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ALEXANDER-SPANIER COHOMOLOGY OF FOLIATED
MANIFOLDS

XOSÉ M. MASA

Abstract. For a smooth foliated manifold (M,F), the basic and the
foliated cohomologies are defined by using the de Rham complex of M .

These cohomologies are related with the cohomology of the manifold by
the de Rham spectral sequence of F .

A foliated manifold is an example of a space with two topologies, one
coarser than the other. For these spaces one can define a continuous
cohomology that, for a foliated manifold, corresponds to the continuous

foliated (or leafwise) cohomology.
In this paper we introduce a construction for spaces with two topolo-

gies based upon the Alexander-Spanier continuous cochains. It allows us

to define a spectral sequence, similar to the de Rham spectral sequence
for a foliation. In particular, continuous basic and foliated cohomologies

are defined and related with the cohomology of the space.
For a smooth foliated manifold, we also consider Alexander-Spanier

differentiable cochains. We compare the continuous and differentiable

cohomologies, and the latter with the de Rham cohomology. We prove
that all three spectral sequences are isomorphic from E2 onwards if F
is a Riemannian foliation. As a consequence, we conclude that this
spectral sequence is a topological invariant of the Riemannian foliation.

We also compute some examples. In particular, we give an isomor-

phism between the E2 term for a G-Lie foliation and the reduced coho-
mology of G (in the sense of S.-T. Hu) with coefficients in the reduced

foliated cohomology of F .

1. Introduction

Let (M,F) be a C∞ foliated manifold. Associated to F , there is a filtration
of the de Rham complex of M , A∗(M): a smooth form of degree i is said to be
of filtration ≥ p if it vanishes whenever i− p+ 1 of the vectors are tangent to
the foliation. The associated spectral sequence E2,dR(F) is called the de Rham
spectral sequence, and converges to the de Rham cohomology of M (see (10)
below). This spectral sequence is an important C∞ invariant of the foliation.
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It relates the basic cohomology and the foliated cohomology of F with the
cohomology of M . The goal of this paper is to prove that, for Riemannian
foliations, the de Rham spectral sequence is a topological invariant from E2

onwards. For basic cohomology this is a result by El Kacimi and Nicolau [9].
J.A. Álvarez López and the author [1] have given a different proof by using
approximations of continuous foliated maps by smooth maps.

Here we construct two new spectral sequences associated to F . One starts
with two real Alexander-Spanier cochain complexes of M , the continuous one,
contAS

∗(M), and the differentiable one, diffAS
∗(M), with a filtration similar

to that considered above (see (6)). In this way, one gets two spectral se-
quences, E2,cont(F) and E2,diff(F), respectively. As every smooth Alexander-
Spanier cochain is also continuous, the inclusion induces an homomorphism
of spectral sequences

Jr : Er,diff(F) −→ Er,cont(F) .

There is also a homomorphism

Λr : Er,diff(F) −→ Er,dR(F)

between the differentiable Alexander-Spanier spectral sequence and the de
Rham spectral sequence (see (14)). Such a homomorphism will be called quasi-
isomorphism if the homomorphism induced on the level of spectral sequences
is an isomorphism of the terms Er for r bigger or equal than 2. It seems
reasonable to conjecture that Λ is a quasi-isomorphism for an arbitrary C∞

foliation. The Main Theorem of this paper states that J and Λ are quasi-
isomorphisms if F is a Riemannian foliation on a closed manifold (Theorem 8).

The proof has two steps. In the first and fundamental step, the theorem is
proved for the particular case of Lie foliations. If F is the foliation by points
on a Lie group, the assertion that J is a quasi-isomorphism reduces to the
classical theorem that the continuous and differentiable cohomologies of a Lie
group coincide (cf. [19]). The proof for a Lie foliation is a generalization of
the classical proof. To prove that Λ is a quasi-isomorphism, the second terms
of the spectral sequences are computed (Proposition 3 and Proposition 4) and
they are presented as a Lie group cohomology or a Lie algebra cohomology,

Ep,qr,diff(F) = Hp
�(G,H

q

F ) , Ep,qr,dR(F) = Hp(g, H
q

F ) ,

where H
q

F stands for the reduced foliated cohomology, the quotient of the
space Hq

F , equipped with the C∞-topology, by the closure of 0, and Hp
�(G, )

refers to the group cohomology defined by Hu [12]. Finally, a theorem by
S. Świerczkowski [28] is used to conclude that they are isomorphic.

The second step takes into account Molino’s structure theorem to reduce
the general case of a Riemannian foliation to the particular case above. It
reduces essentially to technicalities about spectral sequences.
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Throughout this paper we use the terminology of sheaves. In fact, spectral
sequences are constructed from resolutions of the constant sheaf RM , which
are made up of sheaves of basic forms or basic Alexander-Spanier cochains.
The homomorphisms between spectral sequences are also defined by homo-
morphisms between these resolutions.

The paper is organized as follows. In Section 2, we introduce the Alexander-
Spanier spectral sequence in the very general framework of a space with two
topologies, one finer than the other. We relate the spectral sequence with the
continuous cohomology defined by Bott and Haefliger [4] in this setting. Sec-
tion 3 deals with foliated manifolds and their associated spectral sequences.
Some properties of foliated homotopy are proved and the homomorphism be-
tween the Alexander-Spanier and de Rham cohomology is defined. Section 4
is devoted to the proof of the Main Theorem for a Lie foliation. In Section 5
we use Molino’s structure theorem to reduce the general case of Riemannian
foliations to the particular case of Lie foliations.

