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KILLING FIELDS, MEAN CURVATURE, TRANSLATION
MAPS

SUSANA FORNARI AND JAIME RIPOLL

Abstract. D. Hoffman, R. Osserman and R. Schoen proved that if
the Gauss map of a complete constant mean curvature (cmc) oriented

surface M immersed in R3 is contained in a closed hemisphere of S
2

(equivalently, the function 〈η, v〉 does not change sign on M , where
η is a unit normal vector of M and v some non-zero vector of R3),
then M is invariant by a one parameter subgroup of translations of R3

(the one determined by v). We obtain an extension of this result to
the case that the ambient space is a Riemannian manifold N and M
is a hypersurface on N by requiring that the function 〈η, V 〉 does not
change sign on M , where V is a Killing field on N . We also obtain a
stability criterium for cmc surfaces in N3. In the last part of the article
we consider a Killing parallelizable Riemannian manifold N and define

a translation map γ : M → R
n of a hypersurface M of N which is a

natural extension of the Gauss map of a hypersurface in Rn. Considering
the same hypothesis on the image of γ we obtain an extension to this

setting of the original Hoffmann-Osserman-Schoen result. Motivated by
this extension, we restate in this context a conjecture made by M. P.

do Carmo which, in R3, states that the Gauss image of a complete cmc

surface which is not a plane nor a cylinder contains a neighborhood of
some equator of the sphere.

1. Introduction

D. Hoffman, R. Osserman and R. Schoen proved that if the Gauss map of
a complete constant mean curvature (cmc) oriented surface M immersed in
R

3 is contained in a closed hemisphere of S2, then M is invariant by a one
parameter subgroup of translations of R3; it then follows that M is a circular
cylinder or a plane (Theorem 1 of [HOS]). This result may be equivalently
stated as follows: Let η be a unit normal vector field to M in R3. If, for some
nonzero vector V ∈ R3, the map

f(p) : = 〈η(p), V 〉 , p ∈M,(1.1)

Received May 7, 2004; received in final form July 19, 2004.
2000 Mathematics Subject Classification. Primary 53. Secondary 58.

c©2004 University of Illinois

1385



1386 SUSANA FORNARI AND JAIME RIPOLL

does not change sign onM , thenM is invariant by the one parameter subgroup
of translations determined by V .

This interpretation of the Hoffman-Osserman-Schoen result admits an ex-
tension to hypersurfaces of a Lie group, obtained by K. Frensel, N. do Esṕırito
Santo and both authors of the present article, as follows: Let M be a complete
cmc n-dimensional hypersurface of a Lie group G with a bi-invariant metric
and assume that the function f in (1.1) does not change sign on M , where V
is a left invariant vector field on G. Then, if M is compact or n = 2, M is
invariant by the one parameter subgroup of isometries of G determined by V ;
it follows, when n = 2, that M is isometric to a plane, a circular cylinder or
a flat torus (see Theorem 4 of [EFFR]).

More recently, the authors realized that this same result holds in a Lie
group with only a left invariant metric and for any right invariant vector field
V . Considering that such vector fields are Killing fields, one may therefore
ask the following general question:

Question. Let M be a complete constant mean curvature H oriented
hypersurface immersed on a (n + 1)-dimensional Riemannian manifold N .
Assume that the function f given by (1.1) does not change sign on M , where
V is a Killing vector field in N . Is it true that M is invariant by the one
parameter subgroup of isometries of N determined by V ?

We will prove (Corollary 1):

If M is compact and the Ricci curvature of N satisfies

Ric(W ) ≥ −nH2

for any unit tangent vector W of N , then the answer is positive or M is
umbilic and N has constant non-positive Ricci curvature Ric(η) = −nH2 on
the η-direction at the points of M . In particular, the answer is positive if N
has positive Ricci curvature and M is compact.

For M complete and simply connected we prove the following (Corollary 2):

When N has dimension 3 and

Ric(W ) ≥ −2H2,

for any unit tangent vector W of N , if the function f given by (1.1) does
not change sign on M , for some Killing field V of N and, either M has the
conformal type of the disk or of the sphere or M is conformally the plane and
f is bounded on M , then the answer is positive, that is, M is invariant by
the one parameter subgroup of isometries of N determined by V , or M is
umbilic and N has constant non-positive Ricci curvature Ric(η) = −nH2 on
the η-direction.
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We note that this result gives the following extension of the Hoffman-
Osserman-Schoen theorem also in R3 (see Section 3 and Corollary 5 for more
details):

If the function 〈η, V 〉 does not change sign on a complete cmc surface M
in R3, where V is a Killing field of R3 which is bounded on M , then M is a
helicoidal surface. In particular, if V is translational, then M is a cylinder or
a plane, and if V is rotational, then M is a Delaunay surface.

