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AN ECKMANN-HILTON DUAL TO THE Π-ALGEBRAS OF
HOMOTOPY THEORY

ANDREW PERCY

Abstract. We define an H-algebra to be an Eckmann-Hilton dual to
the Π-algebras of homotopy theory. These cohomology algebras are an

abstraction of the structure of cohomology groups together with the
stable and unstable primary cohomology operations on them. We give
sufficient properties of H-algebras to provide examples demonstrating
the complexity of their structure and rôle in the homotopy classification
problem. We reveal the generators of the integral cohomology oper-

ations and discuss relations between them. We also provide a series
of restrictions leading from H-algebras to unstable algebras over the
Steenrod algebra.

1. Introduction

Cohomology operations give an additional structure to the cohomology
groups of a space and have been studied since the 1950’s. Particularly use-
ful for the classification of topological spaces have been the stable operations
with Z/p coefficients which together with the cohomology groups give rise
to unstable algebras over the Steenrod algebra. The effectiveness of these
“cohomology algebras” is largely because the algebraic structure is so well
understood. Thus we can, for instance, determine a complete list of polyno-
mial algebras on two generators that can be realized as the Z/p-cohomology
of a space by determining their compatibility with the Steenrod algebra (see
[1], §7.5).

In this paper we give an algebraic object modelling the integral cohomology
groups together with all primary integral operations, stable and unstable.
This is achieved by considering an Eckmann-Hilton dual to the Π-algebras
of homotopy theory. We call these dual objects H-algebras though we may
well have called them coΠ-algebras. We do not need to make any restrictions
on the operations (they may be unstable or of higher torsion) however at
the price of not, at this stage, being able to give an explicit description of
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the universal examples for cross-cap products nor all relations between the
generating operations, although some are known. However, the generators
and relations on the algebra of primary cohomology operations can be given
by the internal structure of a certain “cohomology operation category”. This
category is denotedH and consists of finite products of integral Eilenberg-Mac
Lane spaces. An H-algebra is a functor from H to the category of pointed
sets sending products to products.

Π-algebras first appear in the literature around 1990 (see [8], [17] or [2])
and have been a useful algebraic invariant of homotopy type, especially in
the problem of homotopy classification (see [3], [4] and [6]). In [5] Blanc has
dualized his methods of [4] to give a partial classification of p-type using un-
stable coalgebras over the mod p Steenrod algebra as his algebraic foundation.
His technique used these homology-like objects rather than cohomology-like
objects because they were more natural for the dual method he was using. It
is well known that we have some choice when determining which properties
of the original concept we will Eckmann-Hilton dualize.

We make the definition of H-algebras in §2 and justify their duality with
Π-algebras (compare with [16]) and also show that they model the “cohomol-
ogy algebra” of a space. We address the problem of not explicitly knowing
all relations on the set of generators for the k-ary cohomology operations and
show that despite this, H-algebras form a category of universal graded al-
gebras (CUGA). This allows the application of various techniques (see [7])
which we do not pursue here.

We look at a useful property by defining the product of H-algebras and
determining its relation to the H-algebra of a wedge of spaces. The result
allows us to give some examples, in §5, demonstrating the rôle of H-algebras
in homotopy classification. These examples are limited to known operations
but nevertheless demonstrate interesting phenomena such as the need for ad-
ditional invariants for classification and the effect of changing coefficients.

We conclude §2 by using the Yoneda lemma to give a global description of
the full subcategory of H-algebras of generalized Eilenberg-Mac Lane spaces.
As a corollary we see that all morphisms in this category are induced by maps
between the generalized Eilenberg-Mac Lane spaces.

In §3 we define cross-cap products which are known for homology [9] but
may not appear in the literature for cohomology. We show that all primary
operations are generated (under composition of universal examples) by com-
positions and cup products and give the relations between these operations
known to the author and identify relations that remain to be determined.

In §4, we determine explicitly the duality between Π-algebras and unstable
algebras over the Steenrod algebra. We first extend the definition of H-
algebras to having coefficients in an arbitrary abelian group by taking the
domain category to be products of Eilenberg-Mac Lane spaces over that group.
If we then restrict this category to maps generated by stable operations and
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cup product then the image of a functor sending products to products will be
an unstable algebra over the Steenrod algebra.

1.1. Notation and preliminaries. We will assume that all spaces are
pointed connected CW-complexes which we write as X ∈ CW∗. The n-th
integral Eilenberg-Mac Lane space, K(Z, n), will be denotedKn. A space with
one non-trivial cohomology group will be called a co-Moore space. Examples
of co-Moore spaces are the spheres.

