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CONVOLUTIONS OF EQUICONTRACTIVE SELF-SIMILAR
MEASURES ON THE LINE

DE-JUN FENG, NHU T. NGUYEN, AND TONGHUI WANG

Abstract. Let µ be a self-similar measure on R generated by an equicon-
tractive iterated function system. We prove that the Hausdorff dimen-

sion of µ∗n tends to 1 as n tends to infinity, where µ∗n denotes the
n-fold convolution of µ. Similar results hold for the Lq dimension and
the entropy dimension of µ∗n.

1. Introduction

Let µ1, . . . , µn (n ≥ 2) be a family of Borel probability measures on R.
Recall that the convolution µ1 ∗ . . . ∗ µn of µ1, . . . , µn is defined by

µ1 ∗ . . . ∗ µn(E) =
∫
Rn

χE(x1 + . . .+ xn)dµ1(x1) . . . dµn(xn)

for any Borel set E ⊂ R, where χE denotes the characteristic function of E.
In particular if µ1 = · · · = µn = µ, then

µ∗n := µ ∗ · · · ∗ µ︸ ︷︷ ︸
n

is called the n-fold convolution of µ.
It is well known that if µ is absolutely continuous with a density function

f , then µ∗n is absolutely continuous with density f∗n for each n ≥ 2, where
f∗n denotes the n-fold convolution of f . However, if µ is a singular measure,
µ∗n may be still singular for all n. In this case it is interesting to describe the
asymptotic behavior of the “degree of singularity” of µ∗n as n tends to infinity.
There are some widely used indices for describing the degree of singularity of
measures, such as the Hausdorff dimension, the Lq dimension and the entropy
dimension.

Recall that for a Borel probability measure η on R, the upper Hausdorff
dimension and the lower Hausdorff dimension of η are defined, respectively,
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by
dimHη = inf{dimH E : E is a Borel set with η(E) = 1}

and
dimHη = inf{dimH E : E is a Borel set with η(E) > 0},

where dimH E denotes the Hausdorff dimension of E. (See [1], [2], [8] for the
definition and properties of the Hausdorff dimension.) For q > 1, the upper
Lq-dimension of η is defined by

dimqη = lim sup
r→0

log
∫
η([x− r, x+ r])qdx
(q − 1) log r

− 1
q − 1

.

The lower Lq-dimension dimqη can be defined similarly by taking the lower
limit. The upper entropy dimension of η is defined by

dimeη = lim sup
n→∞

Hn(η)
log 2n

,

where

Hn(η) = −
∞∑

k=−∞

η
(
[2−nk, 2−n(k + 1))

)
log η

(
[2−nk, 2−n(k + 1))

)
.

The lower entropy dimension dimeη is defined similarly by taking the lower
limit.

As we will show, the sequences dimHµ
∗n, dimHµ

∗n, dimqµ
∗n, dimqµ

∗n,
dimeµ

∗n and dimeµ
∗n are increasing in n and bounded from above by 1 (see

Corollary 2.4). However, it is a rather subtle question to determine the limits
of these sequences in general. In this paper, we provide precise values for
the above limits for the class of equicontractive self-similar measures on R.
Suppose

φi(x) = ρx+ di (i = 1, . . . ,m)
is a family of equicontractive similitudes on R with 0 < ρ < 1, m ≥ 2, and
d1 < d2 < · · · < dm. Usually, {φi}mi=1 is called an equicontractive iterated
function system. For a given probability weight {pi}mi=1 (i.e., pi > 0 and∑
i pi = 1), it was proved by Hutchinson [5] that there is a unique Borel

probability measure ν on R such that

(1.1) ν =
m∑
i=1

piν ◦ φ−1
i .

The measure ν is called an equicontractive self-similar measure.
We can formulate our result as follows:

Theorem 1.1. Let ν be an equicontractive self-similar measure on R.
Then

(1.2) lim
n→∞

dimHν
∗n = lim

n→∞
dimHν

∗n = lim
n→∞

dimeν
∗n = lim

n→∞
dimeν

∗n = 1
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and

(1.3) lim
n→∞

dimqν
∗n = lim

n→∞
dimqν

∗n = 1 (1 < q ≤ 2).