The proofs of the above results are based on the following formula for the
Laplacian of f :

∆f = −n 〈∇H,V 〉 − (Ric(η) + ‖B‖2)f.(1.2)

This formula has several other implications, one of them being a stability
criterium for cmc surfaces. Recall that, by a well known result on the stability
of cmc surfaces in R3 obtained by M. do Carmo and L. Barbosa [BdoC], we
have the following criterion of stability: If the Gauss image of a cmc surface M
in R3 lies in a closed hemisphere of the sphere, then M is stable. This result
of do Carmo and Barbosa can also be rephrased in terms of a translational
Killing field as follows: If M is a cmc surface in R3 (not necessarily complete)
such that, for some vector V ∈ R3, the function f does not change sign, then
M is stable. We obtain here the following extension (Corollary 3):

Let N be a 3-dimensional Riemannian manifold such that

Ric(W ) ≥ −2H2

for any unit tangent vector W of N . Let M be a surface of constant mean
curvature H (not necessarily complete) and let D be a domain in M such that
D ⊂ int(M). Let V be a Killing vector field on N and assume that f has a
sign on D. Then D is stable.

This result can be applied to prove the stability of constant mean curvature
graphs in some twisted products, such as warped products (Corollary 4).

We can also make use of formula (1.2) to get an extension of the well known
formula

∆g = −‖B‖2g(1.3)

satisfied by the Gauss map g : M → S
n of an immersed cmc surface in Rn+1.

In fact, in the last part of the article we use Killing vector fields on a Killing
parallelizable Riemannian manifold N (that is, N admits n+ 1 Killing vector
fields linearly independent at each point of N (n + 1 = dimN)) to define a
translation map γ : M → R

n of a hypersurface M of N (see (4.1) and (4.2)).
This map is a natural extension of the Gauss map g of a hypersurface in Rn

and we call it a Killing translation map. We then use (1.2) to prove that M
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has cmc if and only if γ satisfies the equation

∆γ = − (Ric(η) + ‖B‖2)γ.(1.4)

Formula (1.4) can be used in many different situations. We use it here to
obtain a characterization of cmc hypersurfaces from hypotheses on the image
of γ. In particular, as we will see, it leads in this context to a natural and
interesting extension of a conjecture of M. P. do Carmo which, in R3, asserts
that the Gauss image of a complete cmc surface which is not a plane nor a
cylinder contains a neighborhood of an equator of the sphere (see the end of
Section 4).

We finally remark that examples of complete Killing parallelizable Rie-
mannian manifolds are Lie groups with a left invariant metric. In particular,
the above results apply to any symmetric space of noncompact type since, by
the Iwasawa decomposition, any such space is isometric to a Lie group with
some left invariant metric.

2. Killing fields and constant mean curvature hypersurfaces

Let N be a Riemannian (n + 1)-dimensional manifold. Recall that the
curvature tensor R of N is defined by

R(X,Z)Y, = ∇Z∇XY −∇X∇ZY +∇[X,Z]Y

and the Ricci tensor of N is defined by

Ric(X,Y ) =
n+1∑
i=1

〈R(X,Wi)Y,Wi〉 ,

where X,Y, Z are tangent to N and {W1, . . . ,Wn+1} is an orthonormal basis
of the tangent space of N . The Ricci curvature of N on the Z-direction is

Ric(Z) = Ric(Z,Z).

We begin by proving formula (1.2). Its proof is somewhat long, but straight-
forward, so we indicate only the main steps.

Proposition 1. Let N be a (n+ 1)-dimensional manifold and let V be a
Killing vector field of N . Let M be an oriented hypersurface of N and assume
that η is a unitary normal vector field to M in N . Then, setting

f(p) : = 〈η(p), V (p)〉 , p ∈M,

we have

∆f = −n 〈V,∇H〉 − (Ric(η) + ‖B‖2)f,(2.1)

where H denotes the mean curvature function of M with respect to η and ∇H
its gradient, Ric(η) the Ricci curvature of N in the η-direction, ‖B‖ the norm
of the second fundamental form B of M in N , and ∆ the Laplacian of M on



KILLING FIELDS, MEAN CURVATURE, TRANSLATION MAPS 1389

the metric induced by N . In particular, if M has constant mean curvature,
then f satisfies

∆f = −(Ric(η) + ‖B‖2)f.(2.2)