Codimension one foliations without holonomy provide examples of folia-
tions whose continuous spectral sequence is not isomorphic to the de Rham
spectral sequence.

The results of this work were announced in [17].

2. Alexander-Spanier spectral sequence

Let X be a topological space, and let X ′ be a space with the same set as
X, but with a finer topology. Let U be an open set in X. A map

ϕ : Up+1 −→ R

is said to be a basic Alexander-Spanier p-cochain in U if it is locally constant
when one considers in Up+1 the topology induced by X ′.

The reason for the term “basic” is that if one considers the decomposition
of X by the connected components of X ′ and the equivalence relation that
this partition defines on X, then, under suitable hypotheses, these cochains
correspond to the cochains on the quotient space.

For each U , the vector space of basic Alexander-Spanier cochains in U , with
the obvious restriction maps, defines a presheaf, which generates the sheaf of
basic Alexander-Spanier cochains AS∗(X′|X). With the usual differential

(1) δ ϕ(x0, . . . , xp) =
p∑
i=0

(−1)i ϕ(x0, . . . , x̂i, . . . , xp)

we have a resolution

(2) AS0
(X′|X)

δ−→ AS1
(X′|X)

δ−→ AS2
(X′|X)

δ−→ · · ·

of the constant sheaf RX . In fact, the sequence (2) is pointwise homotopically
trivial: let ε : RX → AS0

(X′|X) be the obvious map, let ηx : AS0
(X′|X)x

→ RX
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be the map that assigns to a cochain ϕ the constant function with value ϕ(x),
and let Dx : ASp(X′|X)x

→ ASp−1
(X′|X)x

be given by

Dx(ϕ)(x0, . . . , xp−1) = ϕ(x, x0, . . . , xp−1) .

We have

(3)

 δDx + Dxδ = 1 , in positive degrees,
Dxδ = 1− εηx , in degree zero,
ηxε = 1 , on RX .

As a consequence, there is a spectral sequence

(4) Ep,q2 (X ′ | X) = HpHq(X,AS?(X′|X)) ⇒ Hp+q(X,R) .

Ep,02 (X ′ | X) is the cohomology of the sections of the sheaves AS∗(X′|X) and
will be called the basic cohomology of (X ′ | X).

In the definition of a cochain, we can consider continuous (or smooth, in
the appropriate case) rather than arbitrary functions. In this case we use
the terms continuous or differentiable Alexander-Spanier cohomology. The
above constructions for the resolution and spectral sequence hold also in the
continuous and differentiable cases. In this work, we are mainly concerned
with the continuous and the differentiable cohomologies. If it is necessary to
avoid confusion, we shall write

dAS(X′|X) , contAS(X′|X) , diffAS(X′|X) ,

for the discrete (arbitrary functions), continuous or differentiable Alexander-
Spanier sheaves.

Remark 1. Bott and Haefliger [4] define continuous cohomology of spaces
with two topologies. Let ∆q be the Euclidean q-simplex. One considers on
Map (4q, X ′ ) the pull back of the compact open topology on Map (4q, X )
by the map induced by the identity X ′ → X. A continuous cochain is a
continuous map from Map (4q, X ′ ) to R. Mostow [20] proves that the con-
tinuous cohomology is the cohomology of X with values in the sheaf of con-
tinuous functions on X, locally constant in X ′; i.e., Hq(X, contAS

0
(X′|X)) is

the continuous cohomology of Bott and Haefliger.

Example 1. Let G be a topological group and let BG be its Milnor
classifying space. Denote by Gδ the group G with the discrete topology. Then
BGδ is the same set as BG, but with a finer topology. As BG is the semi-
simplicial space associated to the nerve NG of G, to compute the spectral
sequence

(5) Er(BGδ | BG) ⇒ H(BG)

one can use a theorem by Segal ([26, Proposition 5.1]), which asserts that

E1(BGδ | BG) = Hq(BG,ASp(BGδ|BG)) ∼= Hq
δ (ASp(N∗G)) ,
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to conclude that this spectral sequence is associated to the double complex

ASp(NqG)

with p as filtrant degree. The differential is D = δ1,0 + δ0,1, where

δ1,0 : ASp(NqG)→ ASp+1(NqG)

is the differential of Alexander-Spanier cochains and

δ0,1 : ASp(NqG)→ ASp(Nq+1G)

is induced by the simplicial structure of NG. For a Lie group, this spectral
sequence is very close to that considered by Bott and Hochschild (cf. [3]),
constructed from the Čech-de Rham complex of G,

Ap(NqG) .

Bott and Hochschild proved that the E1 term of this spectral sequence is
isomorphic to

Hq−p
c (G,Spg∗) ,

where g is the Lie algebra of G considered as a G-module under the adjoint
action, Sqg∗ denotes the q-th symmetric power, and the subscript c denotes
the smooth (or equivalent continuous) cohomology of G with values in Sqg∗,
as defined by van Est [30]. (For another construction of this spectral sequence
see [13].) The Bott spectral sequence is a direct summand of (5), and its terms
are isomorphic from the term E2 onwards. In the particular case q = 0, as
A0(NG) = AS0(NG), we have

H∗(BG, contAS
0
(BGδ|BG)) ∼= Hc(G) .

