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RATE OF DECAY OF CONCENTRATION FUNCTIONS FOR
SPREAD OUT MEASURES

CHRISTOPHE CUNY AND TODD RETZLAFF

Abstract. Let G be a locally compact unimodular group and µ an
adapted spread out probability measure on G. We relate the rate of

decay of the concentration functions associated with µ to the growth
of a certain subgroup Nµ of G. In particular, we show that when µ
is strictly aperiodic (i.e., when Nµ = G) and G satisfies the growth

condition VG(m) ≥ CmD, then for any compact neighborhood K ⊂ G

we have supg∈G µ
∗n(gK) ≤ C′n−D/2. This extends recent results of

Retzlaff [R2] on discrete groups for adapted probability measures.

1. Introduction

Let G be a locally compact group, µ be a regular probability on G. The
concentration functions are defined as follows:

fn(K) = sup
g∈G

µ∗n(gK),

for every compact K ⊂ G, where µ∗n is the n-fold convolution power of µ.
The measure µ is said to be irreducible if the support Sµ of µ generates G

as a closed semi-group. It is said to be adapted if Sµ generates G as a closed
group. Hence irreducibility implies adaptedness.

An important group in the analysis of concentration functions is the group
Nµ, defined as the smallest closed normal subgroup a coset of which contains
Sµ.

It is proved in [DL] that when µ is adapted, the group G/Nµ is monothetic,
either compact or isomorphic to Z. In particular, if µ is irreducible, only the
first case appears.

The study of concentration functions started with the pioneering work of
Paul Levy [L] who studied the case of the real line. The question is whether,
under certain assumptions on the group or on the measure, the concentration
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functions go to zero. The main steps of the analysis were obtained by Csiszar
[C], Hoffman and Mukherjea [HM] and finally Jaworski, Rosenblatt and Willis
[JRW]. Let us recall the important result of Jaworski, Rosenblatt and Willis:

Theorem 1.1 ([JRW]). Let G be a locally compact non compact group.
If µ is an adapted probability on G such that G/Nµ is compact (in particular,
if µ is irreducible) then, for any compact K ⊂ G, the concentration functions
(fn(K))n converge to zero.

Then Jaworski [J3] completed the results of [JRW] by proving that if the
concentration functions fail to go to zero the group G and the measure µ must
have a very particular form. Actually a sufficient condition for the convergence
to zero is that µ is not carried on a coset of a compact normal subgroup.

In the situation above, one would like to estimate the rate of convergence of
the concentration functions under reasonable assumptions on µ. The rate of
decay of the concentration functions was investigated by many authors (e.g.,
[B1], [B2], [VSC], [R2]), mainly under the assumption that µ be irreducible
and absolutely continuous with respect to a Haar measure on G. These results
led to the conjecture that the concentration function may go to zero with speed
1/
√
n, at least.

The case of nonunimodular groups can be treated (for general adapted
measures), using the corresponding results on the real line via the use of the
modular function (see, e.g., Bougerol [B2]).

We will be concerned with locally compact unimodular groups G and
adapted (or irreducible) spread out measures µ. We will follow [R2] (who
considered discrete groups) and we will show how to extend his argument
to the case of a general unimodular group. The case of locally finite groups
remains still open.

We will relate the rate of decay of the concentration functions to the growth
of the group. We will work with not necessarily compactly generated groups
and hence we need an appropriate notion of growth. We write |A| for the
Haar measure of a Borel set A of G. We say that G has polynomial growth
of degree (at least) D if there exist a compact neighborhood K ⊂ G (of the
identity) and a constant C > 0 such that |Kn| ≥ CnD. Then we will write
VG(n) ≥ CnD. When G is compactly generated this is the standard definition
(where K is chosen among the generating compact neighborhoods).

The main tools are Theorem VII.1.1 of [VSC], as well as its proof itself.
Let us recall this result:

Theorem 1.2. Let G be a unimodular compactly generated group. Let
U be an open, generating neighborhood of the identity, and let F be a non-
negative function such that

∫
F = 1, ‖F‖∞ <∞ and infU{F} ≥ ε > 0. Then,
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if VG(n) ≥ CnD, we have

‖F ∗k‖∞ = O(k−D/2).

Recall that a measure µ is said to be spread out if it admits a n-fold
convolution power µ∗n which is non singular with respect to a Haar measure
on G.

In this paper, we obtain:

Theorem 1.3. Let G be a locally compact unimodular group. Let µ be an
adapted (resp. irreducible) spread out probability measure on G. Assume that
VNµ(m) ≥ CmD (resp VG(m) ≥ CmD), for some positive constant C. We
have, for every compact neighborhood K ⊂ G,

sup
g∈G

µ∗n(gK) = O(n−D/2).