We will refer to the Eckmann-Hilton dual of a concept as simply the dual
of that concept. For the purposes of displaying the duality of homotopy
and cohomology theories we look at reduced spectral cohomology associated
to Eilenberg-Mac Lane spectra. Then, dual to the definition of homotopy
groups, πn(X) = [Sn, X], we can define the ordinary, reduced cohomology
groups by H̃n(X) = [X,Kn].

Given maps fi : Z −→ Gi, the unique map into the product that they
determine is denoted {f}i∈I : Z −→

∏
i∈I Gi. The composition of two maps

f and g is given by juxtaposition gf which may also be denoted g∗(f) or
f∗(g).

1.2. Acknowledgments. I would like to thank the referee for the instruc-
tive comments and David Blanc for useful discussions.

2. H-algebras

The fact that primary homotopy operations are in bijective correspondence
with elements of the homotopy groups of a wedge of spheres allows us to
encode the Π-algebra structure as a contravariant functor from the category of
finite wedges of spheres to pointed sets. The proof that cohomology operations
are in bijective correspondence with elements of the cohomology groups of a
product of Eilenberg-Mac Lane spaces is dual to that for homotopy operations
(see [11], Theorem 12.1) provided we define cohomology operations to be k-
ary operations over a fixed coefficient group rather than as unary operations
involving changes of coefficient group, which is more customary. The duality
of Property 2.2 and the dual property for homotopy operations justifies the
claim that H-algebras are an Eckmann-Hilton dual to Π-algebras.

Definition 2.1. A primary k-ary cohomology operation of type (n1, n2,
. . . , nk;m) is a function of the underlying pointed sets of the cohomology
groups,

θ : H̃n1(X)× H̃n2(X)× · · · × H̃nk(X) −→ H̃m(X), m ≥ max{ni},
which is natural in X ∈ CW∗.

Property 2.2. The set of all primary cohomology operations of type
(n1, n2, . . . , nk;m) is in bijection with the elements of H̃m(

∏k
i=1K

ni).
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For any cohomology operation θ the bijection is given by θ(x1, . . . , xk) =
θ(pr1, . . . , prk){x1, . . . , xk}, where pri are the canonical projections associated
to the product

∏k
i=1K

ni . Thus, θ(pr1, . . . , prk) is a universal example for the
cohomology operation θ (see [14], Chapter III).

Example 2.3. For each γ ∈ H̃m(Kn) we have a composition operation
γ∗ : H̃n(X) −→ H̃m(X), x 7−→ γx. The group object multiplication, µn :
Kn×Kn −→ Kn, is the universal example for the cohomology group addition.
We denote the universal example for cup product by h∪.

Definition 2.4. The cohomology operation category, H, is the category
of finite products of Eilenberg-Mac Lane spaces over Z and the point, with
morphisms the homotopy classes of maps between them.

Definition 2.5. An H-algebra is a functor Z : H −→ SET ∗ sending
products to products and the point to 0.

Remark 2.6. For any H-algebra, Z, we write Zn = Z(Kn), and note
that Z0 = Z(∗) = 0, where we use 0 for the pointed set with one element. We
restrict the H-algebras by insisting that Z(∗) = 0 so that we are modelling
the cohomology of connected spaces.

Example 2.7. A cohomology H-algebra is a functor

[X, ] : H −→ SET ∗, X ∈ CW∗

This functor, [X, ], is the covariant hom functor with domain restricted to
the full subcategory H. We denote the cohomology H-algebra of a pointed
space X by H̃∗(X).

If we identify the isomorphic images in SET ∗ of all copies of Kn ∈ H, then
the image of the functor [X, ] is the collection of cohomology groups with
the primary cohomology operations on them.

The splitting of the long exact cohomology sequence of the pair (Kp ×
Kq,Kp ∨Kq) and the Künneth formula give us the following proposition.

Property 2.8.

