of the \mathcal{R}_{i}-strategy we first obtain $z_{e}=x_{e}(=k)$ and then at step (6b) enumerate it into A_{2}. This lack of co-ordination between \mathcal{R} - and \mathcal{S}-strategies can be avoided by inserting between steps (5 b) and (6 b) of \mathcal{R}-strategy the following additional step.
(5.5b) Wait for a stage t such that for all \mathcal{S}_{i}-strategies of higher priority for which some $k=x_{e}=z_{e}$ with $k \in A_{1}, W_{\Phi_{i}(k)} \subseteq W_{i}[t]$.

If there is no such stage t, then this means that a requirement \mathcal{S}_{i} of higher priority is satisfied diagonalizing its left part (i.e., $A \not \leq_{Q} W_{i}$). Since there are only finitely many \mathcal{S}-requirements of higher priority, then for the success of the \mathcal{R}-requirement it is now enough to choose a new witness x_{e} and proceed.

Construction. We order the requirements $\mathcal{R}_{e}, \mathcal{S}_{e}$ in an ω-type list $\left\langle P_{n}\right\rangle_{n \in \omega}$ and at stage s we consider the requirement $P_{n}, s=\langle n, k\rangle$, in our list.

Case 1. $P_{n}=R_{e}$ for some e.
If there is no witness associated with this requirement, we choose an integer x_{e} bigger than all integers so far mentioned during the construction as a witness associated with the requirement \mathcal{R}^{7} and go to the next stage. Otherwise, for each witness x_{e} of this requirement we check which step of the basic module for this requirement holds, and act accordingly. For step (5.5b), if for each witness x_{e} there is an \mathcal{S}-requirement of higher priority $\mathcal{S}_{i}, i<e$, such that $x_{e}=k \in A_{1}$, but $u_{k} \notin W_{i}$, then for the requirement R_{e} we choose a new witness $x_{e^{\prime}}$ and go to the next stage. Otherwise, we enumerate k into A_{2} and go to the next step.

If in this stage for an integer m we have $A_{s}(m) \neq A_{s-1}(m)$, then we initialize all \mathcal{R}-requirements of lower priority. (An \mathcal{R}-requirement is initialized by cancelling its witness and, therefore, cancelling all its restraints.)

Case 2. $P_{n}=S_{e}$ for some e.
(a) Let $k_{0} \leq s$ be the greatest integer such that for any $k \leq k_{0}, \Phi_{e, s}(k)$ is defined. (If there is no such k_{0}, then go to stage $s+1$.)
(b) For each $k \leq k_{0}$ such that $k \notin A_{1, s}$ and $U_{e, k, s} \subseteq W_{e, s}$, if there is an (least) integer $u_{k} \in W_{\Phi_{e, s}(k), s}-W_{e, s}$, then enumerate u_{k} into $U_{e, k, s+1}$.
(c) Go to stage $s+1$.

This ends the construction.
Verification. Let $U_{e, k}=\bigcup_{s \in \omega} U_{e, k, s}$. It is clear that there is a computable function f such that $U_{e, k}=W_{f(e, k)}$.

The proof that the Q -degree of $A_{1}-A_{2}$ does not contain c.e. sets is similar to the appropriate claim of Theorem 5: For the sake of contradiction suppose that \mathcal{P}_{n} is the first requirement which is not satisfied and $\mathcal{P}_{n}=\mathcal{R}_{e}$ for some e. Let s be the least stage after which no \mathcal{R}-requirement of higher priority enumerates elements into A_{1} or A_{2}. Let x_{e} be the first witness chosen for the \mathcal{R}_{e}-requirement after stage s.

If $x_{e} \notin A_{1}$, then it follows immediately from the construction that \mathcal{R}_{e} is satisfied by the witness x_{e}. Now let $x_{e} \in A_{1}$. We assumed that all \mathcal{S} requirements of higher priority are also satisfied. This means that there is a stage $s^{\prime} \geq s$ such that for each requirement $\mathcal{S}_{i}, i \leq e$, if there is $k \in A$ but $u_{k} \in W_{\Phi_{i}(k)}-W_{i}$, then for some such k we have $u_{k} \in W_{\Phi_{i, s^{\prime}}(k)}-W_{i, s^{\prime}}$. Now
by the construction the first witness x_{e} which is chosen at stage s^{\prime} or later, satisfies the requirement \mathcal{R}_{e}.