Notice that we do not assume that G is compactly generated, nor that the
neutral element is in the support of µ, nor that the measure generates G as a
semi-group (i.e., µ is irreducible), nor any absolute continuity (in particular
we do not assume boundedness of the density if the measure admits one).
Unfortunately, the methods used in this paper do not translate to the non-
spread out case.

Notice that Varopoulos [V] treated the case of certain absolutely continuous
measures whose density does not dominate any neighborhood of the identity.
Our theorem was proved by Retzlaff [R2] in the case of discrete groups for
adapted probability measures.

Other references on the topic may be found in [VSC].

2. Preliminaries on the open semigroup associated to a measure

The work of Retzlaff [R2], for discrete groups, was simplified by the fact
that, in this case, no topology is really involved (measures are all absolutely
continuous, their support is open...). To extend his argument we will need to
work with an open semi-group made out of open subsets of the supports of the
convolution power of the measure µ (under consideration) and to explain that
many classical algebraic and topological properties can be described in terms
of these sets. For the remainder of this paper all measures will be assumed to
be spread out.

If µ is a regular probability measure, following [A] (see also [J2]), for every

n ∈ N we define
◦
Sn to be the set of all g ∈ G such that µ∗n dominates a

multiple of the Haar measure on a neighborhood of g.

Notice that when µ∗n admits a continuous density Fn, then
◦
Sn = {g ∈

G : Fn(g) > 0}.
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For n < 0, we define
◦
S−n :=

◦
Sn(µ̌) =

◦
S
−1

n , where µ̌ is the symmetric
measure of µ.

The family (
◦
Sn) is non empty if and only if µ is spread out.

Denote

(1)
◦
S =

⋃
n≥1

◦
Sn.

We will write gp(A) for the group generated by A ⊂ G. Notice that we do
not consider the closed subgroup generated by A. We will denote by Sν the
support of some regular measure ν.

Lemma 2.1. Let G be a locally compact group. Let µ be a spread out
probability measure on G. Then we have:

(i) Sµ∗n
◦
S1 ⊂

◦
Sn+1 ∀n ≥ 1.

(ii)
◦
S is an open semi-group.

Proof. The proof is straightforward and we leave it to the reader. �

We have:

Lemma 2.2. Let µ be an adapted spread out measure. Then the subgroup

generated by
◦
S is G. If µ is also assumed to be irreducible then

◦
S = G.

Proof. By (i) of Lemma 2.1, we have Sµ
◦
S ⊂

◦
S. Hence the first point is

obvious.
Assume now that µ is irreducible. Then, by the previous argument,

◦
S is

dense in G.
Assume that

◦
S 6= G and let g ∈ G−

◦
S. By Lemma 2.1,

◦
S is a semi-group.

Hence g
◦
S
−1

∩
◦
S = ∅, which contradicts the fact that

◦
S and g

◦
S
−1

are dense
and open. �

We now extend Proposition 1.1 of Derriennic and Lin [DL]. The result of
[DL] says that for every adapted measure µ on a locally compact group G, we
have

(2) Nµ = gp
(⋃

(SnµS
−n
µ ∪ S−nµ Snµ)

)
.

Notice that when µ is spread out we do not need to take the closure in (2),
since open subgroups are closed.
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Lemma 2.3. Let µ be an adapted spread out measure on the locally compact
group G. Then

(3) Nµ = gp
(⋃

(
◦
Sn
◦
S−n ∪

◦
S−n

◦
Sn)

)
.

Moreover, if µ is irreducible,

(4) Nµ =
⋃ ◦
Sn
◦
S−n =

⋃ ◦
S−n

◦
Sn.

Proof. Denote by H the right hand side of (3). By (2), H is contained in
Nµ. It is clear that H is an open group, so it is closed. Since µ is spread

out, there exists k ≥ 1 such that
◦
Sk 6= ∅. Then, for every n ≥ 1, we have, by

Lemma 2.1,

SnS−n ⊂ Sn
◦
Sk
◦
S−kS−n ⊂

◦
Sn+k

◦
S−n−k ⊂ H.

Also S−nSn ⊂ H. Hence H = Nµ.
When µ is irreducible, the claimed result follows from Lemma 2.2 and [J2]

(Proposition 4.14). �

When µ is irreducible, it is possible to strengthen this result:

Lemma 2.4. Let µ be an irreducible spread out probability measure on a
locally compact group G. Then Nµ is of finite index (say l) in G. For every

k ≥ 1,
⋃
n≥1

◦
Skn is a normal subgroup of G. Moreover, Nµ =

⋃
n≥1

◦
Sln.