H̃m(Kp ×Kq) ∼= H̃m(Kp)⊕ H̃m(Kq)
⊕

i+j=m

H̃i(Kp)⊗ H̃j(Kq)

⊕
i+j=m+1

Tor(H̃i(Kp), H̃j(Kq))

We now use this result to justify the restriction to m ≥ max{ni} in Defi-
nition 2.1.
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Given a morphism φ :
∏
j K

nj −→ Km with min{nj} ≤ m < max{nj},
repeated application of Property 2.8 tells us that H̃m(

∏
nj>m

Knj ) ∼= 0 since
H̃m(Knj ) = 0 for nj > m. Then, again by Property 2.8,

H̃m(
∏
j

Knj ) = H̃m(
∏
nj≤m

Knj ×
∏
nj>m

Knj ) ∼= H̃m(
∏
nj≤m

Knj )

so that we can consider the Eilenberg Mac Lane spaces, Knj with nj > m, as
not involved in the operation,

∏
nj≤m H̃

nj (X) −→ H̃m(X), that is induced
by φ.

Example 2.9. A trivial H-algebra is a functor sending each Kn ∈ H to
a set Zn ∈ SET ∗ in such a way that the only non-trivial operations are of
the form Zn × Zn × · · · × Zn −→ Zn. In particular, this allows the group
operation on each Zn. By Remark 4.1, a trivial H-algebra will be a graded
abelian group (Z-module). In Corollary 2.17, we show that examples of trivial
H-algebras are given by the cohomology H-algebra of a wedge of co-Moore
spaces. Specifically, H̃∗(S2 ∨ S3) is a graded abelian group with copies of Z
in degrees 2 and 3.

Definition 2.10. A morphism of H-algebras φ : Z −→ W is a natural
transformation.

That is, φ is a collection of functions φC with φC : Z(C) −→W (C), for each
C ∈ H, such that, given any map α : C −→ C ′ we have W (α)φC = φC′Z(α).

Property 2.11. A weak homotopy equivalence f : X −→ Y induces an
isomorphism of H-algebras f∗ : H̃∗(Y ) ∼= H̃∗(X).

In the dual case for Π-algebras the Hilton theorem tells us that all primary
homotopy operations are generated (by composition of universal examples)
by Whitehead products and compositions, as well as the action of the fun-
damental group, and all relations between these operations are known. In
the decomposition of Property 2.8, with coefficients in Z, we need an in-
terpretation of the cross-cap products in the Tor groups as maps between
Eilenberg-Mac Lane spaces before we can give an explicit set of universal
examples that generate all primary cohomology operations. We discuss the
universal examples generating all cohomology operations and what is known
of the relations between them in §3 but for now we point out that, by Property
2.2, any relation between cohomology operations can be expressed in terms of
the universal examples corresponding to each side of the equation being in the
same homotopy class of maps. In this way, any relation between operations
is implicit in the category H.
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Example 2.12. If γ, δ ∈ H̃m(Kn) and x ∈ H̃n(X) then (γ+δ)x = γx+δx
and this relation between composition and group addition is a statement that
µm{γ, δ}x ∼ µm{γx, δx}.

The fact that the set of generating homotopy operations and all relations
between them are known allows us an alternative definition of Π-algebras as
a graded group with three operations satisfying the relations between White-
head product, composition and action of the fundamental group. The al-
ternative definition of H-algebras is not as satisfying but will still be useful
in defining products, free objects and providing examples. The alternative
definition of an H-algebra, Z, is given by its image in SET ∗.

Definition 2.13. An H-algebra is a graded abelian group together with
operations that are in bijective correspondence with elements of the groups
H̃m(

∏j
i=1K

ni) and that obey the set of compatibility identities implicit in
the category H.

Remark 2.14. Definition 2.13 tells us that H-algebras, like Π-algebras,
form a CUGA or category of universal algebras with underlying graded group.
All CUGA’s are equipped with adjoint free and underlying functors and also
have all limits and colimits, hence products and coproducts ([7], §2.1.2 or
[14]).

Definition 2.15. The product of H-algebras
∏
i∈I Ji is given by the graded

abelian group {
∏
i∈I(Ji)

m | m ∈ N} with primary cohomology operations act-
ing componentwise.

Here (Ji)m = Ji(Km) is the group in degree m of the H-algebra Ji and∏
i∈I(Ji)

m is their (direct) product. The projections are given by prl :∏
i∈I Ji −→ Jl, (ji)i∈I 7−→ jl. Given H-algebra morphisms xi : Z −→ Ji,

the unique map into the product that they determine is given by {xi}i∈I :
Z −→

∏
i∈I Ji, z 7−→ (xi(z))i∈I .

Theorem 2.16. Given a collection of spaces {Xi | i ∈ I},

H̃∗(∨i∈IXi) ∼=
∏
i∈I

H̃∗(Xi) as H-algebras.

