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BMO-TEICHMULLER SPACES

GUIZHEN CUI AND MICHEL ZINSMEISTER

ABSTRACT. We show that the complex dilatation of the Douady-Earle
extension of a strongly quasisymmetric homeomorphism produces a Car-
leson measure. As an application, we study the BMO-Teichmiiller the-
ory compatible with a Fuchsian group.

1. Introduction

Let G be a Fuchsian group, i.e., a group of Mdbius transformations acting
properly discontinuously on the unit disk I. For such a group we define M (G)
as

—/
M(G) = {,u € L) : ||yl < landVg € G, p= Z,,uog}.

If p € M(G), then there exists a unique quasiconformal self-mapping f# of D
fixing 1, —1,¢ and satisfying

aft  of

oz Moz
in D. Similarly there exists a unique quasiconformal homeomorphism of the
plane f, which is holomorphic outside D with the normalization

fue) =zt 2

at oo and such that in D we have again

Ou _ ,0f
oz For
These homeomorphisms conjugate G respectively to a new Fuchsian group
and to a quasi-Fuchsian group, i.e., a Mobius group acting properly discon-
tinuously on the quasidisk f, (D).
The mapping f# has a geometric interpretation: If we denote by S the
Riemann surface D/G, then f# is the lift (to the universal covering) of a
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quasiconformal mapping from the Riemann surface S onto S’ = D/G’, where
G' = fF oG o (f*)~t. Conversely, if F is a quasiconformal homeomorphism
from S to a Riemann surface S’, it has a lift to a quasiconformal homeomor-
phism f of I and, replacing if necessary F by 6§ o F', where # : S’ — S” is a
conformal isomorphism, we may assume that f = f* for some u € M(G).

If o € M(G), then f* has a well-defined boundary value which is a qua-
sisymmetric homeomorphism of the unit circle. We define an equivalence
relation on M(G) by p ~ v if f#|0D = f¥|0D. Again this equivalence relation
has a geometric interpretation: If F), G represent the quasiconformal mappings
on S whose lifts are precisely f*, f¥, then pu ~ v is equivalent to saying that
G o F~1 is homotopic to a conformal isomorphism between F(S) and G(95),
the homotopy being constant on the (possibly empty) boundary of F(S).

The Teichmiiller space T’s is the quotient space M (G)/ ~. We refer to [11]
for details about this construction.

The preceding remarks imply that the mapping [u] — f* is well defined
and injective from T into QS(G), the set of quasisymmetric homeomorphisms
h of the unit circle such that h o G o h=! is a M&bius group (more precisely,
the trace on the unit circle of a Mobius group). A deep theorem of Tukia
[13] asserts that this mapping is also onto, so that one may identify Ts with
QS(Q).

There is a similar description of the Teichmiiller space in terms of f,. We
call a quadratic differential for the group G a holomorphic mapping ¢ in C \D
such that

Vg€ G, p=pog(g)’

If u € M(G), it is easy to see that the Schwarzian derivative

S7,(2) = (o8 £1)" ~ 3 (108 £,

is a quadratic differential for G. In [11] it is shown that the mapping [u] — Sy,
is well defined and injective on Ts. The image of this mapping is included in
T(G), the space of Schwarzian derivatives of injective holomorphic functions in
C\ﬁ having a quasiconformal extension to C which are quadratic differentials
for G. A theorem due to Lehto and Tukia [11] asserts that this mapping is
a bijection onto T'(G). This is the so-called Bers embedding; it allows us to
identify the Teichmiiller space T with T'(G), a space of quadratic differentials.

Both theorems (the identification of Ts with QS(G) and with T(G)) have
been given a simplified proof using the Douady-Earle extension theorem.

The aim of this paper is to follow the same idea, i.e., to use the Douady-
Earle extension theorem to prove analogs of the above statements in the set-
ting of the BMO-Teichmiiller theory, introduced by Astala and the second au-
thor [3]. Before stating these results, we recall the basics of this non-standard
Teichmiiller theory.
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2. BMO-Teichmiiller theory

A positive measure m in the unit disk is called a Carleson measure if
sup m(C(I))/|I| < +oo,

ICODinterval
where C(I) = {rz: z € I, (1—|I|/(2m) <r < 1}. We will also need Carleson
measures on C — ID; the reader will easily guess their proper definition. We
then define CM(DD) as the set of measurable functions g in the unit disk such
that

is a Carleson measure.
An homeomorphism of the unit circle is called strongly quasisymmetric if
it is absolutely continuous at every scale, i.e., if

Ve >0, 36 > 0; VI interval, VE C I Borel, |E| < §|I| = |h(E)| < e|h(I)).