Proof. Let k ≥ 1. Define Γk :=
⋃
n≥1

◦
Skn. Then Γk is clearly a semi-

group. Let x ∈ Γk, that is x ∈
◦
Skp for some p ≥ 1. By Lemma 2.2, since

µ is irreducible, x−1 ∈
◦
Sm for some m ≥ 1. Hence x−1 = (x−1)kxk−1 ∈

◦
Skm+k(k−1)p ⊂ Γk. Hence Γk is a subgroup of G.

Let p ≥ 1. Let x ∈ G. There exist s, t ≥ 1 such that x ∈
◦
Ss and x−1 ∈

◦
St.

So
x
◦
Skpx

−1 = x
◦
Skpx

−1(xx−1)k−1 ⊂
◦
Sk(p+s+t) ⊂ Γk.

Hence Γk is normal in G.
Since µ is irreducible and spread out, G/Nµ is compact and discrete, so Nµ

has finite index l. In particular Sµl ⊂ Nµ.
Let Λl be the subgroup generated by Sµl . Then Γl ⊂ Λl ⊂ Nµ. Since Γl

contains e and SµlΓl ⊂ Γl, then Γl = Λl.
Fix y ∈ Sµ. Let x ∈ Sµ. Then xl ∈ Γl and (xl−1y)−1 ∈ Γl. So x =

y(xl−1y)−1xl ∈ yΓl. Since, by definition, Nµ is the smallest closed normal
subgroup of G a class of which contains Sµ, then Γl = Nµ = Λl. So the
lemma is true. �
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Remarks 2.1. Part of the lemma was proved for discrete groups in Lemma
4 of [R1]. One may use this lemma to prove Theorem 3.10 for irreducible prob-
abilities, using ideas of [R2]. When µ is spread out, Nµ is open, so G/Nµ is
discrete. Since µ is irreducible it is not difficult to see that G/Nµ ' Z/lZ and
so Nµ is of finite index.

We need also a result relating the growth of a group with certain prop-
erties of its open subsemigroups. It is essentially contained in Jenkins [Je]
(see also Theorem 3.2 of [J1]). There is a (stronger) discrete version in [Ro]
(Proposition 2.4) which was used in [R2].

Proposition 2.5. Let G be a locally compact group. Let A be an open
subsemigroup of G such that there exist a, b ∈ A satisfying aA∩bA = ∅. Then
G has exponential growth.

Proof. Let K ⊂ A be any compact neighborhood. Let V := aK ∪ bK. By
assumption, we have the disjoint union

V n+1 ⊃ aKV n ∪ bKV n ∀n ≥ 0.

Hence |V n+1| ≥ 2|V n| ≥ 2n|V |, for every n ≥ 0. So G has exponential
growth. �

This result is useful to obtain the following generalization of Lemma 8 of
[R2]:

Lemma 2.6. Let G be a locally compact group and µ be a spread out prob-

ability measure such that
◦
Sn ∩

◦
Sm = ∅ for every m 6= n. Then either G has

exponential growth or, for every m ≥ 1, we have
◦
Sm
◦
S−m ⊂

⋃ ◦
S−k

◦
Sk and

◦
S−m

◦
Sm ⊂

⋃ ◦
Sk
◦
S−k.

Proof. If there exist a, b ∈
◦
Sm such that a

◦
S ∩ b

◦
S = ∅ then, by the previous

proposition (with A =
◦
S), G has exponential growth. Hence, assume that for

all m ≥ 1 and for all a, b ∈
◦
Sm, a

◦
S ∩ b

◦
S 6= ∅. Let m ≥ 1 and a, b ∈

◦
Sm.

Then there exists (s, t) ∈
◦
Sk ×

◦
Sl such that as = bt. Since as ∈

◦
Sm+k and

bt ∈
◦
Sm+l and since the sets (

◦
Sp)p are pairwise disjoint, we may have k = l.

So a−1b ∈ ∪
◦
Sk
◦
S−k and a, b being arbitrary,

◦
S−m

◦
Sm ⊂ ∪

◦
Sk
◦
S−k. The second

inclusion of the lemma can be proven similarly. �

We deduce:

Lemma 2.7. Let µ be a spread out probability measure on a locally compact
group G. Then, at least one of the following occurs:
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(i) There exists m,n ≥ 1, such that
◦
Slm ⊂

◦
S−ln

◦
Sln ∩

◦
Sln

◦
S−ln for all

l ≥ 1.