The proof of Theorem 2.16 is a straightforward consequence of the univer-
sal properties of products and coproducts and the componentwise action of
operations on a product of H-algebras.

Since any co-Moore space has only one non-trivial cohomology group we
have

Corollary 2.17. Let {Xi | i ∈ I} be a collection of co-Moore spaces.
Then H̃∗(∨i∈IXi) is a trivial H-algebra.
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Dual to the fact that the homotopy Π-algebras of wedges of spheres are
the free objects in the category of Π-algebras ([17], §4.5), the cohomology
H-algebra of a product of Eilenberg-Mac Lane spaces is a free H-algebra.
However, the construction is not strictly dual.

Let U : H −ALG −→ GrSET ∗ be the underlying functor from H-algebras
to the category of graded, pointed sets. We will construct the free functor
F : GrSET ∗ −→ H −ALG as a left adjoint to the underlying functor.

Given G•,H• ∈ GrSET ∗ and f : G• −→ H•, let

FG• = [
∏
n∈N

∏
g∈G−n

Kn
g , ] where G−n = Gn/∗

and Ff : FG• −→ FH• be induced by the map

f̂ :
∏
n∈N

∏
h∈H−n

Kn
h −→

∏
n∈N

∏
g∈G−n

Kn
g

described as follows.
Since f is a graded function we write f = {fn : Gn −→ Hn | n ∈ N}.

Let j ∈ Jh index the elements gj ∈ G−n whose image under fn is h ∈ H−n .
Let {1Kn}j∈Jh : Kn

h −→
∏
j∈Jh K

n
gj be the unique product map deter-

mined by prj{1Kn}j∈Jh = 1Kn We define a map f̃ :
∏
n∈N

∏
h∈H−n K

n
h −→

(
∏
n∈N

∏
j∈Jh K

n
gj )× ∗ by the diagram

∏
n∈N

∏
h∈Im f−n

Kn
h

∏
n∈N

∏
h∈Im f−n

{1Kn}j∈Jh
//
∏
n∈N

∏
j∈Jh

Kn
gj

∏
n∈N

∏
h∈H−n

Kn
h

pr

OO

pr
��

f̃ // (
∏
n∈N

∏
j∈Jh

Kn
gj )× ∗

pr

OO

pr

��
∏
n∈N

∏
h/∈Im f

−
n

h6=∗

Kn
h // ∗

Let φ : (
∏
n∈N

∏
j∈Jh K

n
gj )×∗

∼=−→
∏
n∈N

∏
j∈Jh K

n
gj and i :

∏
n∈N

∏
j∈Jh K

n
gj ↪→∏

n∈N
∏
g∈G−n K

n
g . We define

f̂ = iφf̃ :
∏
n∈N

∏
h∈H−n

Kn
h −→

∏
n∈N

∏
g∈G−n

Kn
g

and let Ff = f̂∗ : FG• −→ FH•.
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The unit of adjunction is the natural transformation ε = {εG• | G• ∈
GrSET ∗} with εG• : G• −→ UFG• = {Hm(

∏
n∈N

∏
g∈G−n K

n
g ) | m ∈ N}

given by identifying g ∈ G−n with prg :
∏
n∈N

∏
g∈G−n K

n
g −→ Kn

g and ∗ ∈ Gn
with 0 ∈ Hn(

∏
n∈N

∏
g∈G−n K

n
g ).

We define the counit of adjunction δ : FU −→ 1 as follows. Given α ∈ FUZ
we have α :

∏
n∈N

∏
u∈Zn− K

n
u −→ Kp for some p ∈ N inducing

Z(α) : Z(
∏
n∈N

∏
u∈Zn−

Kn
u ) −→ Z(Kp)

We select the element (u)u∈Zn,n∈N ∈
∏
n∈N

∏
u∈Zn− Z

n
u having u in the factor

of Znu . Since Z sends products to products we can identify (u)u∈Zn,n∈N with
a certain element w ∈ Z(

∏
n∈N

∏
u∈Zn− K

n
u ). Then we have Zpru(w) = u.

For every p ∈ N we define

δZ : FUZ(Kp) −→ Z(Kp), α 7−→ Zα(w).

Then δ : FU −→ 1 is the natural transformation given by {δZ | Z ∈ H −
ALG}.

As a consequence of the definition of H-algebras we can provide an alterna-
tive description of the subcategory of cohomology H-algebras of generalized
Eilenberg-Mac Lane spaces.