We remark that under the condition of Theorem 1.1, ν∗n is an equicontrac-
tive self-similar measure for each n ≥ 1 (cf. [3, Proposition 3.1]). It follows
from a result of Peres and Solomyak ([9, Theorem 1.1]) that

dimeν
∗n = dimeν

∗n, dimqν
∗n = dimqν

∗n (q > 1).

Also, it is known that dimHν
∗n = dimHν

∗n (see, e.g., [4, p. 200]).
Lindenstrauss, Meiri and Peres [7] have considered the measure-theoretic

entropy of convolutions of ergodic measures on the circle R/Z. Let {µi} be
a sequence of invariant and ergodic measures on R/Z with respect to the
transformation σp : x 7→ px( mod 1), where p is an integer greater than
1. Then Lindenstrauss, Meiri and Peres proved that the measure-theoretic
entropy h(µ1 ∗ · · · ∗µn, σp) tends to log p as n tends to infinity, under a sharp
condition

∞∑
i=1

hi
| log hi|

=∞,

where hi = h(µi, σp)/ log p. We remark that one can use the above deep result
to deduce (1.2) if ν is a self-similar measure for the special iterated function
system

φi(x) =
1
p

(x+ i− 1), i = 1, · · · , p.

We organize the paper as follows. In Section 2 we establish a sufficient
condition for a probability measure on R to satisfy the conclusion of Theorem
1.1. In Section 3 this condition will be shown to hold for equicontractive
self-similar measures, completing the proof of Theorem 1.1. Our proof is
based on some classical properties of Fourier transforms of Borel probability
measures as well as some basic properties of energy functions. We also use
some properties of Fourier transforms of self-similar measures developed by
Strichartz [10], [11], [12], and Lau and Wang [6].

2. Probability measures satisfying (1.2) and (1.3)

For a Borel probability measure η, the Fourier transformation η̂ is a complex-
valued function on R defined by

η̂(t) =
∫
e−itxdη(x).

For any integer n > 0 let

(2.1) αn = αn(η) = lim sup
T→∞

log
∫
|t|<T |η̂(t)|ndt

log T
.
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In this section we establish the following fact, which is the first step in our
proof of Theorem 1.1.

Proposition 2.1. Suppose that η is a Borel probability measure on R with
compact support. If limn→∞ αn = 0, then η satisfies (1.2) and (1.3), where ν
is replaced by η.

Although the condition in the above proposition appears to be rather tech-
nical and hard to check, we can verify it for the class of equicontractive self-
similar measures. This will prove Theorem 1.1.

We prove several lemmas before giving a proof of Proposition 2.1.

Lemma 2.2. Let η1 and η2 be Borel probability measures on R. Then:
(i) dimHη1 ∗ η2 ≥ dimHη1, dimHη1 ∗ η2 ≥ dimHη1.
(ii) For any q > 1, dimqη1 ∗ η2 ≥ dimqη1 and dimqη1 ∗ η2 ≥ dimqη1.
(iii) If furthermore η1 and η2 are compactly supported, then dimeη1∗η2 ≤ 1,

and dimeη1 ∗ η2 ≥ dimeη1, dimeη1 ∗ η2 ≥ dimeη1.

Proof. Suppose η1 ∗ η2(E) > 0 for some Borel set E ⊂ R. Then∫
η1(E − x)dη2(x) = η1 ∗ η2(E) > 0,

which implies that η1(E−x) > 0 for a set of x with positive η2 measure. Thus
there is at least one point x0 ∈ R such that η1(E−x0) > 0. Hence dimH E =
dimH(E − x0) ≥ dimHη1, from which we obtain dimHη1 ∗ η2 ≥ dimHη1.