(ii)
◦
S−m

◦
Sm ⊂

⋃ ◦
Sk
◦
S−k and

◦
Sm
◦
S−m ⊂

⋃ ◦
S−k

◦
Sk for every m ≥ 1.

(iii) G has exponential growth and
◦
Sm ∩

◦
Sn = ∅ for all m 6= n.

Proof. By the previous lemma, if
◦
Sm ∩

◦
Sn = ∅ for all m 6= n, then (ii) or

(iii) occurs. So assume that
◦
Sk ∩

◦
Sn 6= ∅ for some n 6= k. Hence, for every

l ≥ 1,
◦
Slk ∩

◦
Sln 6= ∅. One can assume that n > k. We have e ∈

◦
Slk
◦
S−ln.

Hence
◦
Sl(n−k) ⊂

◦
Sl(n−k)

◦
Slk
◦
S−ln ⊂

◦
Sln

◦
S−ln.

Similarly, one proves that
◦
Sl(n−k) ⊂

◦
S−ln

◦
Sln. �

3. Rate of decay for adapted spread out probability measures

Lemma 3.1. Let µ be an (adapted) spread out probability measure on the
unimodular locally compact group G. Assume there exist open sets A and B

such that for some n ≥ 1, A ⊂
◦
Sn
◦
S−n , B ⊂

◦
S−n

◦
Sn and Vgp(A)(m) ≥ CmD,

Vgp(B)(m) ≥ CmD. Then there exist m ≥ 1, some positive measures νm,
βm and some symmetric absolutely continuous probability measures µ0 and
µ1 (with respective densities F0 and F1), such that µm = νm + βm, νm is
absolutely continuous with bounded continuous density and νm ∗ ν̌m ≥ Lµ0

and ν̌m ∗ νm ≥ Lµ1 for some L > 0 and ‖F ∗k0 ‖∞ = O(k−D/2), ‖F ∗k1 ‖∞ =
O(k−D/2).

Proof. By assumption, there exists a symmetric compact neighborhood
K ⊂ gp(A) of the identity, such that |Km| ≥ CmD. Let g ∈ K. There exist
kg,1, . . . , kg,ig ∈ A ∪ A−1 such that g = kg,1 · · · kg,ig . Since A ∪ A−1 is open,
there exist relatively compact (in A∪A−1) open neighborhoods Vg,1, . . . , Vg,ig
of kg,1, . . . , kg,ig , respectively. Hence

K ⊂
⋃
g∈K

Vg,1 · · ·Vg,ig .

By compactness, there exist g1, . . . , gl ∈ K, such that

K ⊂
l⋃

j=1

Vgj ,1 · · ·Vgj ,igj .
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Let K ′ be a compact neighborhood of the identity with K ′ ⊂
◦
Sn
◦
S−n. Define

M to be the closure of

K ′
⋃ l⋃

j=1

igj⋃
s=1

(Vgj ,is ∪ V −1
gj ,is

)

 .

Then M is a compact (symmetric) neighborhood of the identity and M ⊂
◦
Sn
◦
S−n. By the Lebesgue decomposition of µ∗n, there exist an absolutely

continuous positive measure νn with density ψn and a singular measure βn
such that µ∗n = νn + βn. Notice that ψn is not trivial since

◦
Sn
◦
S−n is not.

Define φn := inf{1, ψn} and ηn = φnmG (mG stands for a Haar measure of G).
Then ηn∗η̌n is absolutely continuous with continuous density which is positive

on
◦
Sn
◦
S−n. Take µ0 to be the uniform measure on M . The construction of µ1

is symmetric. The estimation of the norms of F0 and F1 follows from Theorem
VII.1.1 of [VSC] (i.e., Theorem 1.2). �

Remarks 3.1. When µ is spread out, it is well known (see, e.g., [A]) that
βn(G) → 0. Hence, in the preceding lemma we can assume that νn(G) is as
large as we please and that the density of νn is continuous. In particular, we
can choose n ≥ 1 and then νn such that νn(G) = 1/2.

The following lemma is implicit in [VSC], see the proof of Lemma VII.4.5.
It is stated (and proven) as follows in [R2]:

Lemma 3.2. Let F , F0 and F1 be probability density functions on a locally
compact group G such that F0 and F1 are symmetric and F ∗ F̌ ≥ CF0

and F̌ ∗ F ≥ CF1, for some positive constant C. Let T , Ť , T0 and T1 the
operators of right convolution by F , F̌ , F0 and F1 respectively. Then ‖f‖22 −
‖T 1/2

0 f‖22 ≤ 1
C (‖f‖22 − ‖Tf‖22) and ‖f‖22 − ‖T

1/2
1 f‖22 ≤ 1

C (‖f‖22 − ‖Ť f‖22) for
all f ∈ L1(G) ∩ L2(G).