Proof. We fix a point p ∈M and take an orthonormal basis E1(p), . . . , En(p)
that diagonalizes B in p; let λ1, . . . , λn be the eigenvalues associated to E1(p),
. . . , En(p). Denote by E1, . . . , En a geodesic frame extending E1(p), . . . , En(p)
in a neighborhood of p in M . Then, at p,

∆f =
n∑
i=1

EiEi(f).(2.3)

Using that V is a Killing field and that E1(p), . . . , En(p) diagonalizes the
second fundamental form of M in p we easily obtain

EiEi(f) = 〈∇Ei∇Eiη, V 〉+ 〈η,∇Ei∇EiV 〉 , i = 1, . . . , n.(2.4)

Extend Ei in a neighborhood of p in N parallel to the geodesics normal to
M . Then [η,Ei] = λiEi at p, so that

〈
∇[η,Ei]V,Ei

〉
= 0 and

n∑
i=1

〈η,∇Ei∇EiV 〉 = −
n∑
i=1

〈R(η,Ei)V,Ei〉 = −Ric(η, V ).(2.5)

To estimate 〈∇Ei∇Eiη, V 〉 it is convenient to write, on M,

V =
n∑
j=1

vjEj + fη,

so that

〈V,∇Ei∇Eiη〉 =
n∑
j=1

vj 〈Ej ,∇Ei∇Eiη〉+ f 〈η,∇Ei∇Eiη〉 .

We have

〈Ej ,∇Ei∇Eiη〉 = 〈R(Ei, Ej)Ei, η〉 − Ej (〈∇EiEi, η〉)

and 〈η,∇Ei∇Eiη〉 = −λ2
i . It follows that

n∑
i=1

〈V,∇Ei∇Eiη〉 =
n∑

i,j=1

vj (〈R(Ei, Ej)Ei, η〉 − Ej (〈∇EiEi, η〉))− fλ2
i

=
n∑
i=1

〈R (Ei, V − fη)Ei, η〉 −

 n∑
j=1

vjEj

 (〈∇EiEi, η〉)− fλ2
i


= Ric(η, V )− f Ric(η)−

 n∑
j=1

vjEj

 (nH)− f
n∑
i=1

λ2
i ,
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so that
n∑
i=1

〈V,∇Ei∇Eiη〉 = Ric(η, V )− f Ric(η)− n 〈V,∇H〉 − f‖B‖2.(2.6)

We have used above that

nH =
n∑
i=1

〈∇EiEi, η〉 .

Substituting (2.4) in (2.3) and using (2.5) and (2.6) we obtain (2.1). �

Remark 1. Formula (1.2) is known in the case when the mean curvature
is constant and the ambient space has constant sectional curvature. A proof
is given in the paper [Ro] of H. Rosenberg (see the derivation of formula (3.4)
and the comments on p. 227 of [Ro]). Formula (1.2) can be easily obtained, by
using the same technique, when the mean curvature is constant and without
hypothesis on the curvature of the ambient space. However, we could not
obtain (1.2) in the general case using this technique. In fact, it seems that the
constancy of the mean curvature is essential for the arguments used in [Ro].

Corollary 1. Let N be a Riemannian (n+1)-dimensional manifold. Let
M be a compact hypersurface of constant mean curvature H immersed in N
and assume that

Ric(W ) ≥ −nH2

for any unit tangent vector W of N . Let V be a Killing vector field on N . If
the function

f = 〈η, V 〉
does not change sign on M , then M is invariant by the one parameter subgroup
of isometries of N determined by V or M is umbilic and N has constant non-
positive Ricci curvature Ric(η) = −nH2 on the η-direction.

Proof. Let us assume that f ≥ 0. Noting that 〈V,∇H〉 = 0 and

Ric(η) + ‖B‖2 ≥ Ric(η) + nH2 ≥ 0,(2.7)

it follows from Proposition 1 that

∆f ≤ 0.

Since M is compact, it follows from Hopf’s theorem that f = cte and then
∆f = 0. From (1.2) we obtain f ≡ 0 or Ric(η) + ‖B‖2 ≡ 0. In the first
case we conclude that V is a vector field on M so that M is invariant by
the one parameter subgroup of isometries determined by V . In the second
case, it follows from (2.7) that ‖B‖2 = nH2 = −Ric(η), and the equality
‖B‖2 = nH2 implies that M is umbilic. This concludes the proof of the
corollary. �
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Corollary 2. Let N be a Riemannian 3-dimensional manifold. Let M
be a complete, connected, simply connected surface of constant mean curvature
H immersed in N such that

Ric(W ) ≥ −2H2

for any unit tangent vector W of N . Let V be a Killing vector field on N and
assume that the function

f = 〈η, V 〉

does not change sign on M . If

(a) M has the conformal type of the disk or the sphere, or
(b) M has the conformal type of the plane and ‖V ‖ is bounded on M ,

then M is invariant by the one parameter subgroup of isometries of N deter-
mined by V or M is umbilic and N has constant non-positive Ricci curvature
Ric(η) = −2H2 on the η-direction at the points of M .