Further, it follows from Theorem 1 that $A_{1}-A_{2} \leq_{Q} A_{1}$. Therefore, we have $A_{1}-A_{2}<_{Q} A_{1}$.

Now suppose that $\mathcal{P}_{n}=\mathcal{S}_{e}$ for some e. To prove that \mathcal{S}_{e} is satisfied we assume that $A_{1}-A_{2} \leq_{Q} W_{e}$ via Φ_{e}, i.e., Φ_{e} is total and for any $k, k \in$ $A_{1}-A_{2}$ if and only if $W_{\Phi_{e}(k)} \subseteq W_{e}$. Let s be the least stage such that the \mathcal{R}-requirements of higher priority after stage s do not enumerate elements into A_{1} or A_{2}.

We prove that for each k, k enters into A_{1} after stage s if and only if $U_{e, k}=W_{f(e, k)} \subseteq W_{e}$.

If $k \notin A_{1}$, then by construction $U_{e, k}$ contains an element $u_{k} \in W_{\Phi_{e}(k)}-$ W_{e} (otherwise we have $k \notin A$ and $W_{\Phi_{e}(k)} \subseteq W_{e}$, which contradicts to our assumption $A_{1}-A_{2} \leq_{Q} W_{e}$ via $\left.\Phi_{e}\right)$. Therefore, $U_{e, k} \nsubseteq W_{e}$.

Now suppose that k enters into A_{1} at a stage $s_{0} \geq s$. By construction we have $U_{e, k} \subseteq W_{\Phi_{e}(k)}$. If $U_{e, k} \nsubseteq W_{e}$, then there is an element u_{k} such that $u_{k} \in U_{e, k}-W_{e}$. By construction this means that $u_{k} \in W_{\Phi_{e}(k)}-W_{e}$. But we have $k \notin A_{2}$ since we enumerate k into A_{2} only if all such u_{k} are enumerated already into W_{e}. Therefore, $k \in A_{1}-A_{2}$ and $W_{\Phi_{e}(k)} \nsubseteq W_{e}$, a contradiction.

Now in Theorem 8 below we prove that adding to the construction of Theorem 7 a variant of a permitting argument for Q-reducibility, we can achieve that the Q-degree of A_{1} coincides with the Q-degree of the creating set K.

Theorem 8. There exists a d-c.e. set $A_{1}-A_{2}$ such that $A_{1}-A_{2}<_{Q} K$, and for every c.e. set W, if $A_{1}-A_{2} \leq_{Q} W$, then $K \leq_{Q} W$.

Proof. We describe the modifications needed in the construction of the previous theorem. We have to ensure $K \leq_{Q} A_{1}$ through a variant of permitting argument for Q-reducibility. For this we construct (let us denote this strategy by \mathcal{P}) a uniformly c.e. sequence of c.e. sets V_{e} such that $(\forall k)\left(k \in K \leftrightarrow V_{k} \subseteq A_{1}\right)$.

First let us agree that in the previous theorem witnesses for \mathcal{R}-requirements we choose only among even numbers. Now for any $k \in \omega$, we have:

The basic module for the requirement \mathcal{P}.

- Choose a big (bigger than all numbers mentioned so far) odd number v_{k} as a witness for k, enumerate v_{k} into V_{k}.
- Keep it out of A_{1} until k enters K.
- Enumerate v_{k} into A_{1} and stop.