(For this isomorphism, see also [20, Corollary 7.6].)

Example 2 (cf. [23]). If f : X → Y is a continuous and closed map such
that each f−1(y) is compact and relatively Hausdorff in X, and

X ′ =
∐
y∈Y

f−1(y) ,

then Ep,qr (X ′ | X) is the Leray spectral sequence of f . In fact, since X ′ is
defined by a continuous map f , there is an isomorphism

AS∗(X′|X)
∼= f∗ASY .

One can compute the Leray spectral sequence from the fine resolution

Hq(f,RX)⊗AS0
Y −→ Hq(f,RX)⊗AS1

Y −→ · · ·

of Hq(f,RX), the Leray sheaf of f . So for the second term of the Leray
spectral sequence we have

Hp(Y,Hq(f,RX)) ∼= Hp(Γ(Y,Hq(f,RX)⊗AS∗Y )) .
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Now under the above hypothesis on f (see [5, Proposition 4.6]), we have

Hq(f,RX)⊗AS∗Y ∼= Hq(f,Hq(f,AS∗(X′|X))) ,

and, finally,

Hp(Γ(Y,Hq(f,RX)⊗AS∗Y )) ∼= Hp(Γ(Y,Hq(f,AS∗(X′|X))

∼= HpHq(M,AS∗(X′|X)) .

It is possible to give an alternative description of the spectral sequence. To
do that, we define a filtration {F pASi(X)} of the Alexander-Spanier cochains
of X, AS∗(X). We say that ϕ ∈ F pASi(X) if there exists an open cover U of
X such that

(6) ϕ(x0, . . . , xp−1, xp, . . . , xi) = ϕ(y0, . . . , yp−1, xp, . . . , xi)

if xj , yj , 0 ≤ j ≤ p− 1, belong to the same connected component of U in X ′,
U ∈ U . Obviously

F 0ASi(X) = ASi(X) , F pASi(X) ⊃ F p+1ASi(X)

and
δ
(
F pASi(X)

)
⊂ F pASi+1(X) .

A p-cochain ϕ is basic if ϕ ∈ F pASp(X) and δϕ ∈ F p+1ASp+1(X). Let
F pASiX be the sheaves of germs of cochains of filtrant degree p. The link be-
tween the spectral sequence defined by the filtration and that initially defined
is given by the following resolution of ASpX :

F pASpX
δ−→

F pASp+1
X

F p+1ASp+1
X

δ−→
F pASp+2

X

F p+1ASp+2
X

−→ · · · ,

where δ is induced by δ. Let us check the exactness of this sequence for q > 0.
We define a map

Ex :
(
F pASp+qX

)
x
−→

(
F pASp+q−1

X

)
x
,

Ex(ϕ) = ϕx, by ϕx(x0, . . . , xp+q−1) = ϕ(x0, . . . , xp+q−1, x). One gets

ϕ + (−1)p+q+1δ(ϕx) = (−1)p+q+1(δϕ)x .

Let us briefly discuss the naturality of the Alexander-Spanier spectral se-
quence. Let (Y ′ | Y ) be another space with two topologies. A map

f : (X ′ | X) −→ (Y ′ | Y )

is a continuous map f : X → Y that is also continuous as a map from X ′ to
Y ′. Such a map f defines a differential morphism

f∗ : ASi(Y ′|Y ) −→ ASi(X′|X)
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by f∗(ϕ) = ϕ ◦ f i+1, and a homomorphism of spectral sequences

(7) f∗r : Ep,qr (Y ′ | Y ) −→ Ep,qr (X ′ | X) .

3. Foliated manifolds

A foliation F on a topological manifold M is a decomposition of the man-
ifold into connected topological submanifolds, with the leaves Lx, x ∈ M ,
all of the same dimension, the dimension of F , and the additional condition
that, locally, the decomposition is modeled on the decomposition of Rn into
the cosets x+Rl of the standardly embedded subspace Rl. An open set with
this condition is said to be a distinguished open set. The number k = n − l
is the codimension of F . We can consider smooth foliations, Cr,s-foliations,
singular foliations, where leaves of several dimensions are permitted, or just
a lamination, a metric space decomposed into leaves (see [6] for precise defi-
nitions).

Let (M,F) be a foliated manifold, M =
⋃
x∈M Lx. Denote by MF the

set M with the leaf topology, for which a basis is formed by the connected
components of intersections of open sets of M with leaves. The Alexander-
Spanier sheaf and the spectral sequence of the foliated manifold will be that
associated to (MF |M). We use the notations

contAS
∗
F , diffAS

∗
F

for the continuous and differentiable Alexander-Spanier sheaves, respectively,
and

Ep,qr,cont(F) and Ep,qr,diff(F)

for the corresponding spectral sequences.

The de Rham spectral sequence. For smooth foliations (or Cr-folia-
tions, with r ≥ 1) one can construct the de Rham spectral sequence of F . Let
(A∗(M), d) be the de Rham complex of M and denote by A∗M the de Rham
sheaf of M . A smooth form η is said to be basic if it satisfies

(8) iY η = 0 and iY dη = 0

for all Y ∈ ΓF , the algebra of vector fields tangent to the foliation, where iY is
the interior product by Y . The algebra A∗F (M) of basic forms is a differential
subcomplex of the de Rham complex A∗(M).