We denote by SQS the set of strongly quasisymmetric homeomorphisms of
the circle. SQS is a group; more precisely, it is the group of homeomorphisms
h such that V4, : b — bo h is an isomorphism of the space BMO(9D); see [5],
[10]. We recall the definition of this space:

BMO(AD) = {b € L*(OD); sup V;(b) < +o0},
I

where V7 (b) is the variance of b on the interval I.

Naturally a strongly quasisymmetric homeomorphism is quasisymmetric,
but the converse is far from being true since a quasisymmetry may be totally
singular.

Let us denote by M(1), T(1) the spaces M(G), T(G) for G = {I}. The
following theorem holds:

THEOREM 1. The following are equivalent:
(1) pe M(1) N CM(D).
(2) f* € SQS(oD). B
(3) Sy, € T(1) and |Sy, |*(|2| — 1)*dzdy is a Carleson measure in C\ D.

The equivalence (1) < (2) is essentially due to Fefferman, Kenig and Pipher
[8], while (1) < (3) is due to Astala and Zinsmeister [3]. The implication
(2) = (1) must be interpreted as follows: If h € SQS then it has a quasicon-
formal extension to the unit disk whose complex dilatation satisfies (1). It
should be noticed that a slight modification of the Beurling-Ahlfors extension
does the job [8]. Similarly, the implication (3) = (1) must be understood as
follows: If f is holomorphic and injective in C \ D with a qc extension to C
and such that |S;|(2)2(|z] — 1)3dzdy is a Carleson measure in C \ D, then it
has a qc extension whose complex dilatation belongs to M (1) N CM(D).
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Let us now consider a Fuchsian group G. Define M(G) = M(G)NCM (D),
SQS(G) = QS(G) N SQS(ID), T(G) = {¢ € T(G):l¢*(2)(l2| — 1)’dzdy
is a Carleson measure on C \ D}. The same equivalence relation as in the
classical case may be defined on M(G) and we denote by 7g the quotient
space (S = D/G). As a byproduct of the main result of this paper we will

prove the following theorem.

THEOREM 2. The mapping [u] — f* is a bijection from Ts onto SQS(G)
while [p] — Sy, is bijective from Ts onto T (G).

In the next section we introduce the Douady-Earle extension and use it to
give a proof of this theorem.

We end this section with two comments:

2.1. Motivation for the BMO-Teichmiiller theory. The whole Te-
ichmiiller theory as just described can be viewed geometrically as follows. In
this section we take G = {I}, so that S =D, and we put T'=Tp. If [u] € T
then f, is a Riemann mapping (defined on C \ D) on a domain which is a
quasiconformal image of the disk and f* is then the conformal welding of the
boundary of this domain, i.e., f* = w’lofﬂ, where ¥ is a Riemann mapping
from the disk. Very loosely speaking, the theory of the universal Teichmiiller
space is the theory dealing with quasiconformal geometry. The situation for
the BMO-Teichmiiller theory is not so clear, but its starting point is the fol-
lowing theorem:

THEOREM 3. The following are equivalent for p € M(1):

(1) v € [u] € CM(D) with a small norm.
(2) log(f*)" € BMO(OD) with a small norm.
(3) (I¢] = 1)3|Sy, [2d¢dC is a Carleson measure with small norm.

These three conditions are equivalent to the fact that if f,(0D) passes
through oo (which we may of course assume), it is the image of a line under a
bilipschitz homeomorhism of the plane with constant close to 1. So at least in
a neighborhood of the origin BMO-Teichmiiller theory deals with bilipschitz
geometry.

But this fact ceases to hold in general. In fact, Bishop and Jones [4] have
characterized domains arising in Theorem 3 and the corresponding Jordan
curves need not be rectifiable. The following question is still open. Let p €
M(1) be such that f,(0D) is the bilipschitz image of a circle or a line. Is the
same true for f;,(0D), 0 <t <17

2.2. Groups of convergence type. In contrast to the classical Teich-
miiller spaces, 75 can be trivial. More precisely, the latter space is reduced
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to 0 if and only if Brownian motion is recurrent on S, which is equivalent to
the fact that the Fuchsian group G is of divergence type:

> 1= (0)]) = +oe.
veG

The reason for this is the two-dimensional version of the Mostow rigidity
theorem due to Agard and Pommerenke [1], [12]: If G is of divergence type
and if h € QS(G), then h must be singular. On the other hand, it has been
shown in [2] that 7g is never trivial if G is of convergence type.

3. The Douady-Earle extension theorem

THEOREM 4 ([7]). There exists a map E mapping QS(OD) into the set of
quasiconformal self-maps of the unit disk such that:
(1) Yh € QS(D), E(h)|OD = h.
(2) Vh € SQ(ID), V7,0 € Aut(D), E(cohoT)=0o0E(h)or.