Let us recall also Lemma 3 of [R2].

Lemma 3.3. Let F be a probability density function on a locally compact
unimodular group G with ‖F‖∞ ≤ C for some constant C. Let T be the
operator of right convolution by F . Then ‖Tf‖22 ≤ C‖f‖21 for all f ∈ L1(G)∩
L2(G). Also, if F is symmetric then T 1/2 is contracting on L2(G). If F is
symmetric and ‖F ∗k‖∞ = O(k−D/2) then ‖(T 1/2)k‖1→2 = O(k−D/4).

We need the following generalization of Lemma VI.3.5 of [VSC]. Lemma
VI.3.5 of [VSC] asserts that any infinite sequence satisfying (5) satisfies (6)
for some M > 0. Our lemma claims that one can find a universal constant
M such that (6) is true for all sequences satisfying (5) and whose first term
is uniformly bounded.
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Lemma 3.4. Let L,C, n > 0. There exists a positive constant M , such
that for every l ≥ 1 and every (t1, . . . , tl) ∈ (R+∗)l with t1 ≤ L and

(5) t
1+2/n
k+1 ≤ C(tk − tk+1) ∀ 1 ≤ k ≤ l − 1,

we have

(6) tk ≤Mk−n/2 ∀ 1 ≤ k ≤ l.

Proof. Define the function f from [0,+∞[ to [0,+∞[ by f(x) = x1+2/N +
Cx. Then f is an increasing homeomorphism. Define the sequence (yk)k by
the recurrence

y1 = L, yk+1 = f−1(Cyk) ∀k ≥ 1.

By Lemma VI.3.5 of [VSC] (see the remark above), there exists M > 0 such
that (yk) satisfies (6) (for every l ≥ 1).

Now, let n ≥ 1 and let (tk)1≤k≤l ∈ (R+∗)l be a sequence satisfying (5) and
t1 ≤ L. Using the fact that f is increasing one can prove easily that tk ≤ yk
for every 1 ≤ k ≤ l. Hence the lemma is proven. �

We deduce the following extension of Lemma VII.2.6 of [VSC]:

Lemma 3.5. Let (Tk)k≥1 be a sequence of operators which contract all the
spaces Lp(G), 1 ≤ p ≤ ∞. Assume that these operators satisfy the family of
inequalities

‖Tjf‖2+4/n
2 ≤ C

(
‖Tjf‖22 − ‖TkTjf‖22

)
‖f‖4/n1

∀f ∈ L1(G) ∩ L2(G) ∀j, k ≥ 1,

for some n > 0. Then there exists C ′ > 0 such that for every l ≥ 1 and every
(i1, . . . , il) ∈ (N∗)k we have

(7) ‖Til · · ·Ti1‖1→2 ≤
(
C ′Cn

l

)n/4
.

Proof. Let f ∈ L1(G)∩L2(G) with ‖f‖1 = 1. Let l ≥ 1 and let (i1, . . . , il) ∈
(N∗)l. Define, for every 1 ≤ k ≤ l, tk := ‖Tik · · ·Ti1f‖22. Then, by assumption,
(tk)1≤k≤l satisfies (5) and t1 ≤ 1. So, by Lemma 3.4, there exists M > 0 such
that for every f ∈ L1(G) ∩ L2(G), and every (i1, . . . , il) ∈ (N∗)l,

‖Til · · ·Ti1f‖2 ≤
M

ln/4
‖f‖1.

Hence (7) follows by the density of L1(G) ∩ L2(G) in L1(G). �

Lemma 3.6. Let E,D > 0. Then, for every X,Y, Z, k > 0 satisfying
X ≤ EY k−D/2 + kZ and k ≤ (Y/Z)2/(D+2) < 2k we have X1+2/D ≤ (1 +
2D/2E)1+2/DY 2/DZ.
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Proof. Let X,Y, Z, k > 0 satisfy the inequalities of the lemma. Define
x := X/Z and y := Y/Z. By assumption we have

x ≤ Eyk−D/2 + k,

k ≤ y2/(D+2),

k−D/2 ≤ 2D/2y−D/(D+2).

So x1+2/D ≤ (1 + 2D/2E)1+2/Dy2/D, which proves the lemma. �

Let R be any positive operator which contracts all Lp spaces. For every
p, q ≥ 1 we will write ‖R‖p→q for the norm of R seen as an operator from Lp

to Lq.