Now suppose η1 ∗ η2(F ) = 1 for some Borel set F ⊂ R. Then∫
η1(F − y)dη2(y) = η1 ∗ η2(F ) = 1,

which implies that η1(F−y) = 1 for η2 almost all y ∈ R. Thus there is at least
one point y0 ∈ R such that η1(F −y0) = 1. Hence dimH F = dimH(F −y0) ≥
dimHη1, from which we obtain dimHη1 ∗ η2 ≥ dimHη1.

To see (ii), we note that by the Hölder inequality we have∫
η1 ∗ η2([x− r, x+ r])qdx =

∫ (∫
η1([x− y − r, x− y + r])dη2(y)

)q
dx

≤
∫ ∫

η1([x− y − r, x− y + r])qdη2(y)dx

=
∫ ∫

η1([x− y − r, x− y + r])qdxdη2(y)

=
∫
η1([x− r, x+ r])qdx.

This implies (ii).
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To prove (iii), define f(x) = −x log x for x ∈ R+. It is easy to see that

(2.2) f(x+ y) ≤ f(x) + f(y) ≤ 2f
(
x+ y

2

)
= f(x+ y) + (x+ y) log 2

for all x, y ∈ R+. Since η1 is compactly supported,
∞∑

k=−∞

f
(
η1([2−nk + z, 2−n(k + 1) + z])

)
<∞ for any n ∈ N, z ∈ R.

Now fix n and z. Denote by z0 the unique real number satisfying 0 ≤ z0 < 2−n

and 2n(z0 − z) ∈ Z. Using (2.2), we have
∞∑

k=−∞

f
(
η1([2−nk + z, 2−n(k + 1) + z))

)
=

∞∑
k=−∞

f
(
η1([2−nk + z0, 2−n(k + 1) + z0))

)
≥

∞∑
k=−∞

[
f
(
η1([2−nk + z0, 2−n(k + 1)))

)
+ f

(
η1([2−n(k + 1), 2−n(k + 1) + z0))

)
− η1([2−nk + z0, 2−n(k + 1) + z0) log 2

]
=

∞∑
k=−∞

[
f
(
η1([2−nk + z0, 2−n(k + 1)))

)
+ f

(
η1([2−nk, 2−nk + z0))

) ]
− log 2

≥
∞∑

k=−∞

f
(
η1([2−nk, 2−n(k + 1)))

)
− log 2

= Hn(η1)− log 2.

A similar argument yields

Hn(η1) ≥
∞∑

k=−∞

f
(
η1([2−nk + z, 2−n(k + 1) + z))

)
− log 2.

Therefore we have

(2.3)

∣∣∣∣∣Hn(η1)−
∞∑

k=−∞

f
(
η1([2−nk + z, 2−n(k + 1) + z))

)∣∣∣∣∣ ≤ log 2.

Similarly, using (2.2) again, we can deduce that

Hn(η1) ≤ Hn+1(η1) ≤ Hn(η1) + log 2.
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By the above inequality and the definition of entropy dimension, we have
dimeη1 ≤ 1. Note that η1 ∗ η2 is also compactly supported, and therefore

dimeη1 ∗ η2 ≤ 1.

By the convexity of f , we have

Hn(η1 ∗ η2) =
∞∑

k=−∞

f
(
η1 ∗ η2([2−nk, 2−n(k + 1)))

)
=

∞∑
k=−∞

f

(∫
η1([2−nk − z, 2−n(k + 1)− z))dη2(z)

)

≥
∞∑

k=−∞

∫
f
(
η1([2−nk − z, 2−n(k + 1)− z))

)
dη2(z)

=
∫ ∞∑

k=−∞

f
(
η1([2−nk − z, 2−n(k + 1)− z))

)
dη2(z)

≥
∫

(Hn(η1)− log 2) dη2(z) = Hn(η1)− log 2,

from which the last two inequalities in (iii) follow. �

In the following lemma we cite some known facts about the relationship
between various dimensions of a measure.

Lemma 2.3. Suppose η is a Borel probability measure on R with compact
support. Then:

(i) dimqη ≤ dimHη ≤ dimeη ≤ dimeη ≤ 1 for any q > 1.
(ii) dimqη ≤ 1 for any q > 1. Furthermore dimqη and dimqη are mono-

tone decreasing in q > 1.

