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BMO-TEICHMÜLLER SPACES

GUIZHEN CUI AND MICHEL ZINSMEISTER

Abstract. We show that the complex dilatation of the Douady-Earle

extension of a strongly quasisymmetric homeomorphism produces a Car-
leson measure. As an application, we study the BMO-Teichmüller the-
ory compatible with a Fuchsian group.

1. Introduction

Let G be a Fuchsian group, i.e., a group of Möbius transformations acting
properly discontinuously on the unit disk D. For such a group we define M(G)
as

M(G) =
{
µ ∈ L∞(D) : ‖µ‖∞ < 1 and∀g ∈ G, µ =

g′

g′
µ ◦ g

}
.

If µ ∈M(G), then there exists a unique quasiconformal self-mapping fµ of D
fixing 1,−1, i and satisfying

∂fµ

∂z
= µ

∂f

∂z

in D. Similarly there exists a unique quasiconformal homeomorphism of the
plane fµ which is holomorphic outside D with the normalization

fµ(z) = z +
b1
z

+ · · ·

at ∞ and such that in D we have again
∂fµ
∂z

= µ
∂f

∂z
.

These homeomorphisms conjugate G respectively to a new Fuchsian group
and to a quasi-Fuchsian group, i.e., a Möbius group acting properly discon-
tinuously on the quasidisk fµ(D).

The mapping fµ has a geometric interpretation: If we denote by S the
Riemann surface D/G, then fµ is the lift (to the universal covering) of a

Received February 3, 2004; received in final form September 14, 2004.
2000 Mathematics Subject Classification. 30C62, 32A37.
Supported by NSFC grant #10231040.

c©2004 University of Illinois

1223



1224 GUIZHEN CUI AND MICHEL ZINSMEISTER

quasiconformal mapping from the Riemann surface S onto S′ = D/G′, where
G′ = fµ ◦ G ◦ (fµ)−1. Conversely, if F is a quasiconformal homeomorphism
from S to a Riemann surface S′, it has a lift to a quasiconformal homeomor-
phism f of D and, replacing if necessary F by θ ◦ F , where θ : S′ → S′′ is a
conformal isomorphism, we may assume that f = fµ for some µ ∈M(G).

If µ ∈ M(G), then fµ has a well-defined boundary value which is a qua-
sisymmetric homeomorphism of the unit circle. We define an equivalence
relation on M(G) by µ ∼ ν if fµ|∂D = fν |∂D. Again this equivalence relation
has a geometric interpretation: If F,G represent the quasiconformal mappings
on S whose lifts are precisely fµ, fν , then µ ∼ ν is equivalent to saying that
G ◦ F−1 is homotopic to a conformal isomorphism between F (S) and G(S),
the homotopy being constant on the (possibly empty) boundary of F (S).

The Teichmüller space TS is the quotient space M(G)/ ∼. We refer to [11]
for details about this construction.

The preceding remarks imply that the mapping [µ] 7→ fµ is well defined
and injective from TS into QS(G), the set of quasisymmetric homeomorphisms
h of the unit circle such that h ◦ G ◦ h−1 is a Möbius group (more precisely,
the trace on the unit circle of a Möbius group). A deep theorem of Tukia
[13] asserts that this mapping is also onto, so that one may identify TS with
QS(G).

There is a similar description of the Teichmüller space in terms of fµ. We
call a quadratic differential for the group G a holomorphic mapping ϕ in Ĉ\D
such that

∀g ∈ G, ϕ = ϕ ◦ g(g′)2.

If µ ∈M(G), it is easy to see that the Schwarzian derivative

Sfµ(z) = (log f ′µ)′′ − 1
2

(log fµ)′2

is a quadratic differential for G. In [11] it is shown that the mapping [µ] 7→ Sfµ
is well defined and injective on TS . The image of this mapping is included in
T (G), the space of Schwarzian derivatives of injective holomorphic functions in
Ĉ\D having a quasiconformal extension to C which are quadratic differentials
for G. A theorem due to Lehto and Tukia [11] asserts that this mapping is
a bijection onto T (G). This is the so-called Bers embedding; it allows us to
identify the Teichmüller space TS with T (G), a space of quadratic differentials.

Both theorems (the identification of TS with QS(G) and with T (G)) have
been given a simplified proof using the Douady-Earle extension theorem.