Obviously $K \leq_{Q} A_{1}$ via $V=\left\{V_{k}\right\}_{k \in \omega}$. Since in Theorem 7 we choose witnesses for \mathcal{R}-strategies only among even numbers, and \mathcal{S}-strategies involve
only numbers enumerated into A_{1} or A_{2} by \mathcal{R}-strategies, this new modified strategy does not interfere with the activity of \mathcal{R} - and \mathcal{S}-strategies, except for the following possibility: we first choose some odd number v_{k} as a witness for k (in the \mathcal{P}-strategy), then at step (3) of its basic module an \mathcal{R}-strategy obtains v_{k} as some $z_{e} \in W_{\Phi_{e}\left(y_{e}\right)}-A$, and later at step (6a) restrains it from other strategies (to keep it out of $A_{1}-A_{2}$), finally this new \mathcal{P}-strategy (having $k \in K$) enumerates v_{k} into A_{1}. To avoid this conflict between strategies we could enumerate $v_{k}=z_{e}$ simultaneously into A_{1} and A_{2}, but some \mathcal{S} strategy in its $\left(k^{\prime}=v_{k}\right)$-cycle may wait (having also an appropriate integer $u_{k^{\prime}}$, see step 3 of the basic module of \mathcal{S}-strategy) for k^{\prime} to enter into A_{1}. Now enumerating v_{k} simultaneously into A_{1} and A_{2} means that $k^{\prime}=v_{k} \notin A$, and if $u_{k^{\prime}} \notin W_{e}$ this action kills the \mathcal{S}-strategy. This difficulty can be avoided by a priority ordering of the \mathcal{R} - and \mathcal{S}-requirements (the \mathcal{P}-requirement is the global requirement and does not participate in this priority ordering of requirements). Then:

- If \mathcal{R} has higher priority, then we enumerate v_{k} into A_{1} and A_{2}, and meet the \mathcal{R}-requirement and initialize the \mathcal{S}-requirement.
- If \mathcal{S} has higher priority, then we enumerate $v_{k}=k^{\prime}$ into A_{1}, wait for $u_{k^{\prime}}$ to enter into W_{e} (if this never happens, then the \mathcal{S}-requirement is satisfied), and then enumerate v_{k} into A_{2}.
Obviously this refinement of the \mathcal{P}-strategy solves this problem.
Theorem 9. Let V be a c.e. set such that $V<_{Q} K$. Then there exist c.e. sets A and B such that $V<_{Q} A-B<_{Q} K$ and the Q-degree of $A-B$ does not contain c.e. sets.

Proof. We will construct c.e. sets A and B so that $A \supseteq B$ and the Q-degree of $V \oplus(A-B)$ have the desired property. For convenience we suppose without loss of generality that V contains only even numbers and will construct A and B as subsets of the set of odd numbers. Then obviously $V \oplus(A-B) \equiv_{Q}$ $V \cup(A-B)$.

This is ensured by the following requirements. Let $n=\langle e, i, j\rangle$.

$$
\mathcal{R}_{n}: A-B \not \leq_{Q} W_{e} \text { via } \Phi_{i} \text { or } W_{e} \not \leq_{Q} V \oplus(A-B) \text { via } \Phi_{j} .
$$

We rewrite the requirement \mathcal{R}_{n} as follows:

$$
\begin{aligned}
& \exists x \notin A-B \& W_{\Phi_{i}(x)} \subseteq W_{e}, \quad \text { or } \\
& \exists x \in A-B \& W_{\Phi_{i}(x)} \nsubseteq W_{e}, \quad \text { or } \\
& \exists y \notin W_{e} \& W_{\Phi_{j}(y)} \subseteq V \cup(A-B), \quad \text { or } \\
& \exists y \in W_{e} \& W_{\Phi_{j}(y)} \nsubseteq V \cup(A-B) .
\end{aligned}
$$