We remark that part (i) of the above lemma was proved by Fan, Lau and
Rao [4, Theorem 1.4], while part (ii) was proved by Strichartz [12, Theorem
2.8 and Lemma 2.9].

As a corollary of Lemma 2.2 and Lemma 2.3 we have:

Corollary 2.4. Suppose η is a Borel probability measure on R with com-
pact support. Then the sequences dimHη

∗n, dimHη
∗n, dimqη

∗n, dimqη
∗n,

dimeη
∗n and dimeη

∗n are increasing in n. Each of these sequences is bounded
from above by 1.

The following lemma is used to prove Proposition 2.1.

Lemma 2.5. For a Borel probability measure η on R with compact support,
we have

dimHη ≥ 1− α, and dim2η = 1− α,
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where

α = α2 = lim sup
T→∞

log
∫
|t|<T |η̂(t)|2dt

log T
.

Although the assertion dimHη ≥ 1 − α can be derived from the assertion
dim2η = 1− α using Lemma 2.3 (i), for the sake of self-containedness we will
give a direct proof of both assertions.

We divide the proof into three parts, Claims 2.6, 2.7, and 2.8 below. In the
proof of Claims 2.7 and 2.8 we adopt some ideas due to Lau and Wang [6].

Claim 2.6. dimHη ≥ 1− α.

Proof. Recall that for t ≥ 0 the t-energy It(η) of η is defined by

It(η) =
∫ ∫
|x− y|−tdη(x)dη(y).

It is well known (cf. [8, Theorem 8.7]) that if E is a Borel set with η(E) > 0,
then Is(η) =∞ for any s > dimH E. This implies that

dimHη ≥ sup{s ≥ 0 : Is(η) <∞}.

Recall (cf. [8, Lemma 12.12]) that for each 0 < t < 1, there is a positive
constant c(t) (independent of η) such that

It(η) = c(t)
∫
|x|t−1|η̂(x)|2dx.

Therefore

dimHη ≥ sup
{
s ∈ (0, 1) :

∫
|x|s−1|η̂(x)|2dx <∞

}
.

Consequently, to prove dimHη ≥ 1 − α it suffices to establish the following
inequality:

(2.4)
∫
|x|β−1|η̂(x)|2dx <∞ for any β ∈ (0, 1− α).

To see (2.4), take ε > 0 so that β < 1− α− 2ε. By the definition of α, there
exists an integer N > 0 such that∫

|x|<T
|η̂|2dx ≤ Tα+ε for any T > N.
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It follows that∫
|x|≥N

|x|β−1|η̂(x)|2dx ≤
∞∑
i=1

∫
N+i−1≤|x|≤N+i

|x|−α−2ε|η̂(x)|2dx

≤
∞∑
i=1

(N + i− 1)−α−2ε

∫
N+i−1≤|x|≤N+i

|η̂(x)|2dx

≤
∞∑
i=1

(N + i− 1)−α−2ε(N + i)α+ε <∞.

Since β > 0, we have∫
|x|<N

|x|β−1|η̂|2dx ≤
∫
|x|<N

|x|β−1dx <∞.

The above two inequalities prove (2.4). �

Claim 2.7. dim2η ≥ 1− α.

Proof. Let

Vγ(r; η) =
1

r1+γ

∫
η([x− r, x+ r])2dx for any γ, r ≥ 0.