Proof. The proof is essentially the same as that of Theorem 1 of [HOS].
For completeness we reproduce it here. If M is the sphere, then Corollary 2
reduces to Corollary 1. Let us consider the case when M has the conformal
type of the disk. Suppose that f ≤ 0. Then

∆f = −(Ric(η) + ‖B‖2)f ≥ −(Ric(η) + 2H2)f ≥ 0,

so that f is subharmonic. Therefore, if f = 0 at some a point of M , then
f ≡ 0 by the maximum principle, so that M is invariant by V . Let us prove
that the case f < 0 cannot occur. By contradiction, assume that f < 0
everywhere. We have, by the Gauss equation,

‖B‖2 = 4H2 − 2(K −KN ),

where K is the Gauss curvature of M and KN the sectional curvature of N
on the tangent plane of M . From (2.2) we obtain

∆f − 2Kf + (Ric(η) + 2KN + 4H2)f = 0.(2.8)

Considering an orthonormal basis E1, E2 of the tangent planes of M we obtain

Ric(η) + 2KN = 〈R(η,E1)η,E1〉+ 〈R(η,E2)η,E2〉+ 2 〈R(E1, E2)E1, E2〉
= 〈R(E1, η)E1, η〉+ 〈R(E1, E2)E1, E2〉
+ 〈R(E2, η)E2, η〉+ 〈R(E2, E1)E2, E1〉
= Ric(E1) + Ric(E2).

Then, from the hypothesis

Ric(η) + 2KN + 4H2 ≥ 0.
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However, (2.8) contradicts Corollary 3 of [FS], which states that when K
is the Gauss curvature of a complete conformal metric on the unit disk there
can be no negative solution of equation (2.8) if

Ric(η) + 2KN + 4H2 ≥ 0.

Let us assume now that M = R
2 (conformally) and that ‖V ‖ is bounded

on M . Then f is subharmonic and bounded on R2 and it follows that f is
constant. Then ∆f = 0 and, from (2.2),

(Ric(η) + ‖B‖2)f = 0.

The conclusion of the corollary then follows as in the previous result. �

Remark. Corollary 2 applies in an obvious way to a complete, not nec-
essarily simply connected surface, by composing the immersion with the uni-
versal covering map of the surface.

The next result is an extension of Theorem 5 of [EFFR] and has the same
proof. For the sake of completeness, we reproduce it here.

Corollary 3. Let N be a Riemannian 3-dimensional manifold and as-
sume that

Ric(W ) ≥ −2H2

for any unit tangent vector W of N . Let M be a surface of constant mean
curvature H (not necessarily complete) and let D be a domain in M such that
D ⊂ int(M). Let V be a Killing vector field on N and assume that f = 〈V, η〉
has a sign on D. Then D is stable.

Proof. Let us assume that f > 0 on D. From (1.2) we have

∆f = −(Ric(η) + ‖B‖2)f ≤ −(Ric(η) + nH2)f ≤ 0.

Then, from the Corollary 1 of [FS], λ1(D) ≥ 0, where λ1(D) is the first
eigenvalue of the Laplacian operator over D. We will show that, in fact,
λ1(D) > 0. Since D ⊂ int(M), there exists a domain D′ ⊂M such that D ⊂
D′, D′\D 6= ∅ and f |D′ > 0. Again, from Corollary 1 of [FS], λ1(D′) ≥ 0.
But, from the Lemma of [FS], λ1(D′) < λ1(D), so λ1(D) > 0. This proves
Corollary 3. �

It follows from this corollary that any radial or horizontal cmc graph in the
half space model for the hyperbolic space is stable. (These graphs have been
recently studied; see [GE], [N].) In fact, these are particular cases of a more
general result stated below.

Given N = N0 × R, let 〈, 〉 be a twisted product in N of the form

〈, 〉 = α2 〈, 〉N0
+ β2 〈, 〉

R
,
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where 〈, 〉N0
is a Riemannian metric on N0, 〈, 〉

R
the multiplication on R and

α, β are positive functions on M . When α ≡ 1, N is a warped product (see
[MRS]). We use below the notation N = N0 ×(α,β) R for this Riemannian
metric on N . A graph on N is a hypersurface of the form (x, u(x)) for x in
some open subset Ω of N0, where u is a smooth function on Ω.