Theorem 2.18. The subcategory of H-algebras given by the cohomology
H-algebras [X, ], with X ∈ H, is equivalent to the category Hop.

Proof. The result follows from the Yoneda lemma which states for K ∈ H,

Nat([K, ], [X, ]) ∼= H[X,K] ∼= Hop[K,X]

and the equivalence is given by identifying [X, ] with X ∈ Hop and the
morphism of H-algebras φ : [K, ] −→ [X, ] with the morphism given by

φK(1K) : X −→ K ∈ Hop[K,X]. �

Corollary 2.19. In the full subcategory of H-algebras given by [X, ],
X ∈ H, all morphisms are induced by maps in H.

Proof. Every map f : X −→ Y in H induces an H-algebra morphism
f∗ : [Y, ] −→ [X, ]. But the Yoneda bijection gives

y(f∗) = f∗Y (1Y ) = 1Y f = f

hence, the induced morphisms are the only morphisms. �

3. Generators of cohomology operations

In this section we give details about the generating primary cohomology
operations. It is convenient to consider cellular cochain complexes since, as
yet, an equivalent description as maps between Eilenberg-Mac Lane spaces
has not been found for the cross-cap products.
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3.1. Cross products. Given spacesX, Y and cohomology classes< x >∈
Hi(X), < y >∈ Hj(Y ) we define the cohomology cross product ( [10], p. 278)
×̄ : Hi(X)×Hj(Y ) −→ Hi+j(X×Y ) as being induced in cellular cohomology
by the cochain map

• : Ci(X)× Cj(Y ) −→ Ci+j(X × Y ), (x, y) 7−→ x(eiα)y(ejβ)

for each generator eiα ∈ Ci(X) and ejβ ∈ Cj(Y ). For any other (i+j)-cell
ei−nα × ej+nβ ∈ Ci+j(X ×Y ), we set (x • y)(ei−nα × ej+nβ ) = 0. The cohomology
cross product is also known as the external cup product ([10], p. 210 and
p. 278) since

< x > ×̄ < y >= pr∗1 < x > ∪ pr∗2 < y >,

where pr∗1 , pr∗2 are induced by composition with the projections associated to
X × Y . This product is bilinear ([10], p. 218) so we have a homomorphism

×̄ : Hi(X)⊗Hj(Y ) −→ Hi+j(X × Y ).

The coboundary map satisfies ([10], p. 279)

δ(x • y) = δx • y + (−1)ix • δy.

3.2. Cross-cap products. Given a class < x >∈ Hi(X) which has n-
torsion, < nx >= 0 ∈ Hi(X) so nx is a coboundary, hence there is a ∈
Ci−1(X) with δa = nx. Similarly, given a class < y >∈ Hj(Y ) which has
m-torsion, my is a coboundary, hence there is b ∈ Cj−1(Y ) with δb = my.
Let l = (n,m) be the highest common divisor of n and m and let n = lg and
m = lh.

Consider the cochain gx • b+ (−1)i+1a • hy ∈ Ci+j−1(X × Y ). We have

δ(gx • b+ (−1)i+1a • hy) = δ(gx • b) + (−1)i+1δ(a • hy)

= gδx • b+ (−1)igx • δb
+ (−1)i+1(δa • hy + (−1)i+1a • hδy)

= (−1)igx • δb+ (−1)i+1δa • hy
= (−1)igx •my + (−1)i+1nx • hy
= (−1)igx • lhy + (−1)i+1lgx • hy
= (−1)ilgh(x • y) + (−1)i+1lgh(x • y)
= 0.

Hence, gx • b+ (−1)i+1a •hy is a cocycle and we define the cross-cap product
of < x >∈ Hi(X) and < y >∈ Hj(Y ) as

< x > •n,m < y >=< gx • b+ (−1)i+1a • hy >∈ Hi+j−1(X × Y ).
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< x > •n,m < y > has l-torsion since

δ(a • b) = δa • b+ (−1)i+1a • δb
= lgx • b+ (−1)i+1a • lhy
= l(gx • b+ (−1)i+1a • hy)

so that l(gx • b+ (−1)i+1a • hy) is a coboundary.

3.3. Cross-cap products and the Künneth Formula. The Künneth
Formula is derived ([10], p. 274) in the form of a split short exact sequence⊕

i+j=n

Hi(X)⊗Hj(Y ) ×̄−→ Hn(X × Y ) −→
⊕

i+j=n+1

Tor(Hi(X),Hj(Y ))

which gives us

Hn(Kp ×Kq) ∼= Hn(Kp)⊕Hn(Kq)
⊕
i+j=n
i,j 6=0

Hi(Kp)⊗Hj(Kq)(3.1)

⊕
i+j=n+1

Tor(Hi(Kp),Hj(Kq)).