Theorem 3.7. Let G be a locally compact unimodular group. Let R0 be a
symmetric positive operator which contracts L2(G) and satisfies to ‖Rk0‖1→2 ≤
C0k

−D/4 for some constant C0. Let (µi) be a sequence of absolutely continuous
probability measures with densities (Fi) and denote by (Ti) the sequence of
operators of right convolution by (µi). Assume there exist constants C and
C1 such that for every i ≥ 1, we have ‖Fi‖∞ ≤ C, ‖f‖22−‖R0f‖22 ≤ C1(‖f‖22−
‖Tif‖22), for all f ∈ L2(G). There exists some constant C ′ such that for every
subsequence (ij)j we have

‖Ti1 · · ·Tik‖1→2 ≤ C ′k−D/4 ∀k ≥ 1.

This result is Theorem 2 of [R3]. The proof is slightly different from the
proof of Theorem VI.1.2 of [VSC]. We include it for completeness.

Proof. Since R0 is a positive symmetric contraction of L2(G), (I −R2
0)1/2

is well defined and commutes with R0. Let f ∈ L1(G) ∩ L2(G). For every
j ≥ 1, we have

‖Rj0f‖22 − ‖R
j+1
0 f‖22 = ‖(I −R2

0)1/2Rj0f‖22
≤ ‖(I −R2

0)1/2f‖22 = ‖f‖22 − ‖R0f‖22.

Therefore, for every k ≥ 1,

‖f‖22 = ‖Rk0f‖22 +
k−1∑
j=0

(
‖Rj0f‖22 − ‖R

j+1
0 f‖22

)
≤ C2

0k
−D/2‖f‖21 + k(‖f‖22 − ‖R0f‖22.

Let j ≥ 1. Changing f to Tjf in the above and using ‖Tjf‖1 ≤ ‖f‖1 yields

(8) ‖Tjf‖22 ≤ C2
0k
−D/2‖f‖21 + k(‖Tjf‖22 − ‖R0Tjf‖22.

Now, using Lemma 3.3 for the second inequality, we have

‖Tjf‖22 − ‖R0Tjf‖22 ≤ ‖Tjf‖22 ≤ C‖f‖21.
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Hence there exists n ∈ N such that

2n ≤
(

C‖f‖21
‖Tjf‖22 − ‖R0Tjf‖22

)2/(D+2)

≤ 2n+1.

Taking k = 2n in (8) and X = ‖Tjf‖22, Y = C‖f‖21, Z = ‖Tjf‖22 − ‖R0Tjf‖22
and E = C2

0/C in Lemma 3.6 we obtain

‖Tjf‖2+4/D
2 ≤ (1 + 2D/2C2

0/C)1+2/D(‖Tjf‖22 − ‖R0Tjf‖22)‖f‖4/D1 .

Hence, by the assumptions of the theorem, we obtain

‖Tjf‖2+4/D
2 ≤ C1(1 + 2D/2C2

0/C)1+2/D(‖Tjf‖22 − ‖TiTjf‖22)‖f‖4/D1 .

This estimation is satisfied for every i ≥ 1 and every f ∈ L1(G) ∩ L2(G) and
the constants involved do not depend on f .

Hence, by Lemma 3.5, there exists a constant C ′ > 0 such that for every
k ≥ 1 and every (i1, . . . , ik) ∈ (N∗)k, we have

‖Ti1 · · ·Tik‖1→2 ≤ C ′k−D/4. �

Theorem 3.8. Let G be a unimodular locally compact group and µ be
an adapted absolutely continuous probability measure with bounded continu-
ous density F . Assume there exists some symmetric absolutely continuous
probability measure µ0 with density F0 such that µ ∗ µ̌ ≥ Lµ0 for some L > 0
and ‖F ∗k0 ‖∞ = O(k−D/2). Finally let (νk) be a sequence of regular probability
measures on G, denote Fk := F ∗ νk and let Tk be the operator of right convo-
lution by Fk. Then there exists C > 0, such that ∀k ≥ 1, ∀(i1, . . . ik) ∈ (N∗)k,
‖Ti1 · · ·Tik‖1→2 ≤ Ck−D/4.

Proof. Let R0, Q and (Qk)k denote the operators of right convolution by
µ0, µ and (νk)k. By Lemma 3.3 and since ‖F0‖∞ = O(k−D/2), we have

‖Rk0‖1→2 ≤ C0k
−D/4.

By assumption, using Lemma 3.2, we obtain, for every f ∈ L2(G),

‖f‖22 − ‖R
1/2
0 f‖22 ≤ C(‖f‖22 − ‖Qf‖22) ≤ C(‖f‖22 − ‖Qkf‖22) ∀k ≥ 1,

where the last inequality follows from

‖Qkf‖22 = ‖Tνk(Tµf)‖22 ≤ ‖Qf‖22 ∀f ∈ L2(G), ∀k ≥ 1.