The claim is a simple consequence of the following fact, proved by Lau and
Wang (see the proof of Proposition 3.2 in [6]):

(2.5) Vγ(r; η) ≤ C(γ)Iγ(η) for every r > 0,

where C(γ) is a positive constant depending on γ only.
For the reader’s convenience, we include a brief proof of (2.5):

Vγ(r; η) =
1

r1+γ

∫
η([x− r, x+ r])2dx

=
1

r1+γ

∫ ∫ ∫
χ[x−r,x+r](y)χ[x−r,x+r](z)dη(y)dη(z)dx

=
1

r1+γ

∫ ∫
L1([y − r, y + r] ∩ [z − r, z + r])dη(y)dη(z)

≤ 1
r1+γ

∫ ∫
|y−z|≤2r

2rdη(y)dη(z)

≤ 21+γ

∫ ∫
1

|y − z|γ
dη(y)dη(z) = 21+γIγ(η),

which proves (2.5).
Now take β < 1 − α. Since Iβ(η) < ∞, Vβ(r; η) has a uniform upper

bound, and by the definition of dim2η we have dim2η ≥ β. Since β < 1 − α
is arbitrary, dim2η ≥ 1− α. �

Claim 2.8. dim2η ≤ 1− α.
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Proof. First we prove

(2.6)
∫
η([x− r, x+ r])2dx =

2
π

∫
|η̂(t)|2 sin2(rt)

t2
dt for every r > 0.

To see (2.6), fix r > 0 and define f(x) = η([x−r, x+r]). Then f(x) is a Borel
measurable function with compact support. By the Fubini Theorem,

f̂(t) =
∫
e−itxf(x)dx =

∫
e−itx

∫
|x−y|≤r

dη(y)dx

=
∫ ∫

|x−y|≤r
e−itxdxdη(y)

=
∫

2e−ity sin(tr)
t

dη(y) =
2 sin(tr)

t
η̂(t).

Therefore (2.6) follows from the following equality, known as the Plancherel
formula (cf. [8]): ∫

|f̂(t)|2dx = 2π
∫
|f(x)|2dx.

Now since sin2(tr) ≥ 4
π2 (tr)2 for |tr| ≤ 1, by (2.6) we have

8π3

r2

∫
η([x− r, x+ r])2dx ≥

∫
|t|≤1/r

|η̂(t)|2dt.

Therefore, by the definition of dim2η, we have dim2η ≤ 1− α. �

Proof of Proposition 2.1. Since |η̂∗n(x)| = |η̂(x)|n, by Lemma 2.5 we have

dimHη
∗n ≥ 1− α2n and dim2η

∗n = 1− α2n.

Since limn→∞ αn = 0,

lim
n→∞

dimHη
∗n = 1 and dim2η

∗n = 1.

Combining this with Lemma 2.3 yields the desired result. �

3. Proof of Theorem 1.1

Let ν be an equicontractive self-similar measure defined as in (1.1), and
let αn = αn(ν) be defined as in (2.1). By Proposition 2.1, it suffices to prove
limn→∞ αn = 0.

It is well known that the Fourier transform of ν is given by

ν̂(x) =
∞∏
n=0

P (ρnx),
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where ρ is the common contractive ratio of φi and P (x) =
∑m
j=1 pje

−idjx (see
[11, p. 342]). Note that dj 6= dk for j 6= k and

|P (x)|2 =
m∑
j=1

p2
j +

∑
1≤k<j≤m

2pkpj cos((dj − dk)x)

= 1−
∑

1≤k<j≤m

2pkpj
(

1− cos((dj − dk)x)
)
.

We define Φ(x) = 1 − 2p1p2

(
1 − cos(2πx)

)
. Then Φ is a periodic function

with period 1. By the above equality,

|P (x)|2 ≤ Φ
(
d2 − d1

2π
x

)
.

Hence

(3.1) |ν̂(x)|2 ≤
∞∏
n=0

Φ
(
d2 − d1

2π
ρnx

)
.

For a given positive integer ` and 0 < δ < 1, let r = r(`, δ) be a positive
integer such that

(3.2) Φr(x) < δ for any x ∈
[
k +

1
3
ρ`, k + 1− 1

3
ρ`
]

and k ∈ Z,

where Φr(x) := (Φ(x))r. Let q(`) be the smallest integer s ≥ ρ−`, and write
Λ = {0, 1, . . . , q(`)− 1}. For j ∈ Λ, define

Ij :=
[

1− ρ`

q(`)− 1
j,

1− ρ`

q(`)− 1
j + ρ`

]
.