Corollary 4. Let N = N0 ×(α,β) R be as above and assume that

Ric(W ) ≥ −2H2

for any unit tangent vector W of N . Let M be a constant mean curvature H
graph on N and let D be a domain in M such that D ⊂ int(M). Then D is
stable.

Proof. We have only to note that the vector field V = d/dr is a Killing
vector field on N and, since M is a graph, V is everywhere transversal to
M . �

3. The spaces of constant sectional curvature

In this section we analyze in greater details Corollaries 2 and 3 when N is
a simply connected 3-dimensional space of constant sectional curvature, that
is, R3, S3, or H3. Our first observations however apply to general Riemannian
manifolds. Thus, let us assume that N is a (n + 1)-dimensional Riemannian
manifold and let G = ISO(N) be the Lie group of isometries of N . Denote by
G the Lie algebra of G. Let

exp : G → G

be the exponential map. Recall that, given g ∈ G, the adjoint map Adg :
G → G is given by

Adg(X) =
d

dt

[
g(exp tX)g−1

]
t=0

, X ∈ G.

We can verify that it satisfies

g(expX)g−1 = exp Adg(X).

A Killing field X of N is given as follows: Taking X∗ ∈ G we have, at
p ∈ N ,

X(p) =
d

dt
(exp tX∗)(p)

∣∣∣∣
t=0

.

In what follows, we denote X∗ also by X.
We say that a submanifold M of N is X-invariant if X(p) ∈ TpM for all

p ∈M .
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Proposition 2. Let X, Y be Killing vector fields on N such that X =
Adg Y for some g ∈ G = ISO(N). Then any submanifold M of N which is
X-invariant is congruent to a Y -invariant submanifold of N .

Proof. Let S be a Y -invariant submanifold of N . Then

(exp tX)(g(S)) = g(g−1(exp tX)g)(S)

= g(exp tAdg−1 X)(S)

= g(exp tY )(S) = g(S),

proving the proposition. �

We now specialize to the 3-dimensional spaces of constant sectional curva-
ture. We will use some standard facts about semi-simple Lie algebras, which
can be found in [W].

The Euclidean case. The isometry group G = ISO(R3) of R3 can be
interpreted as the matrix group

G =




u
A v

w
0 0 0 1

 ; A ∈ O(3), u, v, w ∈ R


acting on R3 as

u
A v

w
0 0 0 0

 (x, y, z) =


u

A v
w

0 0 0 0




x
y
z
1

 .

The Lie algebra G of G is the semi-simple rank 1 Lie algebra given by

G =




0 x y u
−x 0 z v
−y −z 0 w
0 0 0 0

 ;x, y, z, u, v, w ∈ R


with Lie bracket [X,Y ] = XY − Y X having a Cartan subalgebra

H =




0 α 0 0
−α 0 0 0
0 0 0 0
0 0 0 0

 ;α ∈ R

 .

Given X ∈ G, by the Jordan-Chevalley decomposition theorem we may write

X = XS +XN ,
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where XS is semi-simple (XS is diagonalizable over C) and XN is nilpotent,
with [XS , XN ] = 0. If XS = 0, then X = XN is nilpotent and it is easy to
see that X induces a translation on R3 and that there is g ∈ G such that

Adg(X) =


0 0 0 0
0 0 0 0
0 0 0 β
0 0 0 0

 .
If XS 6= 0, then, by Cartan’s subalgebras conjugation theorem, there is g ∈ G
such that

Adg(XS) =


0 α 0 0
−α 0 0 0
0 0 0 0
0 0 0 0


for some α 6= 0. Since

[Adg(XS),Adg(XN )] = Adg([XS , XN ]) = 0,

a direct computation shows that

Adg(XN ) =


0 0 0 0
0 0 0 0
0 0 0 β
0 0 0 0


for some β ∈ R, so that

Adg(X) = Adg(XS +XN ) = Adg(Xs) + Adg(XN ) =


0 α 0 0
−α 0 0 0
0 0 0 β
0 0 0 0

 .
We have therefore proved that any Killing field in R3 is Ad-conjugated to a
Killing field of the form

Xα,β =


0 α 0 0
−α 0 0 0
0 0 0 β
0 0 0 0

 .
Let φa,β be the subgroup of isometries of R3 determined by Xα,β , that is,

φα,β(t)(x, y, z) =


cosαt sinαt 0 0
− sinαt cosαt 0 0

0 0 1 tβ
0 0 0 1



x
y
z
1

 , (x, y, z) ∈ R3.