Since it is clear that supk≥1 ‖Fk‖∞ ≤ ‖F‖∞, Theorem 3.7 yields the desired
result. �

Theorem 5 of [R2] (for discrete groups) may be extended to unimodular
groups and spread out probability measures. We have:
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Theorem 3.9. Let G be a unimodular locally compact group and µ be
an adapted spread out probability measure on G. Assume there exist some

open sets A and B with A ⊂
◦
Sn
◦
S−n, B ⊂

◦
S−n

◦
Sn for some n ≥ 1 and

Vgp(A)(m) ≥ CmD, Vgp(B)(m) ≥ CmD. Then, for every compact set K,
supg∈G µ∗n(gK) = O(n−D/2).

Proof. By Lemma 3.1, there exist an integer m ≥ 1 and some positive
measures νm and βm satisfying the conclusion of Lemma 3.1. By the remark
after Lemma 3.1 we may and do assume that νm(G) = 1/2. Write ν :=
νm/νm(G) and β := βm/βm(G). Hence µm = 1/2(ν + β). This reduction is
not essential but will simplify computations.

Denote by (Fk) (resp. (Gk)) the densities of the absolutely continuous
measures (ν ∗ β∗k) (resp. (β∗k ∗ ν). When k = 0, β∗k is the Dirac measure
at e. Let (Tk) (resp. (T̃k)) denote the operators of right convolution by
(Fk) (resp. by (Gk)). By Theorem 3.8 applied with (νk) := (ν ∗ β∗k) (resp.
(νk) := (ν̌ ∗ β̌∗k)), there exists a constant C > 0 such that

‖Ti1 · · ·Tik‖1→2 ≤ Ck−D/4 ∀i1, . . . ik ≥ 1,

‖ ˇ̃Ti1 · · ·
ˇ̃Tik‖1→2 ≤ Ck−D/4 ∀i1, . . . ik ≥ 1.

From the second inequalities, we obtain

‖T̃i1 · · · T̃ik‖2→∞ ≤ Ck−D/4 ∀i1, . . . ik ≥ 1.

Let n ≥ 2 and (i1, . . . i2n) ∈ N2n and f ∈ L1(G) ∩ L2(G). We have

‖T̃i1 . . . T̃inTin+1 . . . Ti2nf‖∞ ≤ ‖T̃i1 . . . T̃in‖2→∞‖Tin+1 . . . Ti2nf‖2
≤ Cn−D/4‖Tin+1 . . . Ti2n‖1→2‖f‖1
≤ C2n−D/2‖f‖1.

Hence

‖T̃i1 . . . T̃inTin+1 . . . Ti2n‖1→∞ ≤ C2n−D/2.

In particular,

‖Fi2n ∗ . . . ∗ Fin+1 ∗Gin ∗ . . . ∗Gi1‖∞ ≤ C2n−D/2.

So, for every n ≥ 1, we obtain

‖Fi2n ∗ . . . ∗ Fi1‖∞ = ‖Fi2n ∗ . . . ∗ Fin+1 ∗G0 ∗Gin ∗ . . . Gi2 ∗ β∗i1‖∞
≤ ‖Fi2n ∗ . . . ∗ Fin+1 ∗G0 ∗Gin ∗ . . . Gi2‖∞
≤ C2n−D/2.
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Let n ≥ 1, g ∈ G and K be a compact of G. We have

µmn(gK) =
1
2n

(ν + β)∗n(gK)

=
1
2n

n−1∑
j=0

∑
i1,...,ik≥0, i1+...+ik=n−j−k

β∗j ∗ Fi1 ∗ · · · ∗ Fik(gK) +
1
2n
β∗n(K)

≤ 1
2n

n−1∑
j=0

∑
i1,...,ik≥0, i1+...+ik=n−j−k

‖Fi1 ∗ · · · ∗ Fik‖∞|gK|+
1
2n

≤ 1
2n

n−1∑
l=0

Cln(Cl−D/2) +
1
2n

≤ C1n
−D/2,

where the last inequality may be deduced from well-known results involving
Bernstein’s polynomials (see, e.g., Feller [F]). �

We are ready to prove our main results.

Theorem 3.10. Let G be a unimodular locally compact group. Let µ be an
adapted spread out probability measure on G. If Nµ satisfies VNµ(m) ≥ CmD,
then supg∈G µ∗n(gK) = O(k−D/2) for every compact K ⊂ G.