The sheaves A∗F of germs of basic forms define a resolution of RM , the
constant sheaf on M ,

(9) A0
F

d−→ A1
F

d−→ · · · d−→ AlF −→ 0 ,

where d is the exterior derivative and l is the dimension of F . Associated to
this resolution, we have the de Rham spectral sequence of F ,

(10) Ep,q2,dR(F) = Hp(Hq(M,A?F )) ⇒ Hp+q(M,R) .
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Ep,02,dR(F) is the basic de Rham cohomology of F . We denote by

(11) Hq
F = Hq(M,A0

F )

the differentiable foliated cohomology of the foliation. Note that

diffAS
0
F = A0

F ,

the sheaf of smooth functions on M that are locally constant along the leaves.
To describe the de Rham spectral sequence of F it is also possible to start

with a filtration of the de Rham complex A∗(M). A smooth form of degree i
is said to be of filtration ≥ p if it vanishes whenever i − p + 1 of the vectors
are tangent to the foliation. We shall denote the ideal of all forms of filtration
degree ≥ p by F pA(M). We will use further the sheaves

(12) Ap,q : = F pAp+q/F p+1Ap+q

with the operator
dF : Ap,q −→ Ap,q+1

induced by the exterior derivative. Checking that it is a resolution of AF
reduces to a form of the Poincaré Lemma (cf. [29]). As A0

M -modules, these
sheaves are fine.

Homotopy. Let (M ′,F ′) be another foliated manifold. By a foliated map

f : (M,F) −→ (M ′,F ′)
we understand a smooth map which takes leaves into leaves, or, more precisely,
is such that the induced map df : TM → TM ′ satisfies df(TF) ⊂ TF ′. Now
the map f∗ : Ai(M ′)→ Ai(M) is a filtration preserving homomorphism, and
we have induced homomorphisms

fp,qr : Ep,qr (F ′) −→ Ep,qr (F)

between the de Rham (or Alexander-Spanier) spectral sequences of the folia-
tions.

We need two different types of homotopy in this framework. One can
consider in M × I two foliations: the first one is F × I, with leaves L × I,
where L is a leaf of F , the second one is F × Iδ, where Iδ is the closed unit
interval with the discrete topology, with leaves L × {t}. An s-homotopy, for
s = 1 or 2, will be a smooth function H : M × I →M ′ such that the image of
each leaf is contained in a leaf, given the first or the second foliation in M×I,
respectively.

Lemma 1. Let H : M × I →M ′ be an s-homotopy between foliated maps
h0, h1 from (M,F) to (M ′,F ′). Then the induced homomorphisms in the
spectral sequences are identical, i.e.,

h∗0 = h∗1 : Er(F ′) −→ Er(F) ,

for r ≥ s.
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Proof. It is enough to consider the maps

it : M −→ M × I , i = 0, 1 ,

given by it(x) = (x, t). The identity map of M × I gives an s-homotopy
between i1 and i2, for s = 1 or 2, as we consider the foliation F × I or F × Iδ,
respectively.

For the de Rham spectral sequence, the result is well known (cf. [24]): one
can construct a cochain homotopy as usual, starting with a smooth homotopy,
and check the filtration requirements.

For s = 1, in any case, the lemma follows from the general homotopy
invariance of sheaf cohomology. In fact, for the de Rham sheaves, it is

A∗F×I
∼= π∗A∗F ,

where π : M × I → M is the projection. Analogously, for the Alexander-
Spanier sheaves we have

AS(F ′×I|F×I) ∼= π∗AS(F ′|F) .

A general proof of the homotopy axiom for the Alexander-Spanier coho-
mology was given by Spanier [27]. For s = 2 we must check the compatibility
of the homotopy S : ASi+1(M × I)→ ASi(M) with the filtration, that is,

S(F pAS(M × I)) ⊂ F p−1(AS(M)) ,

where the filtration of AS(M × I) is defined from the foliation F × Iδ. This is
a consequence of the fact that, locally, the homotopy is induced by maps like

(x0, . . . , xq) 7→
q∑
i=0

(−1)i ((x0, t0), (x1, t0), . . . , (xi, t0), (xi, t1), . . . , (xq, t1)) ,

with t0, t1 ∈ I, t0 close to t1. �

A spectral sequences morphism. There exists an onto morphism of
differential sheaves

Λ : diffAS
∗
F −→ A∗F .

If we take for an open set U of M a p-cochain ϕ given by the product of p+ 1
smooth functions fi : U → R, 0 ≤ i ≤ p,

ϕ(x0, x1, . . . , xp) = f0(x0)f1(x1) . . . fp(xp) ,

then
Λ(ϕ) = f0 df1 ∧ . . . ∧ dfp .

In the general case, for x ∈ U and Z1, . . . , Zp ∈ TxM ,

Λ(ϕ)x(Z1, . . . , Zp)(13)

=
1
p!

∑
τ∈Sp

sgn(τ)
∂

∂ε1
· · · ∂

∂εp
ϕ(x, expx ε1Zτ(1), . . . , expx εpZτ(p))

∣∣∣∣
εi=0

,
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where εi ∈ R, 1 ≤ i ≤ p. As a morphism of resolutions of RM , Λ defines a
spectral sequence homomorphism

(14) Λp,qr : Ep,qr,diff(F) −→ Ep,qr,dR(F)

that converges to an isomorphism.