The aim of this paper is to follow the same idea, i.e., to use the Douady-
Earle extension theorem to prove analogs of the above statements in the set-
ting of the BMO-Teichmüller theory, introduced by Astala and the second au-
thor [3]. Before stating these results, we recall the basics of this non-standard
Teichmüller theory.
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2. BMO-Teichmüller theory

A positive measure m in the unit disk is called a Carleson measure if

sup
I⊂∂D interval

m(C(I))/|I| < +∞,

where C(I) = {rz : z ∈ I, (1− |I|/(2π) ≤ r ≤ 1}. We will also need Carleson
measures on C − D; the reader will easily guess their proper definition. We
then define CM(D) as the set of measurable functions µ in the unit disk such
that

|µ|2(z)
1− |z|

dxdy

is a Carleson measure.
An homeomorphism of the unit circle is called strongly quasisymmetric if

it is absolutely continuous at every scale, i.e., if

∀ε > 0, ∃δ > 0; ∀I interval, ∀E ⊂ I Borel, |E| ≤ δ|I| ⇒ |h(E)| ≤ ε|h(I)|.
We denote by SQS the set of strongly quasisymmetric homeomorphisms of
the circle. SQS is a group; more precisely, it is the group of homeomorphisms
h such that Vh : b 7→ b ◦ h is an isomorphism of the space BMO(∂D); see [5],
[10]. We recall the definition of this space:

BMO(∂D) = {b ∈ L2(∂D); sup
I
VI(b) < +∞},

where VI(b) is the variance of b on the interval I.
Naturally a strongly quasisymmetric homeomorphism is quasisymmetric,

but the converse is far from being true since a quasisymmetry may be totally
singular.

Let us denote by M(1), T (1) the spaces M(G), T (G) for G = {I}. The
following theorem holds:

Theorem 1. The following are equivalent:
(1) µ ∈M(1) ∩ CM(D).
(2) fµ ∈ SQS(∂D).
(3) Sfµ ∈ T (1) and |Sfµ |2(|z| − 1)3dxdy is a Carleson measure in C \ D.

The equivalence (1)⇔ (2) is essentially due to Fefferman, Kenig and Pipher
[8], while (1) ⇔ (3) is due to Astala and Zinsmeister [3]. The implication
(2)⇒ (1) must be interpreted as follows: If h ∈ SQS then it has a quasicon-
formal extension to the unit disk whose complex dilatation satisfies (1). It
should be noticed that a slight modification of the Beurling-Ahlfors extension
does the job [8]. Similarly, the implication (3) ⇒ (1) must be understood as
follows: If f is holomorphic and injective in C \ D with a qc extension to C
and such that |Sf |(z)2(|z| − 1)3dxdy is a Carleson measure in C \ D, then it
has a qc extension whose complex dilatation belongs to M(1) ∩ CM(D).
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Let us now consider a Fuchsian group G. DefineM(G) = M(G)∩CM(D),
SQS(G) = QS(G) ∩ SQS(∂D), T (G) = {ϕ ∈ T (G); |ϕ|2(z)(|z| − 1)3dxdy
is a Carleson measure on C \ D}. The same equivalence relation as in the
classical case may be defined on M(G) and we denote by TS the quotient
space (S = D/G). As a byproduct of the main result of this paper we will
prove the following theorem.

Theorem 2. The mapping [µ] 7→ fµ is a bijection from TS onto SQS(G)
while [µ] 7→ Sfµ is bijective from TS onto T (G).

In the next section we introduce the Douady-Earle extension and use it to
give a proof of this theorem.

We end this section with two comments:

2.1. Motivation for the BMO-Teichmüller theory. The whole Te-
ichmüller theory as just described can be viewed geometrically as follows. In
this section we take G = {I}, so that S = D, and we put T = TD. If [µ] ∈ T
then fµ is a Riemann mapping (defined on C \ D) on a domain which is a
quasiconformal image of the disk and fµ is then the conformal welding of the
boundary of this domain, i.e., fµ = ψ−1ofµ, where ψ is a Riemann mapping
from the disk. Very loosely speaking, the theory of the universal Teichmüller
space is the theory dealing with quasiconformal geometry. The situation for
the BMO-Teichmüller theory is not so clear, but its starting point is the fol-
lowing theorem:

Theorem 3. The following are equivalent for µ ∈M(1):

(1) ∃ν ∈ [µ] ∈ CM(D) with a small norm.
(2) log(fµ)′ ∈ BMO(∂D) with a small norm.
(3) (|ζ| − 1)3|Sfµ |2dζdζ is a Carleson measure with small norm.

These three conditions are equivalent to the fact that if fµ(∂D) passes
through∞ (which we may of course assume), it is the image of a line under a
bilipschitz homeomorhism of the plane with constant close to 1. So at least in
a neighborhood of the origin BMO-Teichmüller theory deals with bilipschitz
geometry.