Proof. We consider the cases arising from Lemma 2.7:

Case I. There exists m,n ≥ 1, such that
◦
Slm ⊂

◦
S−ln

◦
Sln ∩

◦
Sln

◦
S−ln for all

l ≥ 1.
By Lemma 2.3, we have

Nµ = gp
(⋃

(
◦
Sk
◦
S−k ∪

◦
S−k

◦
Sk)
)
.

Hence, by monotonicity of (
◦
Sk
◦
S−k)k and (

◦
S−k

◦
Sk)k we obtain

Nµ ⊂
⋃
l

gp
(

(
◦
Slm

◦
S−lm ∪

◦
S−lm

◦
Slm)

)
.

Let K ⊂ Nµ be any compact neighborhood such that |Kn| ≥ CnD for some
constant C > 0. Then

K ⊂
⋃
l

gp
(

(
◦
Slm

◦
S−lm ∪

◦
S−lm

◦
Slm)

)
.

Since K is compact, there exists l0 such that

K ⊂ gp(
◦
Sl0m

◦
S−l0m ∪

◦
S−l0m

◦
Sl0m).
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In particular,

K ⊂ gp(
◦
Sl0m).

Applying Theorem 3.9 with A = B =
◦
Sl0m leads to the desired result.

Case II.
◦
S−m

◦
Sm ⊂

⋃ ◦
Sk
◦
S−k and

◦
Sm
◦
S−m ⊂

⋃ ◦
S−k

◦
Sk for every m ≥ 1.

By Lemma 2.3, we have

Nµ = gp
(⋃

(
◦
Sk
◦
S−k ∪

◦
S−k

◦
Sk)
)

= gp
(⋃

(
◦
Sk
◦
S−k

)
= gp

(⋃
(
◦
S−k

◦
Sk

)
.

By assumption, there exists a compact neighborhood K of the identity in
Nµ such that Vgp(K)(m) ≥ CmD. We have clearly that

K ⊂
⋃
n≥1

gp
(
◦
Sn
◦
S−n

)
.

Since the sets gp(
⋃n
k=1

◦
Sk
◦
S−k) are open and K is compact and by the mono-

tonicity of (
⋃n
k=1

◦
Sk
◦
S−k), we can find some n ≥ 1 such that K ⊂ gp(

◦
Sn
◦
S−n).

Taking n larger if necessary we may assume also that K ⊂ gp(
◦
S−n

◦
Sn). Then

we can apply Theorem 3.9 with A =
◦
Sn
◦
S−n and B =

◦
S−n

◦
Sn to get the

desired result.

Case III. G has exponential growth and
◦
Sm ∩

◦
Sn = ∅ for all m 6= n.

Now define ν := 1/2(δe + µ). Then ν is an adapted spread out measure.
It is also strictly aperiodic, i.e., Nν = G. It satisfies clearly the assumption
of the case 1 of the theorem. Let K ⊂ G be a compact set. Since G has
exponential growth, for every D > 0, there exist C > 0, such that

sup
g∈G

ν∗n(gK) ≤ Cn−D ∀n ≥ 1.

We have

ν∗2n(gK) =
2n∑
k=0

2n!
k!(2n− k)!

1
22n

µ∗k(gK) ≥ 2n!
(n!)2

1
22n

µ∗n(gK).

By the Stirling formula (n! ∼ (n/e)n
√

2nπ) we obtain

sup
g∈G

µ∗n(gK) ≤ C ′nD−1,

which proves the result. �

Remarks 3.2. Let m be as in Case I. Then it can be proved that G/Nµ
is a subgroup of Z/mZ. In particular, Nµ is of finite index in G and hence
by Proposition 1 of [R2], G and Nµ have same growth. Hence, in both Case
I and Case III, the rate of decay is actually related to the growth of G itself.
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Remarks 3.3. When µ is absolutely continuous with bounded density F ,
it can be shown that the sup norm of F ∗n decreases as n−D/2. The only
difficult part is Case III. The proof is the same as for the discrete case of
[R2] using the fact that in Case III, the convolution powers of µ are mutually
singular.

We say that the measure µ is almost aperiodic if G/Nµ is compact. The
following corollary extends Theorem 1 of [R1], which was concerned with
discrete groups.

Corollary 3.11. Let G be a unimodular locally compact group, such
that VG(m) ≥ CmD. Let µ be an almost aperiodic (for instance let µ be
irreducible) spread out probability measure on G. Then for every compact
K ⊂ G, supg∈G µ∗k(gK) = O(k−D/2).

Proof. By assumption, Nµ is of finite index in G. So, as in the remark
below Theorem 3.10, G and Nµ have same growth and the result follows from
Theorem 3.10. �
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