4. Cohomology of Lie foliations

Let F be a Lie foliation on M with dense leaves. A suitable description of
this structure is the following one: there exists a homomorphism

Π1 : π1(M) −→ G ,

where G is a simply connected Lie group, a covering map π : M̃ → M asso-
ciated to the homomorphism, with group of deck transformations Γ, and a
locally trivial fibration Π: M̃ → G, equivariant with respect to the action of
Γ over M̃ and over G by the left product, if we identify Γ with the image of
Π1 in G. The fibers of Π are the leaves of the lifting foliation F̃ , and Γ is
dense in G [10].

A vector field X on M is said to be foliated if, for every vector field Y ∈ ΓF ,
the Lie bracket [X,Y ] is also tangent to F . Denote by X(M,F) the algebra of
foliated vector fields of F . A Lie foliation is transitive, that is, at each point
of M the complete foliated vector fields generate the whole tangent space
(cf. [18]). In fact,

(15) X(M,F)/ΓF ∼= g,

where g is the Lie algebra of G, realized as global foliated vector fields on M ,
and one takes vector fields tangent to F to generate TxF at each point. We
will call such a foliation a G-Lie foliation or g-Lie foliation.

The inclusion J : diffASF → contASF induces a spectral sequence homo-
morphism

(16) Jp,qr : Ep,qr,diff(F) −→ Ep,qr,cont(F) .

We now prove that J is a quasi-isomorphism, i.e., that J induces isomorphisms
of the terms Er for r ≥ 2.

Proposition 2. Let F be a Lie foliation on a compact manifold M . The
inclusion J : diffAS

∗
F →cont AS

∗
F induces an isomorphism

J2 : E2,diff(F) ∼= E2,cont(F) .

Proof. We construct morphisms

(17) s : contAS
i(M) → diffAS

i(M) , h : contAS(M)i → contAS
i−1(M)
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such that

(18)


s(F p contAS(M)) ⊂ F p diffAS(M) ,

h(F p contAS(M)) ⊂ F p−1
contAS(M) ,

h(diffAS(M)) ⊂ diffAS(M) ,

and satisfying the relation

(19) δh + hδ = ±(1− s) .
So s will be a cochain morphism compatible with the filtrations, which defines
a morphism of spectral sequences, and h is a homotopy between the identity
and s, which decreases the filtration degree at most by one. Then

sr : Er,cont(F) −→ Er,diff(F)

is an isomorphism for r ≥ 2 (cf. [7]).
In order to define s and h let us fix a finite dimensional vector space V of

foliated vector fields such that V (x) = TxM for all x ∈M . A vector space of
foliated vector fields satisfying such a property will be called transitive. Since
M is compact and F is transversally complete, we can always find a transitive
finite dimensional vector space. We choose a Riemannian metric on V with
volume element dX, and a smooth function ρ on V supported in a compact
neighborhood of 0. We define s by

(sϕ)(x0, . . . , xi)(20)

=
∫
V

· · ·
∫
V

ϕ(φ∗X0
(x0), . . . , φ∗Xi(xi)) · ρ(X0) . . . · ρ(Xi) · dX0 . . . dXi

where φtX : M −→ M denotes the flow of the vector field X ∈ V and φX is
the diffeomorphism corresponding to t = 1. The function ρ can be normalized
by
∫
V
ρ(X) dX = 1, and h is defined by

(hϕ)(x1, . . . , xi)

=
i∑

j=1

(−1)j
∫
V

· · ·
∫
V

ϕ(x1, . . . , xj , φ
∗
Xj (xj), . . . , φ

∗
Xi(xi)) · ρ(Xj)·

. . . · ρ(Xi) · dXj . . . dXi �

See [25] and [16] for similar constructions. One could also conclude that
E2(ASF ) is finite dimensional, but this will be a consequence of Theorem 8
below.

Example 3. In general there is no isomorphism between the E1 terms.
The torus T 2 foliated by lines of constant irrational slope provides a counter-
example. As it is equal to the de Rham foliated cohomology, H1(T 2, diffAS

0
F )

has either infinite dimension or dimension one, depending upon whether the
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irrational slope is Liouville or diophantine, while H1(T 2, contAS
0
F ) has always

infinite dimension (cf. [20]).

To compare the differentiable Alexander-Spanier spectral sequence with the
de Rham spectral sequence, we start by computing the term E2 for a G-Lie
foliation.

We consider first the de Rham spectral sequence of a Lie foliation. The
sheaves of basic forms for a Lie foliation with Lie algebra g are

ApF
∼=
∧p
∼

g∗ ⊗A0
F ,

where
∧p
∼

g∗ denotes the constant sheaf over M with stack the vector space∧p
g∗. Then, by the universal coefficient theorem, we have

Ep,q1,dR(F) ∼=
∧p

g∗ ⊗Hq
F ,

where Hq
F denotes the foliated cohomology (11).

The Lie algebra X(M,F) acts over A∗(M) by the Lie derivative,

(X,α) −→ LXα .