But this fact ceases to hold in general. In fact, Bishop and Jones [4] have
characterized domains arising in Theorem 3 and the corresponding Jordan
curves need not be rectifiable. The following question is still open. Let µ ∈
M(1) be such that fµ(∂D) is the bilipschitz image of a circle or a line. Is the
same true for ftµ(∂D), 0 < t < 1?

2.2. Groups of convergence type. In contrast to the classical Teich-
müller spaces, TS can be trivial. More precisely, the latter space is reduced



BMO-TEICHMÜLLER SPACES 1227

to 0 if and only if Brownian motion is recurrent on S, which is equivalent to
the fact that the Fuchsian group G is of divergence type:∑

γ∈G
(1− |γ(0)|) = +∞.

The reason for this is the two-dimensional version of the Mostow rigidity
theorem due to Agard and Pommerenke [1], [12]: If G is of divergence type
and if h ∈ QS(G), then h must be singular. On the other hand, it has been
shown in [2] that TS is never trivial if G is of convergence type.

3. The Douady-Earle extension theorem

Theorem 4 ([7]). There exists a map E mapping QS(∂D) into the set of
quasiconformal self-maps of the unit disk such that:

(1) ∀h ∈ QS(∂D), E(h)|∂D = h.
(2) ∀h ∈ SQ(∂D), ∀τ, σ ∈ Aut(D), E(σ ◦ h ◦ τ) = σ ◦ E(h) ◦ τ .

The main step in the construction of E(h) is the following fact that we
mention here for later use: If h ∈ SQ(∂D) we define the function F = Fh :
D× D 7→ C by

F (z, w) =
1

2π

∫
∂D

h(ζ)− w
1− wh(ζ)

1− |z|2

|z − ζ|2
|dζ|.

Then for any z ∈ D there exists a unique w ∈ D such that F (z, w) = 0. We
define E(h)(z) = w. Notice that if

∫
h = 0 then E(h)(0) = 0.

Our main result is the following theorem:

Theorem 5. If h ∈ SQS(∂D) then, if µ denotes the complex dilatation
of the Douady-Earle extension E(h), it holds that µ ∈ CM(D).

The proof of this theorem will be given in the next section. We end the
present section by showing that it implies Theorem 2.

Let us first consider h ∈ SQS(G). Let µ be the complex dilatation of E(h).
It suffices to prove that µ ∈M(G). But if g ∈ G, then, since E(h◦g) = E(h)◦g
and since h ∈ Q(G), there exists g1 Möbius such that h◦ g = g1 ◦h. By a new
application of the Douady-Earle theorem, E(g1◦h) = g1◦E(h). It follows that
E(h) and E(h) ◦ g have the same complex dilatation, but this is equivalent to
saying that µ ∈M(G).

For the other part of the theorem we start with a univalent function f on
C \D such that Sf ∈ T (G) and such that (|ζ| − 1)3|Sf (ζ)|2dζdζ is a Carleson
measure. Let F be a Riemann mapping from D onto C\f(D) and h = F−1 ◦f
the conformal welding. By Theorem 1, we have h ∈ SQS(∂D). Now the proof
in [11, p. 199] gives that h ∈ SQS(G). Let F1 = F ◦ E(h). Then F1 is a
quasiconformal extension of f whose dilatation is inM(G). The proof is now
complete.
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4. Proof of Theorem 5

We adapt methods from [6]. Let h be a homeomorphism of the unit circle
and H its harmonic extension to the unit disk. We assume that

∫ π
−π h(eit)dt =

0, which implies that f(0) = 0, where f = E(h) is the Douady-Earle extension
of h. We also assume that h is quasisymmetric and consider a quasiconformal
extension g of h. Finally we denote by ν the complex dilatation of g−1.

Proposition 6. For some universal constant C > 0,∫∫
D

|∂H|2dxdy ≤ C
∫∫
D

|ν|2

1− |ν|2
dxdy.

Proof. We write H = H1 + H2, where H1,H2 are holomorphic on D and
vanish at 0. Then ∂H = H ′1, ∂H = H

′
2, |∇H|2 = |∂H|2 + |∂H|2, JH =

|∂H|2 − |∂H|2. The starting point is the inequality∫∫
D

|∇H|2dxdy ≤
∫∫
D

|∇g|2dxdy,

which is due to the fact that H is harmonic and that H, g have the same
boundary values. On the other hand, by Stokes’ formula (or by Choquet’s
theorem asserting that H is a self-diffeomorphism of D), we also have∫∫

D

JHdxdy =
∫∫
D

Jgdxdy = π.

Combining the two inequalities we get∫∫
D

|∂H|2dxdy ≤
∫∫
D

|∂g|2dxdy.