We may then use Proposition 2 and Corollary 2 to obtain:
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Corollary 5. Let M be a complete surface of constant mean curvature
immersed in R3. Assume that the function

f = 〈η, V 〉

does not change sign on M , where V is a Killing field of R3. If
(a) M has the conformal type of the disk or the sphere, or
(b) M has the conformal type of the plane and ‖V ‖ is bounded on M ,

then M , up to congruence, is φα,β-invariant for some α, β ∈ R.

If α = 0 and β 6= 0, then X0,β is a translation on R3, which is of course
bounded in the whole space. It is easy to prove that the only cmc X0,β-
invariant surfaces are the right circular cylinder and the plane. This is the
case considered in Theorem 1 of [HOS].

If α 6= 0 and β = 0, then the Xa,0-invariant surfaces are the surfaces of
revolution. The cmc revolution surfaces are called Delaunay surfaces and are
well known. They were first studied in 1841 by Charles Delaunay [D], who
discovered the rolling method of construction of the generating curve of these
surfaces.

In general, that is, for arbitrary values of α and β, the Xα,β-invariant
surfaces are known as helicoidal surfaces. Helicoidal surfaces with cmc were
studied by M. P. do Carmo and M. Dajczer [doCD].

The spherical case. It follows from the maximal torus theorem that any
Killing field of S3 is Ad-conjugated to a Killing field of the form

Xα,β =


0 α 0 0
−α 0 0 0
0 0 0 β
0 0 −β 0

 ∈ so(4),

where so(4) is the Lie algebra of isometry group of S3. Let φa,β be the sub-
group of isometries of S3 determined by Xα,β , that is,

φα,β(t) =


cosαt sinαt 0 0
− sinαt cosαt 0 0

0 0 cosβt sinβt
0 0 − sinβt cosβt

 .
Using again Proposition 2 and Corollary 2, and taking into account that

any Killing vector field in S3 is obviously bounded, we obtain:

Corollary 6. Let M be a complete surface of constant mean curvature
immersed in S3. Assume that the function

f = 〈η, V 〉

does not change sign on M , where V is a Killing field of S3. Then M , up to
congruence, is φα,β-invariant for some α, β ∈ R.
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If α = 0 or β = 0 but Xα,β 6= 0, then a Xa,β-invariant surface is a surface
of revolution in S3. We give below a brief description of these surfaces. If

φt = exp tX0,1,

then a φt-invariant surface is given by

Sγ : = {φt(γ) | t ∈ R},

where γ is a regular curve on the orbit space for φt:

S
2
+ = {(x, y, z, 0) | x2 + y2 + z2 = 1, z ≥ 0}.

Using the coordinates

x =
√

1− z2 cos θ,

y =
√

1− z2 sin θ,

for S2
+ we see that if γ is parametrized by arc length in the coordinates z =

z(t), θ = θ(t) with θ(0) = 0, then Sγ has cmc H if and only if

θ(t) =
∫ t

0

√
1− z2(s)− (z′(s))2

1− z2(s)
ds

and z(t) satisfies the ODE

zz′′ + (z′)2 + 2z2 + 2Hz
√

1− z2 − (z′)2 − 1 = 0.

This equation can be completely integrated; in fact, assuming that a certain
initial condition is satisfied, the solutions are given by

z(t) =

√
A sin

(
2
√

1 +H2t+
π

2

)
−
H2 +H

√
1/4− c2

1 +H2
+

1
2
,

where

A =

√
H2 − 4(H2 − 1)c2 ± 8Hc

√
1/4− c2

2(1 +H2)

and c is a parameter that can vary on the interval [−1/2, 1/2).
We note that the rolling constructions are also valid for the cmc surfaces

of revolution in S3. This fact was proved by I. Sterling [S].
With respect to the Xα,β-invariant surfaces with cmc in S3 we observe that

if α = β, then Xα,α is a Hopf vector field and the only cmc Xα,α-invariant
surfaces are the Clifford tori (see the proof of Theorem 4 of [EFFR]). We did
not find in the literature a description of the cmc Xα,β-invariant surfaces in
S

3 when α 6= β and α 6= 0 6= β, with the exception of a paper of W. Y. Hsiang
and B. Lawson [HL] describing the minimal Xα,β-invariant surfaces for α and
β integers.
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The hyperbolic case. The isometry group O(3, 1) = ISO(H3) is isomor-
phic to the group of linear transformations of R4 that preserves the quadratic
form

q(x) = −x2
1 + x2 + x2

3 + x2
4

and whose Lie algebra o(3, 1) is given by

o(3, 1) =




0 a b c
a 0 x y
b −x 0 z
c −y −z 0

 ; a, b, c, x, y, z ∈ R

 .