This action is compatible with the exterior derivative and the filtration, so it
defines an action over Hi

F . Since ΓF acts on Hi
F as the identity, we get, by

(15), an action of g on Hi
F . If X1, . . . , Xk is a basis for a realization of g on

M and ω1, . . . , ωk are dual 1-forms, the differential d1 is

(21) d1(η ⊗ [α]) = dgη ⊗ [α] + (−1)p
k∑
j=1

η ∧ ωj ⊗ θj [α] ,

where dg is the differential in
∧

g∗ and θj [α] = [LXjα]. So we have proved
(cf. [15]) that for a g-Lie foliation F there is an isomorphism

Ep,q2,dR(F) ∼= Hp(g, Hq
F ) .

We need a finer result. With the notation introduced in (12), Hq
F is the

cohomology of the complex (A0,q(M), dF ). With the C∞ topology, Im dF is
not always a closed subspace of Ker dF , and the spaces Hq

F are not necessarily
Hausdorff. But to compute the E2 term of the spectral sequence of a Lie
foliation one can use H

q

F , the reduced foliated cohomology, the quotient space
of Hq

F over the closure of its trivial subspace; i.e., to compute the E2-term of
the spectral sequence, one can use E

p,q

1,dR(F), the quotient space of the E1-
term over the closure of 0. This fact was proved in [16]. This result is also
true for the differentiable Alexander-Spanier spectral sequence, with the same
proof, by using the compact operator

s : diffAS
i(M) −→ diffAS

i(M)
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defined in (17). So we get the following expression for the second term of the
de Rham spectral sequence of a Lie foliation:

Proposition 3. For a g-Lie foliation F there is an isomorphism

Ep,q2,dR(F) ∼= Hp(g, H
q

F ) .

We now derive a similar expression for the differentiable Alexander-Spanier
spectral sequence of a Lie foliation. To begin with, we recall a definition by
Hu [12]. Let E be a left G-module. Let (Cp(G,E), δ) be the complex of
homogeneous cochains of G over E. A p-dimensional cochain ϕ ∈ Cp(G,E)
is a map

ϕ : G×
p+1
.̂ . . ×G −→ E

satisfying the following homogeneity condition:

ϕ(gx0, . . . , gxp) = gϕ(x0, . . . , xp) .

We assume that ϕ is smooth. (The same cohomology is obtained if one as-
sumes that ϕ is continuous.) The differential δ is defined by (1). A cochain
ϕ ∈ Cp(G,E) is called locally trivial if there is a neighborhood U of e in G
such that ϕ(x0, . . . , xp) = 0 whenever all x0, . . . , xp are in U . The locally
trivial cochains form a subcomplex of C∗(G,E). Let

(
G∗�(G,E), δ

)
be the

quotient complex. Its cohomology H�(G,E) is, by definition, the reduced
cohomology of G.

Corresponding to the g-action, there is an action of G over Hi
F . The action

can be defined geometrically, by lifting paths of G into M̃ , or algebraically,
as we do in the following proposition.

Proposition 4. Let F be a g-Lie foliation with dense leaves. There exists
an isomorphism

Ep,q2,diff(F) ∼= Hp
�(G,H

q

F ) .

Proof. To compute Hq(M, diffAS
p
F ) one can use of the following resolution

of diffAS
p
F :

diffAS
p
F ⊗A0

M
id⊗dF−−−−→ diffAS

p
F ⊗A

0,1
M

id⊗dF−−−−→ diffAS
p
F ⊗A

0,2
M −−−−→ · · ·

We have
Γ(diffAS

p
F ⊗A

0,q) ∼= diffAS
p
F (M)⊗̂A0,q(M) ,

the complete tensor product of diffAS
p
F (M) and A0,q(M). As A0,q(M) are

nuclear spaces, from the exact sequence

0 → Im dF −→ Ker dF −→ HF → 0

we deduce the isomorphism

E
p,q

1,diff(F) ∼= diffAS
p
F (M)⊗̂Hq

F .
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The d0,q
1 differential defines an action of G over H

q

F , given by

g · [α] = d0,q
1 [α](e, g) .

Finally, as the leaves of F are dense, via the lift of cochains to M̃ , we get

diffAS
p
F (M)⊗̂Hq

F
∼= Cp�(G,H

q

F ) . �

The spectral sequence homomorphism (14) induced by Λ defines, in par-
ticular, a differential complex map

Λ1 : (Cp�(G,H
q

F ) , d1) −→ (
∧p

g∗ ⊗Hq

F , d1) .

Then the G-module structure of H
q

F corresponds, by Λ, to the g-action on
H
q

F .
We need the following result:

Theorem 5. Let E be a G-module. Assume that E is a Hausdorff locally
convex complete topological vector space. There is an isomorphism

Hp
�(G,E) ∼= Hp(g, E) .

If E is finite dimensional (a very unusual property forH
q

F ), this is a theorem
by Świerczkowski [28]. The same proof works in this case; all one needs is
a Poincaré lemma for E-valued forms. We indicate here a slightly different
proof.