But ∫∫
D

|∂g|2dxdy =
∫∫
D

|∂g|2

|∂g|2 − |∂g|2
Jgdxdy =

∫∫
D

|µg|2

1− |µg|2
Jgdxdy.

Performing then the change of variable ζ = g(z) we obtain that this integral
is also equal to ∫∫

D

|µg ◦ g−1|2

1− |µg ◦ g−1|2
dxdy =

∫∫
D

|ν|2

1− |ν|2
dxdy,

since |µg ◦ g−1| = |µg−1 | = |ν|. �

Proposition 7. There exists a constant C(K) (where K is the constant
of quasisymmetry of h) such that

|µf (0)|2

1− |µf (0)|2
≤ C

∫∫
D

|∂H|2dxdy.
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Proof. We first recall from [7] that f(z) = w is the unique solution of
F (z, w) = 0, where

F (z, w) =
1

2π

∫ π

−π

h(eit)− w
1− wh(eit)

1− |z|2

|z − eit|2
dt.

In [7] it is also shown that

Fz(0, 0) =
1

2π

∫ π

−π
e−ith(eit)dt = ĥ(1),

Fz̄(0, 0) =
1

2π

∫ π

−π
eith(eit)dt = ĥ(−1),

Fw(0, 0) = −1,

Fw̄(0, 0) =
1

2π

∫ π

−π
h(eit)2dt =

1
π

∫ π

−π
H(eit)H2(eit)dt.

We next compute |µf (0)|2/(1− |µf (0)|2) using the implicit function theorem
and the formula F (z, f(z)) = 0. We get (writing Fz for Fz(0, 0), etc.) the
system

Fz̄ + Fw̄f̄z̄ + Fwfz̄ = 0, F̄z̄ + F̄wfz̄ + F̄w̄f̄z̄ = 0,

whose solution is

fz̄ =
F̄z̄Fw̄ − Fz̄F̄w̄
|Fw|2 − |Fw̄|2

, fz =
F̄zFw̄ − FzF̄w̄
|Fw|2 − |Fw̄|2

,

and finally

|µf (0)|2

1− |µf (0)|2
=

|F̄z̄Fw̄ − Fz̄F̄w̄|2

(|Fz|2 − |Fz̄|2) (|Fw|2 − |Fw̄|2)
.

First of all, in [7] it was shown that

|Fz|2 − |Fz̄|2 = |ĥ(1)|2 − |ĥ(−1)|2 > 0,

|Fw|2 − |Fw̄|2 = 1− |h(eit)2dt|/(2π) > 0.

By compactness we deduce the existence of a constant C(K) such that if h is
K-qs, then (

|Fz|2 − |Fz̄|2
) (
|Fw|2 − |Fw̄|2

)
≥ C(K).

From this we deduce

|µf (0)|2

1− |µf (0)|2
≤ C(K)

∣∣∣∣ĥ(1)
1
π

∫ 2π

0

H(eit)H̄2(eit)dt+ ĥ(−1)
∣∣∣∣2 .

But we have |ĥ(1)| ≤ 1, |ĥ(−1)| ≤
∫∫
|∂H|2, and∣∣∣∣ 1π

∫ 2π

0

H(eit)H2(eit)dt
∣∣∣∣2 ≤ 1

π

∫ 2π

0

∣∣H2(eit)
∣∣2 dt ≤ C ∫∫

D

∣∣∂H∣∣2 dxdy,
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and the proposition is proven. �

Proposition 8. There exists a constant C(K) such that ∀z ∈ D,∣∣µf−1(z)
∣∣2

1−
∣∣µf−1(z)

∣∣2 ≤ C(K)
∫∫
D

∣∣µg−1(w)
∣∣2

1−
∣∣µg−1(w)

∣∣2 (1− |z|)2

|1− w̄z|4
dudv.

Proof. The case z = 0 follows from Propositions 6 and 7 and from the fact
that |µf−1(0)| = |µf (0)|. For the general case we use

M1(ζ) =
ζ + z

1 + ζz
, M2(ζ) =

ζ − f(z)
1− f(z)ζ

,

so that M1(0) = z, M2 ◦ f ◦ M1(0) = 0. Let F (ζ) = M2 ◦ f ◦ M1(ζ),
G(ζ) = M2 ◦ g ◦M1(ζ). We have

|µF (ζ)| = |µf (M1(ζ))| , |µG−1(ζ)| =
∣∣µg−1(M−1

2 (ζ))
∣∣ .