Basic module for the \mathcal{R}_{n}-strategy in isolation. We use an ω-sequence of "cycles", where each cycle k proceeds as follows:
(1) Pick an unused odd witness x which is larger than all integers mentioned so far and keep it out of A.
(2) Wait for $\Phi_{i}(x) \downarrow$.
(3) Wait for some $y \in W_{\Phi_{i}(x)}-W_{e}$.
(4) Wait for $\Phi_{j}(y) \downarrow$.
(5) Wait for some $z \in W_{\Phi_{j}(y)}-\{V \cup(A-B)\}$.
(6a) If z is an odd number, then enumerate x into A, restrain z from being enumerated into A and B by the requirements of lower priority. Force y to enter into W_{e} (otherwise the requirement is satisfied). If $x=z$, then enumerate z into B, otherwise (if $x \neq z$) keep z out of A and B.
(Now the requirement \mathcal{R}_{n} is satisfied, since $y \in W_{e}$ and $z \in W_{\Phi_{j}(y)}-\{V \cup$ ($A-B)\}$.)
(6b) If z is an even number, then start cycle $k+1$ to run simultaneously.
(7) Wait for $k \searrow K$.
(If before step (7) y enters into W_{e}, then go to step (3) for a new y. If y does not enter into W_{e}, but between steps (6) and (7) z enters into V, then return to step (5) for a new z. In both cases stop all cycles $>k$ and remove all restraints of cycle k.)
(8) Enumerate x into A, stop all cycles $>k$.
(9) Wait for $y \searrow W_{e}$.
(10) Wait for $z \searrow V$.
(11) Open cycles $>k$.
(12) Wait for some $z^{\prime} \in W_{\Phi_{j}(y)} \cap A$.
(13) Enumerate z^{\prime} into B and stop.

The module has the following possible outcomes:
(A) Some (least) cycle k eventually waits either at steps (2)-(5) or at steps (9)-(10) forever. This means that we were successful in satisfying \mathcal{R}_{e} through the cycle k since in this case either $A-B \not \mathbb{Z}_{Q} W_{e}$ via Φ_{i} or $W_{e} \not Z_{Q} V \oplus(A-B)$ via Φ_{j}.
(B) Otherwise, some (least) cycle k comes to step (3) infinitely often. This means that $x \notin A-B$, but $W_{\Phi_{i}(x)} \subseteq W_{e}$. Therefore we are successful in satisfying \mathcal{R}_{e} through the cycle k.
(C) Otherwise, some (least) cycle k comes to step (5) infinitely often. This means that $\exists y \notin W_{e} \& W_{\Phi_{j}(x)} \subseteq V \cup(A-B)$, and again we are successful in satisfying \mathcal{R}_{e} through the cycle k.
(D) Some cycle k reaches the step (13). This means that we were successful in satisfying \mathcal{R}_{e} through the cycle k since in this case we have $y \in W_{e}$ but $z^{\prime} \in W_{\Phi_{j}(y)}-\{V \cup(A-B)\}$.
(E) Otherwise, for each cycle k, either it eventually waits at step (7) forever, or proceeds through step (7) but then (the only remaining possibility) it also proceeds through step (11) and never comes to
step (12). Obviously this means that

$$
k \notin K \rightarrow W_{\Phi_{j}(y)}-V \neq \emptyset
$$

(since it contains z),

$$
k \in K \rightarrow W_{\Phi_{j}(y)} \subseteq V
$$

(since all elements of $W_{\Phi_{j}(y)}$ enter also into V). Since for any given k the integer $\Phi_{j}(y)$ is computed effectively before step (7), this means that $K \leq_{Q} V$ via the computable function $f(k)=\Phi_{j}(y)$, contrary to hypothesis.

Interactions between the requirements \mathcal{R}_{n} and \mathcal{R}_{m} for $n \neq m$. The only conflict between the requirements \mathcal{R}_{n} and \mathcal{R}_{m} for $n \neq m$ is the following: \mathcal{R}_{n} wants to enumerate some x into A at step (8) which is restrained by \mathcal{R}_{m} at step (1), or \mathcal{R}_{n} wants to enumerate some x into B which is restrained by \mathcal{R}_{m} at step (8).

As usual, we settle this conflict by a priority ordering of the requirements: if $n<m$, then we simply close the appropriate cycles of the \mathcal{R}_{m}-strategy, by cancelling all its restraints. If $m<n$, then we close the cycle k of the \mathcal{R}_{n}-strategy, cancelling all its restraints.

Construction. At stage s we consider the requirement \mathcal{R}_{n}, where $s=$ $\langle n, t\rangle$ for some $t \geq 0$. Let $n=\langle e, i, j\rangle$ and $k=(t)_{0}$.

If there is no number which is \mathcal{R}_{n}-associated with k and for each $e<k$ some number x_{e}^{n} is \mathcal{R}_{n}-associated with e, then \mathcal{R}_{n}-associate with k the least number x_{k}^{n} which is greater than all numbers so far mentioned during the construction, and go to stage $s+1$. If some $e<k$ have no \mathcal{R}_{n}-associated number, then directly go to stage $s+1$.