Proof. To begin with, we define a double complex

(22) Cp,q = Cp�(G, Aq
∼e

(G,E)) ,

where Aq
∼e

(G,E) is the space of germs at e of de Rham forms on G with values

on E, and Cp�(G, Aq
∼e

(G,E)) is the space of homogeneous cochains of G with

values on Aq
∼e

(G,E), modulo the locally trivial ones. If the vector space (22)

is written as Cp�(G, C∞� (G, Λqg∗ ⊗ E), an element ϕ will be a map

ϕ : G×
p+1
.̂ . . ×G −→ C∞� (G, Λqg∗ ⊗ E)

satisfying

(23) ϕ(gx0, . . . , gxp)(gy) = g · ϕ(x0, . . . , xp)(y) ,

where on the right-hand side we have the G-action on E.
The two differentiation operators d1 and d2 of degree (1, 0) and (0, 1),

respectively, are defined as follows. Let d1 = δ, the usual differentiation as
defined in (1). The operator d2 can be given by

d2(η) = dGη +
k∑
j=1

ωj ∧ θj ◦ η ,
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where dG is the exterior derivative on G, ω1, . . . , ωk is a basis of the left
invariant 1-forms on G, ξ1, . . . , ξk is a basis of g dual to {ωi}, and θj stands
for the action of ξj ∈ g on E. It is straightforward to check the identities
d2

1 = 0 = d2
2 and d1d2 + d2d1 = 0.

The two spectral sequences associated to this double complex, Ip,qr and
IIp,qr , converge to the same graded space and satisfy

Ip,q1 = 0 = IIq,p1 if q 6= 0 .

It will follow that Ip,02
∼= II0,p

2 , which is the statement of the proposition. In
fact, the space Ip,q1 may be identified with Hq(Cp,?, d2). Then the Poincaré
lemma implies Ip,q1 = 0, q > 0, and Ip,01

∼= Cp�(G, E). So

(24) Ip,02
∼= Hp

�(G,E) .

On the other hand, IIp,q1
∼= Hp(C?,q, d1). The complex (C?,q, d1) admits the

homotopy h : Cp,q → Cp−1,q defined by

(25) h(ϕ)(x0, . . . , xp−1)(y) = ϕ(y, x0, . . . , xp−1)(y) .

For p > 0, hδϕ + δhϕ = ϕ, and IIp,q1 = 0. For p = 0, hδϕ = ϕ − c(ϕ), with
the constant chain c(ϕ) defined by

c(ϕ)(x)(y) = y · [ϕ(e)(e)] .

If we introduce the transposed double complex tC, as usual, to compute IIp,qr ,
we get IIp,01

∼=
∧p

g⊗ E and

�(26) IIp,02
∼= Hp(g, E) .

Finally, Theorem 5 and Propositions 3 and 4 prove the following result:

Proposition 6. Let F be a Lie foliation. There exists an isomorphism

E2,diff(F) ∼= E2,dR(F) .

We are now interested in getting an explicit isomorphism. To do that, we
recall first the definition of Riemannian foliation.

A foliation can be defined by local submersions on some open subsets of
R
k. We can assume that these subsets are open balls with center the origin.

For a Riemannian foliation there is a Riemannian metric on M , a bundle-like
metric (cf. [21]), such that these submersions are Riemannian submersions.

For Riemannian foliations one can construct a map

Φ: ApF −→ diffAS
p
F

between differential sheaves that defines a morphism of spectral sequences and
which will be an inverse of the homomorphism Λ, defined in (14), from E2

onwards.
Let us fix a bundle-like metric on M . Let f : U → O be a Riemannian

submersion defining F in U . If η is a basic p-form, then η |U= f∗γ, with



994 XOSÉ M. MASA

γ ∈ Ap(O). Let x ∈ U and satisfying χ
U

: U → R be a smooth function
with support in U and satisfying χ

U
≡ 1 on a neighborhood of x. Given

η ∈ ApF (U), we define Φ(η) by

Φ(η)(x0, . . . , xp) = χ
U

(x0) · · ·χ
U

(xp)
∫

∆[x0,...,xp]

γ ,

where x0, . . . , xp are the images of x0, . . . , xp in Rk and ∆[x0, . . . , xp] is the
simplex defined by these points. The germ of Φ(η) at x does not depend
on the function χ

U
either on the open neighborhood U , and so we have a

well defined map between the sheaves. To check that it is a homomorphism
of complexes one uses the Stokes’ theorem for chains and the fact that the
boundary of ∆[x0, . . . , xp] can be expressed as follows:

∂∆[x0, . . . , xp] =
p∑
j=0

(−1)j∆[x0, . . . , xj−1, xj+1, . . . , xp] .

Finally, we have
Λ ◦ Φ = idAF .

The computation can be done in O ⊂ Rk and it is the same as in [8].
If S∗F denotes the kernel of Λ, we have a split exact sequence

0 −→ SpF −→ diffAS
p
F

Λ−→ ApF −→ 0 .

Thus

diffAS
p
F
∼= ApF ⊕ S

p
F

and
Ep,q2,diff(F) ∼= Ep,q2,dR(F)⊕ Ep,q2 (SF ) ,

where Ep,q2 (SF ) is the spectral sequence associated to the exact sequence of
sheaves (S∗F , δ), which converge to 0.

As a consequence, we deduce that the isomorphism in Proposition 6 be-
tween Ep,q2,diff(F) and Ep,q2,dR(F) is induced by Λ.

5. Riemannian foliations

To prove the next theorem, we will use the description of the structure of a
Riemannian foliation given by Molino [18] to reduce the question to the case,
already proved, of Lie foliations with dense leaves. To begin with, we consider
a particular type of Riemannian foliation.