Applying then Proposition 7 we obtain

|µf (z)|2

1− |µf (z)|2
≤ C

∫∫
D

|µg−1(M−1
2 (w))|2

1− |µg−1(M−1
2 (w))|2

dudv

and, recalling that ν = µg−1 , we get the bound

≤ C
∫∫
D

|ν(ζ)|2

1− |ν(ζ)|2
|M ′2(ζ)|2dζdζ

= C

∫∫
D

|ν(ζ)|2

1− |ν(ζ)|2
(1− |f(z)|2)2

|1− f̄(z)ζ|4
dζdζ.

The proposition follows by replacing z by f−1(z). �

Theorem 9. Let h ∈ SQS(∂D) and f = E(h) its Douady-Earle exten-
sion. Then

|µf (z)|2

1− |z|
dxdy

is a Carleson measure in the unit disk.

Proof. First of all there exists M ∈ Aut(D) such that M ◦ f(0) = 0. As
M ◦ f = E(M ◦ h) and µM◦f = µf we may assume that f(0) = 0.

Next we consider an extension g of h such that

|µg|2

1− |z|
dxdy ∈ CM(D)

(for instance the modified Beurling-Ahlfors extension; see [8]).
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Lemma 10. If G is bilipschitz for the hyperbolic metric and if

|µg|2

1− |z|
dxdy ∈ CM(D),

then the same is true for g−1.

Proof. To simplify the notations we prove the analogous statement for the
upper half plane R2

+ = {y > 0}. Let I ⊂ R be an interval and CI = I× [0, |I|]
be the associated Carleson box. Then by an obvious change of variables we
get

I =
∫∫

CI

|µg−1(z)|2

=(z)
dxdy =

∫∫
g−1(CI)

|µg(ζ)|2

=(ζ)
=(ζ)
=(g(ζ))

Jg(ζ)dζdζ.

But there exists a constant α = α(K) such that

CαJ ⊂ g−1(CI) ⊂ CJ , J = h−1(I),

where αJ is the interval with the same center as J , but with length α|J |.
On the other hand, by quasiconformality and the fact that g is bilipschitz

for the hyperbolic metric,

=(ζ)
=(g(ζ))

Jg(ζ) ∼ |h(Iζ)|
|Iζ |

,

where I(ζ) is the interval [a, b] such that the triangle (a, b, ζ) is equilateral.
Let then ω = h′, ϕ = ω12J . By standard Carleson-type estimates [9],

I ≤
∫
J

ϕ∗(x)dx,

where ϕ∗ stands for the Hardy-Littlewood maximal function of ϕ.
By Muckenhoupt theory, there exists C, p > 1 such that for any interval J ,

1
|J |

∫
J

ω(x)pdx ≤ C
(

1
|J |

∫
J

ω(x)dx
)p

.

We may then write

I ≤ |J |1/p
′
(∫

J

ϕ∗p
)1/p

≤ C|J |1/p
′
(∫

J

ωp
)1/p

≤ C
∫
J

ω = C|I|,

from which Lemma 10 follows. �

Lemma 11. If A(z)dzdz is a Carleson measure in D, the same is true for
B(z)dzdz, where

B(z) =
∫∫
D

A(ω)
(1− |ω|)(1− |z|)
|1− ωz|4

dudv.
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Proof. Here again we prove the statement for R2
+. In this case we write

B = T (A), where

T (A)(x+ iy) =
∫∫
R

2
+

A(w)
vy

|w − x+ iy|4
dudv.

By translation invariance it suffices to test the property on intervals I =
[−b, b]. Furthermore, if A(z)dxdy ∈ CM(R2

+) the same is true for λA(λz)
with the same norm. Since T (λA(λ)̇) = λ−1B(λ−1z), we only have to show
the property for b = 1/2. Let C = [−1/2, 1/2]× [0, 1]. Then∫∫

C

B(x+ iy)dxdy =
∫∫
R

2
+

vA(w)
(∫∫

C

y

|w − x+ iy|4
dxdy

)
dudv = I.

We put C = [−1, 1]× [0, 2] and write I = A+ B =
∫∫
C

+
∫∫
R

2
+\C

. Then

B ≤ C
∫∫
R

2
+\C

vA(w)
w4

dudv

≤ C
∑
n≥1

∫∫
|w|∼2n

2nA(w)
24n

dudv

≤ C
∑
n≥1

2−2n ≤ C.

To estimate A it suffices to observe (by a simple computation) that∫∫
C

y

((u− x)2 + (v + y)2)2
dxdy ≤ C

v
.

The proof of the theorem is then completed by applying all preceding propo-
sitions and lemmas. �
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E-mail address: Michel.Zinsmeister@labomath.univ-orleans.fr