The Tor terms correspond to cross-cap products. The proof follows that
of Eilenberg and Mac Lane ([9], §11 and §12) who give a set of generators
and relations for the Tor groups and show that the cross cap products of
homology form a group also given by these generators and relations. The
proof is valid for cochain complexes as well as chain complexes. An indication
of how the generators and relations correspond is given by comparing the
facts that Tor(Z/n,Z/m) = Z/l for l = (n,m) and the cross-cap product of
an element of n-torsion and an element of m-torsion has l-torsion.

We now look at the operations for which equation (3.1) provides universal
examples. The summands Hn(Kp) and Hn(Kq) give composition operations
on Hp(X) and Hq(X) resulting in an element of Hn(X). The summands
Hi(Kp) ⊗ Hj(Kq) with i + j = n and i, j 6= 0 give operations Hp(X) ×
Hq(X) −→ Hn(X). For α : Kp −→ Ki, β : Kq −→ Kj , a ∈ Hp(X) and
b ∈ Hq(X) the operation is given by

(a, b) 7−→ αa ∪ βb

as shown in the following diagram in which we have identified cross products
with the external cup product and denoted the universal example for cup
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product by h∪.

Kp α // Ki

X
{a,b} //

a

88qqqqqqqqqqqqqqq

b

&&MMMMMMMMMMMMMMM Kp ×Kq

pr1

OO

α×β //

pr2

��

Ki ×Kj

pr1

OO

pr2

��

h∪ // Ki+j

Kq
β

// Kj

Though a little more complicated, given an element with n-torsion α : Kp −→
Ki with δε = nα, an element of m-torsion β : Kq −→ Kj with δγ = mβ,
a ∈ Hp(X) and b ∈ Hq(X), the cross-cap product of a and b is given by the
composite

a •n,m b = µi+j−1{h∪{gαa, γb}, (−1)i+1h∪{εa, hβb}}
where the factor of (−1)i+1 is replaced by the identity map if i is odd and the
group inversion if i is even.

Thus, all primary operations are composites of compositions and cup prod-
ucts with the understanding that for cross-cap products we must make a se-
lection of ε and γ such that δε = nα and δγ = mβ. It seems necessary to find
an explicit method of choosing these maps ε and γ given only a knowledge of
the maps α and β but the author cannot provide such a method at this stage.

3.4. Relations between operations. To gain an explicit description of
H-algebras as graded abelian groups together with the operations of composi-
tion and cup product, we need to know all relations between these operations.
This was achieved for stable operations in integral cohomology by Kochman
(see [13]) with the restriction to spaces having no higher torsion in their ho-
mology groups. Relations between unstable operations are known for some
general cohomology theories (see [12]), but the results do not apply to integral
cohomology.

We list the following relations which are straightforward consequences of
universal examples for cohomology operations and the universal property of
products.

Property 3.1. If f, g ∈ H̃n(Kp), h ∈ H̃m(Kp), x ∈ H̃n(X) and y ∈
H̃p(X) then

(f + g)∗(x) = f∗(x) + g∗(x),(3.2)

(f ∪ h)∗(y) = f∗(y) ∪ h∗(y).(3.3)

A decomposition for f∗(x + x′) is not known to the author although if a
dual to the Hilton-Hopf invariants could be formulated then such a relation
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should be obtainable from Property 2.8 in a similar way to deriving the Hilton
Formula from the Hilton Theorem in homotopy theory.

A decomposition for f∗(x) ∪ z would generalize the Cartan Formulas for
stable operations over finite cyclic coefficient groups and would be dual to the
Barcus-Barratt formula. To the author’s knowledge, such a relation does not
appear in the literature for integral coefficients and unstable compositions.

4. Arbitrary abelian group coefficients

In this section we generalize H-algebras to cohomology algebras over an
arbitrary abelian group R. We will use the constructions given previously
for H-algebras and simply reinterpret the symbols H̃n(X) and Kn as the
cohomology group H̃n(X;R) and the Eilenberg-Mac Lane space K(R, n). We
note, though, in order to have cup products we require the coefficients to be
in a commutative ring with unity.