Proposition 7. Let F0 be a Lie foliation on a closed manifold N , let
M be a bundle of fiber N with structure group Aut(N,F0), and let F be the
foliation induced on M . For this foliation F the homomorphisms J and Λ are
quasi-isomorphisms.
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Proof. To prove the proposition we will use the following well known the-
orem (see [5, Theorem IV.2.2.]):

Theorem. Let h : L? → M? be a homomorphism of differential sheaves
on a topological space B and assume that both L? and M? are bounded below.
Also assume that the induced map h∗ : Hq(L∗)→ Hq(M∗) of derived sheaves
is an isomorphism for all q and that

H∗(Hq(B;L∗)) = 0 = H∗(Hq(B;M∗))
for q > 0. Then the induced map Hn(L∗(B)) → Hn(M∗(B)) is an isomor-
phism for all n.

Let p : M → B be the bundle of fiber N . To prove that Λ is a quasi-
isomorphism, for j ≥ 0 fixed, we consider the differential sheaves defined as
follows: for each open subset U of B, set

L∗j (U) = Hj(p−1U, diffAS
∗
F | p−1U)

and
M∗j (U) = Hj(p−1U, A∗F | p−1U)

The sheaf L0
0 is soft, i.e., every section defined on a closed set can be

extended to B. Then all sheaves L∗j are soft, as they are modules over L0
0.

The same holds for M∗j . Since these sheaves are soft, they are acyclic, and
thus

Hq(B,L∗j ) = 0 = Hq(B,M∗j )
for q > 0.

We prove now that the homomorphism Λ∗ : H(L∗)→ H(M∗) induced by Λ
is an isomorphism. In fact, as a consequence of the theorem for Lie foliations,
this homomorphism will be an isomorphism over each stack of the sheaves.

We compute the stack of H∗(L∗j ) at a point x ∈ B. Let U be a contractible
open subset of B such that p−1(U) ∼= U ×N .
N and p−1(U) are homotopically equivalent, by foliated 2-homotopies.

Then

(27) Ep,q2,diff(Lp−1(U)) ∼= Ep,q2,diff(F0) ,

and, finally,

(28) Hp(L∗q)x = Ep,q2,diff(F0) .

Analogously, Hp(M∗q)x = Ep,q2,dR(F0), and the proof that Λ is a quasi-isomor-
phism is completed.

The proof for J is similar. �

Let F be a Riemannian foliation on a compact manifold M . Let Q be the
principal bundle of transverse frames of F . Molino defined a lifting foliation
F̃ on Q, with the same dimension as F . For such a foliation, the closures of
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the leaves are the fibers of a locally trivial fibration, the basic fibration. The
foliation induced in each fiber is a Lie foliation, so we are under the hypotheses
of Proposition 7.

Theorem 8. For a Riemannian foliation F on a compact manifold M
the homomorphism J and Λ are quasi-isomorphisms.

Proof. Let F be a Riemannian foliation on a compact manifold. We as-
sume, for simplicity, that it is transversally oriented. Let Q be the SO(k)-
principal bundle of transverse frames of F equipped with the lifting foliation
F̃ . We use the notation E2(F) for the de Rham and the continuous or differ-
entiable Alexander-Spanier spectral sequences of F . Associated to the action
of SO(k) on Q there are, for each q, spectral sequences

Er,s2 (q) = Es,q2 (F)⊗Hr(SO(k),R) ⇒ Er+s,q2 (F̃) .

Now, J and Λ induce homomorphisms between the spectral sequences E2(q),
corresponding to the differentiable Alexander-Spanier and to the continuous
Alexander-Spanier and de Rham cohomologies, respectively. These homomor-
phisms are isomorphisms over Es,q2 (F̃) and over Hr(SO(k)). Now the result
follows by the Zeeman’s comparison theorem. �

Corollary 9. The de Rham spectral sequence Er,dR(F) of a Riemannian
foliation is a topological invariant for r ≥ 2.

For the basic cohomology, Ep,02,dR(F), this result was proved by El Kacimi
and Nicolau [9]. In the general case, it was also proven in [1], by a different
method.

For an arbitrary foliation Corollary 9 is not true.

Example 4. We consider foliations of codimension 1, without compact
leaves. There are well known examples of such foliations in the torus that
are topologically equivalent, but have different de Rham spectral sequences
(cf. [22], [2]). All these foliations, if they are transversally orientable, can be
defined by a nonsingular closed 1-form, but to do that it is sometimes neces-
sary to change the smooth structure of M . (This is a well known theorem by
Sacksteder; cf. [6].) This change does not modify the continuous cohomology,
but it certainly changes the de Rham spectral sequence: E1,0

2,dR(F) is isomor-
phic to R, in the new smooth structure, and vanishes in the old one. But for
a codimension one foliation we always have

E0,q
r,diff(F) ∼= E0,q

r,dR(F)

for r ≥ 1, and
E1,0
r,diff(F) ∼= E1,0

r,dR(F) ,
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for r ≥ 2. In fact, for codimension one, the sequence

0 −→ S∗F −→ AS∗F −→ A∗F −→ 0

always splits. So these foliations provide examples, where continuous and
differentiable Alexander-Spanier spectral sequences are different.
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