It is clear that
⋃
j∈Λ Ij = [0, 1], and for any k ∈ Z, y ∈ R we have

#
{
j ∈ Λ :

[
k − 1

3
ρ`, k +

1
3
ρ`
]⋂

(Ij + y) 6= ∅
}
≤ 2,

where #A denotes the cardinality of A. This combined with (3.2) yields

(3.3) #
{
j ∈ Λ : max

x∈Ij+y
Φr(x) ≥ δ

}
≤ 2,

for any y ∈ R.
Now define a family of maps {ψj}j∈Λ on R by

ψj(x) = ρ`x+
1− ρ`

q(`)− 1
j, j ∈ Λ.

Then ψj([0, 1]) = Ij and [0, 1] =
⋃
j∈Λ ψj([0, 1]). Iterating the last equality n

times we get
[0, 1] =

⋃
j1,...,jn∈Λ

ψj1 ◦ · · · ◦ ψjn([0, 1]).
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For simplicity we write Ij1...jn = ψj1 ◦ · · · ◦ψjn([0, 1]). By (3.3), for any k ∈ N
and j1, . . . , jk ∈ Λ we have

(3.4) #

{
jk+1 ∈ Λ : max

x∈Ij1···jkjk+1

Φr(ρ−k`x) ≥ δ

}
≤ 2.

By (3.1), we have for any integer n ∈ N,∫ 2π
d2−d1

ρ−n`

0

|ν̂(x)|2rdx ≤
∫ 2π

d2−d1
ρ−n`

0

∞∏
j=0

Φr

(
(d2 − d1)ρjx

2π

)
dx

=
2π

d2 − d1

∫ ρ−n`

0

∞∏
j=0

Φr(ρjx)dx

≤ 2π
d2 − d1

∫ ρ−n`

0

n∏
j=1

Φr(ρj`x)dx

=
2π

d2 − d1
ρ−n`

∫ 1

0

n−1∏
j=0

Φr(ρ−j`x)dx

≤ 2π
d2 − d1

ρ−n`
∑

j1,...,jn∈Λ

∫
Ij1...jn

n−1∏
j=0

Φr(ρ−j`x)dx

≤ 2π
d2 − d1

∑
j1,...,jn∈Λ

max
x∈Ij1...jn

n−1∏
j=0

Φr(ρ−j`x).

Note that for any fixed indices j1, . . . , jn−1 we have

max
x∈Ij1...jn

n−1∏
j=0

Φr(ρ−j`x) ≤ max
x∈Ij1...jn−1

n−2∏
j=0

Φr(ρ−j`x) max
y∈Ij1...jn

Φr(ρ−(n−1)`y).

Hence by (3.4),∑
jn∈Λ

max
x∈Ij1...jn

n−1∏
j=0

Φr(ρ−j`x) ≤ max
x∈Ij1...jn−1

n−2∏
j=0

Φr(ρ−j`x)(2 + δq(`)).

Thus by induction∑
j1,...,jn∈Λ

max
x∈Ij1...jn

n−1∏
j=0

Φr(ρ−j`x) ≤ (2 + δq(`))n .

Therefore ∫ 2π
d2−d1

ρ−n`

0

|ν̂(x)|2rdx ≤ 2π
d2 − d1

(2 + δq(`))n .
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Similarly ∫ 0

− 2π
d2−d1

ρ−n`
|ν̂(x)|2rdx ≤ 2π

d2 − d1
(2 + δq(`))n .

Thus ∫
|x|< 2π

d2−d1
ρ−n`
|ν̂(x)|2rdx ≤ 4π

d2 − d1
(2 + δq(`))n ,

which implies (see (2.1))

α2r = lim sup
T→∞

log
∫
|x|<T |ν̂(x)|2rdx

log T
≤ log(2 + δq(`))

log ρ−`
.

Now letting first δ → 0 and then ` → ∞, we finally obtain limr→∞ α2r = 0
and so limr→∞ αr = 0. Therefore by Proposition 2.1 we get the desired results.
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