In fact, if we consider functors from the category of finite products of
all Eilenberg-Mac Lane spaces over abelian groups then the image of these
functors in SET ∗ (identifying isomorphic images) will be an algebraic object
consisting of all cohomology groups and primary operations including changes
of coefficients. We could also consider cohomology operation categories for any
spectral cohomology theory.
H-algebras are clearly a generalization of other known “primary cohomol-

ogy algebras” and we now give some details relating H-algebras to unstable
algebras over the Steenrod algebra.

Remark 4.1. The compositions of degree 0 give Hn(X;R) a module
structure over the coefficient group, R, whenever R is a cyclic abelian group.
This follows from the fact that, for these coefficient groups, H̃n(K(R, n);R) ∼=
R and, using Example 2.12, defining the action of r ∈ R on x ∈ H̃n(X;R) by

rx = (1K(R,n) + · · ·+ 1K(R,n))︸ ︷︷ ︸
r summands

x = x+ · · ·+ x︸ ︷︷ ︸
r summands

.

This gives the standard module structure for these coefficient groups. With
cohomology compositions over the integers, the abelian group structure is re-
turned, however, for the integers modulo p the compositions of degree 0 give
a Z/p -module structure on each cohomology group. It also follows from the
definition of the ring action that the stable operations are R-module homo-
morphisms (see [15]).

We let HS(R) be the category of finite products of Eilenberg-Mac Lane
spaces over R with morphisms generated, under composition, by maps in
the stable range of cohomology operations, projections and the group object
multiplications. If R is a ring with underlying cyclic abelian group, by Remark
4.1, the image of any functor Z : HS(R) −→ SET ∗ is a graded R-module
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with stable operations (R-module homomorphisms) acting on it, provided we
identify all isomorphic copies of Zn, n ≥ 0. Then we can consider functors
Z : HS(R) −→ R−MOD sending products to products allowing for the group
additions but also allowing for the existence of tensor products. Then the R-
bilinear composition of stable operations gives rise to an R-algebra structure
on the collection of stable operations and since cohomology R-modules form a
graded module over the R-algebra of stable operations, the graded R-module
Z∗ = {(Z;R)n | n ≥ 0} is also a graded module over this R-algebra. Then
we have, for example, that the image of a functor Z : HS(Z) −→ Z−MOD
sending products to products and the point to 0, is a module over the stable
integral cohomology operations, as studied by Kochman (see [13]).

Similarly, we let H∪S(R) be the category of finite products of Eilenberg-
Mac Lane spaces over R with morphisms generated, under composition, by
the universal examples for cup product as well as the maps generating the
morphisms of HS(R). By the same argument given above, the image of a
functor Z : H∪S(Z/2) −→ Z/2−MOD sending products to products and the
point to 0, is an unstable algebra over the Steenrod algebra.

5. Examples

Example 5.1. CP 2 and S2 ∨ S4 have the same cohomology groups but
different integral cohomology rings and hence, have different H-algebras. By
Property 2.11, these spaces are not homotopy equivalent.

The cohomology ring of the complex projective spaces CPn are known to
be truncated polynomial algebras, Z[α]/(αn+1), on one generator of degree 2,
([10], Theorem 3.12, p. 212). Clearly then CP 2 has a nontrivial cohomology
ring. By Theorem 2.16 and Corollary 2.17, S2 ∨S4 has the same cohomology
groups but a trivial H-algebra and hence trivial cohomology ring.

Coefficients in Z/2 have the property that

∪2 : H̃n(X;Z/2) −→ H̃2n(X;Z/2), x 7−→ x ∪ x

is a stable operation ([10], p. 489). Consequently, there is an element f ∈
H̃2n+1(K(Z/2, n + 1);Z/2) such that h∪2 ∼ Ωf , where h∪2 is the universal
example for ∪2. We use this fact and the adjunction of suspension and loop
functors to find a non-trivial composition in Example 5.2.

Example 5.2. The spaces ΣRP 2 and ΣRP ∨Σ2
RP have the same trivial

cohomology ring structure but different H(Z/2)-algebras since there is a non-
trivial composition on H̃∗(ΣRP 2;Z/2).