It is a basic fact that o(3, 1) is a semisimple Lie algebra of rank 2. We may
then see that

H =




0 α 0 0
α 0 0 0
0 0 0 β
0 0 −β 0

 ; α, β ∈ R


is a Cartan subalgebra of o(3, 1). Given X ∈ o(3, 1), we use the Jordan-
Chevalley decomposition theorem to write

X = XS +XN

with XS semisimple and XN nilpotent and [XS , XN ] = 0. If XS = 0, then
X = XN and we may prove that XN is Ad-conjugated to a Killing field of
the form

Xγ =


0 0 γ 0
0 0 γ 0
γ −γ 0 0
0 0 0 0


for some γ ∈ R. If XS 6= 0, then there is g ∈ O(3, 1) such that Adg(XS) ∈
H and we may see that Adg(XN ) commutes with some nonzero element of H.
A direct computation then shows that Adg(XN ) ∈ H, and this implies that
Adg(XN ) = 0 that is, XN = 0.

We have therefore proved that any Killing field on H3 is Ad-conjugated to
a Killing field Xγ as above or of the form

Xα,β =


0 α 0 0
α 0 0 0
0 0 0 β
0 0 −β 0

 .
Let φ1 and φa,β be the one parameter subgroups of isometries of H3 deter-
mined by X1 and Xα,β , that is,

φ(t) = I + tX1 + (t2/2)X2
1 ,
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and

φα,β(t) =


coshαt sinhαt 0 0
− sinhαt coshαt 0 0

0 0 cosβt sinβt
0 0 − sinβt cosβt

 .
As before, we have:

Corollary 7. Let M be a complete surface of constant mean curvature
immersed in H3. Assume that the function

f = 〈η, V 〉

does not change sign on M , where V is a Killing field of H3. If

(a) M has the conformal type of the disk or the sphere, or
(b) M has the conformal type of the plane and ‖V ‖ is bounded on M ,

then M , up to congruence, is φ1 or φα,β-invariant for some α, β ∈ R.

The Xα,0-invariant surfaces (α 6= 0) are the surfaces of revolution in H3,
and X0,β-invariant surfaces are known as hyperbolic surfaces. The Xα,β-
invariant surfaces with α 6= β and α 6= 0 6= β are analogous to the helicoidal
surfaces of R3. The X1-invariant surfaces are known as parabolic surfaces. We
have not found in the literature explicit equations describing these surfaces.

4. The Killing translation map

Let N be a (n + 1)-dimensional Riemannian manifold. We say that N is
a Killing parallelizable Riemannian manifold if there are n+ 1 Killing vector
fields V1, . . . , Vn+1 which are linearly independent at each point of N . The
set of vector fields B = {V1, . . . , Vn+1} is called a Killing basis of TN .

Associated to a Killing basis B there is a “Killing translation” on TN,

Γ : TN → R
n+1,

defined by setting, for p ∈ N and v ∈ TpN,

Γp(v) =
n+1∑
i=1

〈v, Vi(p)〉 ei.(4.1)

Note that Γp : TpN → R
n+1 is a linear isomorphism, for any given p ∈ N .

Let M be an orientable hypersurface of N and let η be a unitary normal
vector field to M on N . We define the normal Killing translation map γ :
M → R

n+1 associated to the Killing basis B by setting

γ(p) = Γp(η(p)).(4.2)
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When N = R
3 and V1 = (1, 0, 0), V2 = (0, 1, 0), V3 = (0, 0, 1), then γ is the

usual Gauss map, say g, of M . In this particular case, we have the well known
formula

∆g = −2∇H − ‖B‖2g.

We shall show below that γ satisfies a similar formula.

Remark. Using the same technique as in [Ri], one may use the map γ to
prove that if M is a hypersurface of a Killing parallelizable (n+1)-dimensional
Riemannian manifold N having positive principal curvatures, then M is dif-
feomorphic to the n-dimensional sphere.

Theorem 1. Let N be a (n + 1)-dimensional Killing parallelizable Rie-
mannian manifold, and let B be a Killing basis of TN . Let M be an ori-
entable hypersurface immersed in N . Then the normal Killing translation
map γ : M → R

n+1 of M associated to B satisfies the formula

∆γ(p) = −nΓp(∇H)− (Ric(η) + ‖B‖2)γ(p)

for all p ∈M . In particular, M has constant mean curvature if and only if γ
satisfies the equation

∆γ = − (Ric(η) + ‖B‖2)γ.