Otherwise, suppose x_{k}^{n} is associated with k.
Case 1. $x_{k}^{n} \notin A_{s}$. Consider following two subcases:
Subcase 1.1. There is a y such that
(a) $\left(y \in W_{\Phi_{i}\left(x_{k}^{n}\right)}-W_{e}\right)[s]$,
(b) $\Phi_{j}(y) \downarrow[s]$,
(c) there is an integer z which is greater than all higher priority restraints such that $z \in W_{\Phi_{j}(y)}-\{V \cup(A-B)\}[s]$.
Let y_{k}^{n} be the least such y, and z_{k}^{n} be the least z from c) for this y_{k}^{n}.
If z_{k}^{n} is an even number and $k \notin K_{s}$, then set $A_{s+1}=A_{s}, B_{s+1}=B_{s}$. Otherwise (i.e., if z_{k}^{n} is an odd number or if z_{k}^{n} is an even number and $k \in K_{s}$) set $A_{s+1}=A_{s} \cup\left\{x_{k}^{n}\right\}, B_{s+1}=B_{s}$. Initialize all requirements of lower priority. (An \mathcal{R}-requirement is initialized by cancelling its associated numbers and cancelling all its restraints.)

Go to stage $s+1$.

Subcase 1.2. Otherwise. Set $A_{s+1}=A_{s}, B_{s+1}=B_{s}$, and go to stage $s+1$.
Case 2. $x_{k}^{n} \in A_{s}$. It follows from the construction that we enumerate integers into A only in case 1 . Therefore, in this case integers y_{k}^{n} and z_{k}^{n} are already defined.

If $y_{k}^{n} \in W_{e, s}, x_{k}^{n}=z_{k}^{n}$ and z_{k}^{n} is an odd number, then set $A_{s+1}=A_{s}$, $B_{s+1}=B_{s} \cup\left\{z_{k}^{n}\right\}$ and initialize all requirements of lower priority. If z_{n}^{k} is an odd number and either $y_{k}^{n} \notin W_{e, s}$ or $x_{k}^{n} \neq z_{k}^{n}$, then set $A_{s+1}=A_{s}$, $B_{s+1}=B_{s}$ and restrain z_{k}^{n} by priority \mathcal{R}_{n} from being enumerated into A and B by requirements of lower priority. If z_{n}^{k} is an even number, $y_{k}^{n} \in W_{e, s}$, $z_{k}^{n} \in V_{s}$, and there is $z^{\prime} \in W_{\Phi_{j}(y)} \cap(A-B)[s]$, then set $A_{s+1}=A_{s}, B_{s+1}=$ $B_{s} \cup\left\{z^{\prime}\right\}$. If z_{k}^{n} is an even number and either $y_{k}^{n} \notin W_{e, s}$ or $z_{k}^{n} \notin V_{s}$, or $W_{\Phi_{j}(y)} \cap(A-B)[s]=\emptyset$, then set $A_{s+1}=A_{s}, B_{s+1}=B_{s}$. Go to stage $s+1$.

This ends the construction.
Verification: Let $A=\bigcup_{s \in \omega} A_{s}$ and $B=\bigcup_{s \in \omega} B_{s}$. We prove that $A-B$ have the desired properties.

LEmma 10. Each \mathcal{R}-requirement restrains only finitely many odd numbers.
Proof. Let $\mathcal{R}_{n=\langle e, i, j\rangle}$ be the first requirement which restrains infinitely many odd numbers and let s be the first stage after which no requirement of higher priority restrains new odd numbers. By construction, only odd numbers z_{k}^{n}, which correspond to an associated with some k number x_{k}^{n}, can be restrained.