We know ([10], Theorem 3.12, p. 212) that the cohomology ring of RPn,
with Z/2 coefficients, is a polynomial ring generated by an element of degree
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1, truncated at degree n+ 1. Then, by the adjunction of Ω and Σ,

H̃i(ΣRP 2;Z/2) ∼=
{
Z/2 i = 2, 3
0 otherwise

and, by Theorem 2.16, ΣRP ∨ Σ2
RP has the same cohomology groups over

Z/2 and has trivial compositions since these act componentwise. Both spaces
have trivial cohomology ring structure over Z/2 because the cup product of
any non-zero elements is in a trivial group. We will look for an operation on
H̃∗(ΣRP 2;Z/2) given by composition with an element of H̃3(K(Z/2, 2);Z/2).
However, by the adjunction of Ω and Σ, we will achieve this if we can find
a non-trivial composition on H̃∗(RP 2;Z/2) by a loop element of the group
H̃2(K(Z/2, 1);Z/2).

If α generates H̃1(RP 2;Z/2) then ∪2(α) = α ∪ α generates H̃2(RP 2;Z/2)
showing that composition with h∪2 ∈ H̃2(K(Z/2, 1);Z/2) is non-trivial. Since
h∪2 ∼ Ωf for some f ∈ H̃3(K(Z/2, 2);Z/2), a non-trivial composition is given
by f∗ : H̃2(ΣRP 2;Z/2) −→ H̃3(ΣRP 2;Z/2).

The next example we shall look at demonstrates that the H-algebra struc-
ture is insufficient, on its own, for homotopy classification.

Example 5.3. The spaces, RP 3 and S3 ∨RP 2 have the same H-algebras
but are not homotopy equivalent.

We know that ([10], p. 144, and the Universal Coefficient Theorem)

H̃i(RP 3;Z) ∼=

 Z/2 i = 2,
Z i = 3,
0 otherwise,

and

H̃i(RP 2) ∼=
{
Z/2 i = 2,
0 otherwise.

Then, by Theorem 2.16, RP 3 and S3 ∨ RP 2 have isomorphic cohomology
groups.

By Corollary 2.17, S3 ∨ RP 2 has a trivial H-algebra. Now, cup products
are trivial on RP 3 because the image groups are always trivial. Compositions
are also trivial since H̃3(K2) ∼= 0. There are, in fact, no non-trivial operations
by an inductive argument using Property 2.8 and the facts that H̃2(K2) ∼= Z

and H̃1(K2) ∼= 0. By Remark 4.1, a factor of K3 in the domain space of a
universal example returns the group structure on H̃3(RP 3) and hence induces
a trivial operation. Consequently, the spaces have the same H-algebra.

Since S3 is the universal covering space for RP 3, π2(RP 3) ∼= π2(S3) ∼= 0
([10], Example 1.43, p. 74). Similarly, S2 is the universal covering space for
RP 2 and hence π2(RP 2) ∼= π2(S2) ∼= Z. Then

π2(S3 ∨ RP 2) ∼= π2(S3)⊕ π2(RP 2)⊕ π3(S3 × RP 2, S3 ∨ RP 2) � 0
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so that RP 3 and S3 ∨RP 2 have different homotopy groups and hence are not
homotopy equivalent.

We saw in Example 5.3 that RP 3 and S3 ∨RP 2 have identical H-algebras
but are not homotopy equivalent. We now show that these spaces have dif-
ferent H(Z/2)-algebras demonstrating that the coefficient ring is a significant
detail in the “cohomology algebras” under discussion.

Example 5.4. RP 3 and S3 ∨ RP 2 have different cohomology rings over
Z/2 coefficients and hence, non-isomorphic H(Z/2)-algebras.

Firstly, the cohomology ring over Z/2 coefficients of RP 3 is a polynomial
algebra generated by an element of degree 1, and truncated at degree 3. Simi-
larly, the cohomology ring over Z/2 coefficients of RP 2 is a polynomial algebra
generated by an element of degree 1 and truncated at degree 2. By the uni-
versal coefficient theorem H̃3(S3;Z/2) ∼= Z/2. Thus, by Property 2.16, RP 3

and S3 ∨ RP 2 have the same cohomology groups over Z/2. Now, since oper-
ations act componentwise on a product of H-algebras, by Theorem 2.16, if α
generates H̃1(RP 2 ∨ S3;Z/2) ∼= H̃1(RP 2;Z/2)× H̃1(S3;Z/2) we have

α ∪ α ∪ α = 0 ∈ H̃3(RP 2 ∨ S3;Z/2).

Thus the cohomology ring structures differ since, if γ generates H̃1(RP 3;Z/2),
then γ ∪ γ ∪ γ generates H̃3(RP 3;Z/2).
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[1] J. Aguadé, Realizability of cohomology algebras: a survey, Publ. Sec. Mat. Univ.
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