Proof. Assume that B = {V1, . . . , Vn+1}. Since

γ(p) =
n+1∑
i=1

〈η, Vi〉 ei,

it follows by (1.2) that, given p ∈M ,

∆γ(p) =
n+1∑
i=1

∆(〈η, Vi〉)(p)ei

= −n
n+1∑
i=1

〈Vi,∇H〉 (p)ei − (Ric(η) + ‖B‖2)
n+1∑
i=1

〈η, Vi〉 (p)ei

= −nΓp(∇H)− (Ric(η) + ‖B‖2)γ(p),

proving the theorem. �

Remark. We note that Theorem 1 of [EFFR] is an immediate conse-
quence of Theorem 1.

Corollary 8. Let N be a (n+ 1)-dimensional Killing parallelizable Rie-
mannian manifold, and let B be a Killing basis of TN . Assume that

Ric(W ) ≥ −nH2,
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for any unit tangent vector W of N . Let M be a complete hypersurface im-
mersed in N with constant mean curvature H and assume that γ(M) is con-
tained in a half space of Rn+1, where γ is the normal Killing translation map
associated to B. We then have:

(i) If M is compact, then M is invariant by a one parameter subgroup
of isometries of N or M is umbilic and N has constant non-positive
Ricci curvature Ric(η) = −nH2 on the η-direction.

(ii) If n = 2, M is simply connected and either M has the conformal
type of the disk or M is conformally the plane and γ is bounded on
M , then M is invariant by a one parameter subgroup of isometries of
N or M is umbilic and N has constant non-positive Ricci curvature
Ric(η) = −nH2 on the η-direction.

Proof. By hypothesis, there is v ∈ Rn+1, v 6= 0, such that 〈v, γ(p)〉 ≥ 0 for
all p ∈M . Let V be the Killing field of N given by

V =
n+1∑
i=1

〈v, ei〉Vi.

Then

〈η, V 〉 =

〈
η,
n+1∑
i=1

〈v, ei〉Vi

〉
=
n+1∑
i=1

〈η, Vi〉 〈v, ei〉

= 〈γ(p), v〉 ≥ 0.

Corollary 8 is then a consequence of Corollaries 1 and 2. �

In the case when N = R
3, Corollary 8 gives the following extension of the

original Hoffman-Osserman-Schoen result:

Corollary 9. Let B be a basis of Killing vector fields of TR3. Let M be
a complete cmc surface immersed in R3 and let γ : M → R

3 be the normal
Killing translation map associated to B. If γ(M) is contained in a half space
of R3 and γ is bounded on M , then M is a helicoidal surface.

The map γ can also be used to provide another criterium of stability (in
addition to that of Corollary 3):

Corollary 10. Let N be a 3-dimensional Killing parallelizable Riemann-
ian manifold, and let B be a Killing basis of TN . Assume that

Ric(W ) ≥ −nH2

for any unit tangent vector W of N . Let M be a surface of constant mean
curvature H (not necessarily complete) and let D be a domain in M such that
D ⊂ int(M). Assume that γ(M) is contained in a half space of R3, where γ
is the normal Killing translation map associated to B. Then D is stable.
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Proof. The result follows by using the function f = 〈η, V 〉 of Corollary 8
and applying Corollary 3. �

Remark. Particular applications of the above results arise when N is a
Lie group with a left invariant metric, where the right invariant vector fields
in N are Killing fields. It then follows that the translation Γ can be taken as
the right translation to the identity, that is,

Γp(v) = d(Rp)−1(v),

where Rp(x) = xp. In particular, the above results apply to any symmetric
space of noncompact type.

Corollary 8, in the special case when N = R
3 and the normal Killing

translation map is the usual Gauss map, is at the basis of a conjecture of M.
P. do Carmo which asserts that the Gauss map of a complete cmc surface in
R

3 which is not a cylinder nor a plane must contain a neighborhood of an
equator of the sphere. This property in fact holds for the Delaunay surfaces
and for the cmc complete helicoidal surfaces.

One may see that this property also holds for the normal Killing translation
map γ associated to a Killing basis B of R3 and for many examples of Delaunay
and helicoidal cmc surfaces (considering the radial projection of γ on the unit
sphere).Therefore, in view of Corollary 8, it is natural to give the following
extension of do Carmo’s conjecture:

Conjecture. Let N be a (n+ 1)-dimensional Killing parallelizable Rie-
mannian manifold and let B be a Killing basis of TN . Let M be a complete
constant mean curvature hypersurface immersed in N and let γ : M → R

n+1

be the normal Killing translation map associated to B. If M is not invariant
by a Killing field generated (over the real numbers) by B, then the radial pro-
jection of γ(M) on the unit sphere covers a neighborhood of some equator of
the sphere.
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