After stage s the requirement \mathcal{R}_{n} restrains at most one number z_{k}^{n}. Indeed, if \mathcal{R}_{n} restrains an integer z_{k}^{n}, then by case 1 of the construction this means that at a stage $s^{\prime} \geq s$ we enumerated x_{k}^{n} into A having $\left(y_{k}^{n} \in W_{\Phi_{i}\left(x_{k}^{n}\right)}-W_{e}\right)\left[s^{\prime}\right]$, $\Phi_{j}\left(y_{k}^{n}\right) \downarrow\left[s^{\prime}\right]$, and $z_{k}^{n} \in W_{\Phi_{j}(y)}-\{V \cup(A-B)\}\left[s^{\prime}\right]$. If $y_{k}^{n} \in W_{\Phi_{i}\left(x_{k}^{n}\right)}-W_{e}$, then the requirement is satisfied since $x_{k}^{n} \in A$ and $W_{\Phi_{i}\left(x_{k}^{n}\right)} \nsubseteq W_{e}$. If later y_{k}^{n} enters into W_{e}, then by case 2 of the construction at a stage $>s^{\prime}$ we enumerate z_{k}^{n} into B and again the requirement is satisfied, since in this case we have $y_{k}^{n} \in W_{e}$ and $W_{\Phi_{j}(y)} \nsubseteq V \cup(A-B)\left[s^{\prime}\right]$.

Lemma 11. Each requirement \mathcal{R}_{n} is satisfied.

Proof. Let $\mathcal{R}_{n=\langle e, i, j\rangle}$ be the first requirement which is not satisfied and let s be the first stage after which no requirement of higher priority restrains any new number. (It follows from Lemma 10 that there is a such stage s.) If $x_{k_{0}}^{n_{0}}$ and $x_{k_{1}}^{n_{1}}$ are two numbers which are associated with k_{0} and k_{1} according to the $\mathcal{R}_{n_{0}}$ - and $\mathcal{R}_{n_{1}}$-requirements, then by the construction we have $x_{k_{0}}^{n_{0}} \neq x_{k_{1}}^{n_{1}}$. This means that any restraint of $x_{k_{0}}^{n_{0}}$ does not hinder our work with $x_{k_{1}}^{n_{1}}$. (By construction any requirement \mathcal{R}_{m} of lower priority enumerates into A only associated with some k numbers x_{k}^{m} which are not equal to $x_{k_{1}}^{n_{1}}$, and \mathcal{R}_{m} may
enumerate into B an integer z_{k}^{m} only if $z_{k}^{m}=x_{k}^{m}$. Therefore, we again have $x_{k_{0}}^{n_{0}} \neq x_{k_{1}}^{n_{1}}$.)

This means that either for some k the first integer x_{k}^{n} which is associated with k after stage s satisfies the requirement \mathcal{R}_{n}, diagonalizing $A-B$ against W_{e} or diagonalizing W_{e} against $V \oplus(A-B)$, or for each k, either $k \notin K$ and there are integers y and z such that $z \in W_{\Phi_{j}(y)}-V$, or $k \in K$ and $W_{\Phi_{j}(y)} \subseteq V$. Since in this case for each k the integer $y=y(k)$ is computed effectively, and the function $\Phi_{j}(y(k))$ is total, we have $K \leq_{Q} V$, a contradiction.

Acknowledgements. The research of both authors is partially supported by "Research in Pairs" Program in Mathematisches Forschungsinstitute Oberwolfach, Germany. The first author is also supported by RFBR Grant 05-0100830. The authors would like to thank the anonymous referee for many suggestions and improvements throughout the paper.

References

[1] R. Downey, G. LaForte, and A. Nies, Computably enumerable sets and quasi-reducibility, Ann. Pure Appl. Logic 95 (1998), 1-35. MR 1650652 (2000c:03034a)
[2] J. R. Shoenfield, Quasicreative sets, Proc. Amer. Math. Soc. 8 (1957), 964-967. MR 0089808 (19,723b)
[3] R. I. Soare, Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987, A study of computable functions and computably generated sets. MR 882921 ($88 \mathrm{~m}: 03003$)
M. M. Arslanov, Kazan State University, 420008, Kazan, Kremlevskaja 18, RusSIA

E-mail address: Marat.Arslanov@ksu.ru
R. Sh. Omanadze, Tbilisi State University, Tbilisi 0143, University str. 2, GEorgia

E-mail address: r.omanadze@math.sci.tsu.ge

[^0]: Received February 19, 2006; received in final form November 27, 2006.
 2000 Mathematics Subject Classification. 03D25, 03D30.