The main step in the construction of E(h) is the following fact that we
mention here for later use: If h € SQ(ID) we define the function F' = F}, :

DxD— C by
2
Flow) =5 [ OB g,
21 Jop 1 = wh(C) |z = |
Then for any z € D there exists a unique w € D such that F(z,w) = 0. We
define E(h)(z) = w. Notice that if [h =0 then E(h)(0) = 0.
Our main result is the following theorem:

THEOREM 5. If h € SQS(9D) then, if u denotes the complexr dilatation
of the Douady-Earle extension E(h), it holds that p € CM (D).

The proof of this theorem will be given in the next section. We end the
present section by showing that it implies Theorem 2.

Let us first consider h € SQS(G). Let p be the complex dilatation of E(h).
It suffices to prove that p € M(G). Butif g € G, then, since E(hog) = E(h)og
and since h € Q(G), there exists g3 Mobius such that hog = g1 oh. By a new
application of the Douady-Earle theorem, E(g;oh) = gioE(h). It follows that
E(h) and E(h) o g have the same complex dilatation, but this is equivalent to
saying that p € M(G).

For the other part of the theorem we start with a univalent function f on
C\ D such that Sy € T(G) and such that (|¢| —1)3|S;(¢)[?d¢d( is a Carleson
measure. Let I be a Riemann mapping from D onto C\ f(D) and h = F~lof
the conformal welding. By Theorem 1, we have h € SQS (D). Now the proof
in [11, p. 199] gives that h € SQS(G). Let F; = F o E(h). Then F; is a
quasiconformal extension of f whose dilatation is in M(G). The proof is now
complete.
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4. Proof of Theorem 5

We adapt methods from [6]. Let h be a homeomorphism of the unit circle
and H its harmonic extension to the unit disk. We assume that ffﬂ h(e)dt =
0, which implies that f(0) = 0, where f = E(h) is the Douady-Earle extension
of h. We also assume that h is quasisymmetric and consider a quasiconformal
extension ¢ of h. Finally we denote by v the complex dilatation of ¢~ !.

PROPOSITION 6. For some universal constant C > 0,

2
// |5H|2dxdy§c// P ay.
g TP

Proof. We write H = H, + H,, where H,, Hy are holomorphic on ID and
— [—] —
vanish at 0. Then OH = Hj, 9H = H,, [VH|* = |0H* + [0H|*, Jy =
|0H|? — |0H|?. The starting point is the inequality

// IVHIdedyS/ Vgl dady,
D D

which is due to the fact that H is harmonic and that H, g have the same
boundary values. On the other hand, by Stokes’ formula (or by Choquet’s
theorem asserting that H is a self-diffeomorphism of D), we also have

// Judxdy = // Jodrdy = .
D D

Combining the two inequalities we get

// |0H |*dxdy < // |0g|?dxdy.
D
dg/? Iu 2
ade—// 10" Jydxd // 9 Jydxd
//| 9| ray |6g\ |Bg\2 Y = ‘2 xay.

Performing then the change of variable ( = g(z) we obtain that this integral
is also equal to

‘.Ug °g- |2 //
—=  —dxdy = ———dxdy,
// T |pgog 2"~ V|2 Y

since [y 0 g7 = || = v, O

PROPOSITION 7. There exists a constant C(K) (where K is the constant
of quasisymmetry of h) such that

O o< c// |0H |2 dzdy.

1—|Mf
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Proof. We first recall from [7] that f(z) = w is the unique solution of
F(z,w) = 0, where

m ity _ 1,2
Flzw) = 1/ h(e') —w 1—|z| it

T o2r ) . 1—wh(eit) |z —eit]2

In [7] it is also shown that

1 7r . . N
F.0,0) = 5 / ith(eit)dt = h(1),
1 .
F2(0,0) = %/ ¢t h(et)dt = h(—1),
Fw(0,0) = 717
1 i ) 1 [7 L
Fol0,0) = 5- / neyde == [ H(E) (et

We next compute | z(0)]?
and the formula F(z, f(z)
system

~

(1 — |p£(0)|?) using the implicit function theorem
= 0. We get (writing F, for F.(0,0), etc.) the

~—

Fi+Fgf: +Fuf:=0, Fs+ Fyf: + Fgf: =0,

whose solution is

ff_Fsz_FZFw f _FZF@—FZF@

- |Fw|2_|Fw|27 ¢ |Z'711)|2_|Fu’)|27
and finally

|1 (0)]? |F:Fyp — FxFyp?

L—|ppOF — (F: = [F=?) (Ful? = [Fal?)
First of all, in [7] it was shown that
PP = |Fo? = [R() = [A(=1)* >0,
|Ful® — |Fg|* =1 — |n(e")?dt|/(2m) > 0.

By compactness we deduce the existence of a constant C'(K) such that if & is
K-gs, then

(1F:1* = |F=P) (|Ful® = [Fal?) = C(K).

From this we deduce
2
ks (0) ‘A_l o it 7T (it 7
—— 2 < (O(K) |h(1)— H(e"™)Hy(e'")dt + h(—1

But we have [h(1)| < 1, |h(=1)| < [[ [0H|?, and

2 2m
< l/ | Ha ()| dt < c// 0H|* dady,
T Jo D

1 2 o )
= H(e"YHy(e™)dt

™ Jo
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and the proposition is proven. O

PROPOSITION 8.  There exists a constant C(K) such that Vz € D,

2 _ 2
D

1—|/1,f 1—|/J,g—1 ‘1_ Z‘4

Proof. The case z = 0 follows from Propositions 6 and 7 and from the fact
that |ps-1(0)| = |y (0)]. For the general case we use

(+z (= f(#)
1+¢2’ Mz(6) =1 —F(2)C

so that M1(0) = 2, Mao f o M;(0) = 0. Let F(¢) = Myo fo Mi(¢),
G(¢) = My 0 go M;({). We have

r ()] = (M) -1(Q)] = [ug-1 (Mg M (O)]-
Applying then Proposition 7 we obtain

()P lpg—1 w))\2
1—|uf : //1—Iug—1 O0f; (wpp

and, recalling that v = p,-1, we get the bound

My (¢) =

)

IV(C) 2
|V(C) —f@P)? . =
C// ST ATEy A
The proposition follows by replacing z by f~1(z). O

THEOREM 9. Let h € SQS(OD) and f = E(h) its Douady-Earle exten-
sion. Then

bR
N

is a Carleson measure in the unit disk.

Proof. First of all there exists M € Aut(D) such that M o f(0) = 0. As
Mo f=FE(Moh)and pnof = pf we may assume that f(0) =0
Next we consider an extension g of h such that

gl
1| ‘d:rdyGC’M(]D))
— |z

(for instance the modified Beurling-Ahlfors extension; see [8]).
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LEMMA 10. If G is bilipschitz for the hyperbolic metric and if

1,ug|| |dxdy € CM(D),

then the same is true for g~ *.

Proof. To simplify the notations we prove the analogous statement for the
upper half plane R2 = {y > 0}. Let I C R be an interval and C; = I x [0, |I|]
be the associated Carleson box. Then by an obvious change of variables we

get
T 1,5 L, S S

But there exists a constant o = a(K) such that

Cyy C g_l(C[) cCy, J= h_l(I),

where a.J is the interval with the same center as J, but with length alJ|.
On the other hand, by quasiconformality and the fact that g is bilipschitz
for the hyperbolic metric,

|h(Ie)|
e

O
()

where I(¢) is the interval [a,b] such that the triangle (a,b, () is equilateral.
Let then w = A/, ¢ = wlsy. By standard Carleson-type estimates [9],

Ig/@*(x)dm,
J

where ¢* stands for the Hardy-Littlewood maximal function of .
By Muckenhoupt theory, there exists C,p > 1 such that for any interval J,

|J|/ pdx<C(|}|/ (x)dm)p.

We may then write

, 1/p , 1/p
T< |J|1/P (/ s0>s<;l7> < C|J|1/P (/ wp) < C/w = C'|_Z'|7
J J J

from which Lemma 10 follows. O

LeEmMA 11.  If A(z)dzdz is a Carleson measure in D, the same is true for

B(z)dzdz, where
//A 1_|1|“’_|( T =D gud.




1232 GUIZHEN CUI AND MICHEL ZINSMEISTER

Proof. Here again we prove the statement for Ri. In this case we write
B =T(A), where

vy
T(A)( — __dudv.
(A)(@ +iy) = //R2 |w—x+z|4 uav

By translation invariance it suffices to test the property on intervals I =
[—b,b]. Furthermore, if A(z)dzdy € CM(R2) the same is true for AA(Az)

with the same norm. Since T()\A(/\j) = A"!B(A712), we only have to show
the property for b =1/2. Let C' =[-1/2,1/2] x [0, 1]. Then

// x+zyda:dy*// vA(w (// i x+zy|4dzdy)dudvf
R% clw—

We put C = [~1,1] x [0,2] and write [ = A+ B = ffC+ffR2\C Then

B < C// 4 dudv
R2\C W
// )dudv
n>1 |w[~27

<c) 2

n>1

To estimate A it suffices to observe (by a simple computation) that

I =t et <

The proof of the theorem is then completed by applying all preceding propo-
sitions and lemmas. O
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