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THE DIMENSIONS OF LIMITS OF VERTEX
REPLACEMENT RULES

MICHELLE PREVITE

Abstract. Given an initial graph G, one may apply a rule R to G
which replaces certain vertices of G with other graphs called replacement
graphs to obtain a new graph R(G). By iterating this procedure on each
resulting graph, a sequence of graphs {Rn(G)} is obtained. When the
graphs in this sequence are normalized to have diameter one, questions
of convergence can be investigated. Sufficient conditions for convergence
in the Gromov-Hausdorff metric were given by J. Previte, M. Previte,
and M. Vanderschoot for such normalized sequences of graphs when the
replacement rule R has more than one replacement graph. M. Previte
and H.S. Yang showed that under these conditions, the limits of such se-
quences have topological dimension one. In this paper, we compute the
box and Hausdorff dimensions of limit spaces of normalized sequences
of iterated vertex replacements when there is more than one replace-
ment graph. Since the limit spaces have topological dimension one and
typically have Hausdorff (and box) dimension greater than one, they
are fractals. Finally, we give examples of vertex replacement rules that
yield fractals.

1. Introduction

The notion of a vertex replacement rule was motivated by studying geodesic
flows on two-dimensional singular spaces of nonpositive curvature (see [1]).
The work in this paper is also related to a class of iterative systems, introduced
by Aristid Lindenmayer (see [12] and [13]), which is used to model the growth
of plants and simple multicellular organisms. Lindenmayer systems were later
used in the areas of data and image compression. Since vertex replacement
rules are more natural and geometric, they promise applications in the same
fields that Lindenmayer impacted.

A vertex replacement rule R is a rule for substituting copies of finite graphs
(called replacement graphs) for certain vertices in a given graph G. The result
is a new graph R(G). Iterating R produces a sequence of graphs {Rn(G)}.
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By letting (Rn(G), 1) be the metric space Rn(G) normalized to have diameter
1, the sequence of the normalized graphs can be studied.

Vertex replacement rules with one replacement graph were examined in
[8] and [10]. Necessary and sufficient conditions were found for the sequence
{(Rn(G), 1)} to converge in the Gromov-Hausdorff metric. Since the limit
spaces have topological dimension one and, except for special cases, Hausdorff
(and box) dimension greater than one, they are fractals.

Vertex replacement rules with at least two replacement graphs were studied
in [9] and [11]. Sufficient conditions were found for {(Rn(G), 1)} to converge
in the Gromov-Hausdorff metric. As in the case when the replacement rule has
only one replacement graph, these limit spaces also have topological dimension
one. We examine the box and Hausdorff dimensions of limits of such vertex
replacement rules. The key results (Theorems 4.3 and 5.4) give formulas for
each dimension. The final section provides examples of fractals which are the
limits of replacement rules with more than one replacement graph.

2. Vertex replacement rules

In this section we define and provide some basic examples of vertex replace-
ments. Throughout this paper we will assume that all graphs are connected,
finite, unit metric graphs, i.e., each graph is a metric space and every edge
has length one. In particular, the distance between two points in a graph will
be measured by the shortest path in the graph between the two points.

Definition 2.1. A graph H with a designated set of vertices {v1, . . . , vk}
is called symmetric about {v1, . . . , vk} if every permutation of {v1, . . . , vk} can
be realized by an isometry of H. The vertices in such a designated set are
called boundary vertices of H and are denoted by ∂H.

Definition 2.2. A vertex replacement rule R consists of a finite list of
finite graphs (called replacement graphs) {H1, . . . ,Hp}, each with a (symmet-
ric) set ∂Hi of boundary vertices, so that |∂Hi| 6= |∂Hj | for i 6= j, where | · |
denotes the cardinality of a set.

Let G be a graph and let R be a vertex replacement rule given by the
replacement graphs H1, . . . ,Hp. Recall that the degree of a vertex v in G,
denoted deg(v), is the number of edges in G adjacent to v.

Definition 2.3. A vertex v in G is called replaceable if deg(v) = |∂Hi|
for some replacement graph Hi in the replacement rule.

The replacement rule R acts on G by substituting each replaceable ver-
tex in G with its corresponding replacement graph so that the deg(v) edges
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previously attached to v in G are attached to the |∂Hi| vertices of Hi. Since
|∂Hi| 6= |∂Hj | for i 6= j, each replaceable vertex has a unique corresponding
replacement graph. Also, since each replacement graph Hi is symmetric about
∂Hi, it is irrelevant how the edges previously adjacent to v are attached to
Hi. Thus, vertex replacement is a well defined procedure.

For example, we may define a vertex replacement rule R by the replace-
ment graphs H1 and H2 depicted in Figure 1. The boundary vertices of the

H1 H2

Figure 1. A replacement rule R.

replacement graphs are shown with circles. Note that each replacement graph
is symmetric about its set of boundary vertices. Let G be as depicted in
Figure 2. Vertices w1, w2, and w3 are replaceable by H1, and vertices v1, v2,
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Figure 2. A graph G.

and v3 are replaceable by H2, but vertices x1, x2, and x3 are not replaceable.
Figure 3 shows R(G).

We extend the idea of a replaceable vertex to include the vertices of the
replacement graphs themselves, but only after the replacement graphs have
replaced some vertices. That is, one should not treat a replacement graph
Hi as an initial graph G, but always view it as having already replaced some
vertex. Hence we view each boundary vertex as having another edge attached.
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Figure 3. The graph R(G).

Definition 2.4. A boundary vertex v is called replaceable if deg(v) =
|∂Hi| − 1 for some replacement graph Hi in the replacement rule.

Notice that for the replacement rule in Figure 1, the boundary vertices
of H1 are replaceable by H2 (each such vertex will have 3 edges adjacent
after being inserted into a graph G) while the remaining vertices of H1 are
replaceable by H1. Likewise, the boundary vertices of H2 are replaceable
by H2 while the remaining vertices of H2 are replaceable by H1. Thus the
replacement rule R may be iterated to create a sequence of graphs {Rn(G)}.
When each graph in this sequence is scaled to have diameter one, we obtain
the sequence {(Rn(G), 1)} which, according to Theorem 3.3, converges in the
Gromov-Hausdorff metric. Figure 4 shows the next two graphs in the sequence
and the limit space of this sequence.

We now select some notation. There exists a pointwise map π : R(G) → G
which undoes replacement by crushing the inserted replacement graphs to the
vertices they replaced. In general, for any set F in G, let R(F ) be π−1(F ).
If F ⊂ G contains no replaceable vertices, then Rn(F ) can be identified with
F and we label Rn(F ) as F ⊂ Rn(G). Similarly, if z ∈ G is not replaceable,
labelRn(z) as z ∈ Rn(G). Observe that the inverse map π is only well defined
when one is also given a specific replacement rule R : G → R(G). Otherwise,
given a graph F , there might be two different graphs G1 and G2 such that
R(G1) = F = R(G2), and thus, two different inverse maps π1 : F → G1

and π2 : F → G2. For a finite graph F , let Ni(F ) denote the number of
vertices in F which are replaceable by Hi, and let N(F ) be the total number
of replaceable vertices in F . That is, for a replacement rule with p replacement
graphs, N(F ) =

∑p
i=1 Ni(F ). For a replacement graph Hi, we define Nj(Hi)

to be the number of vertices in Hi replaceable by Hj when one regards Hi as
a subset of R(G). That is, Nj(Hi) is the number of vertices v in Hi such that
deg(v) = |∂Hj | − 1 if v is a boundary vertex or deg(v) = |∂Hj | if v is not a
boundary vertex.

Let Hi be a replacement graph in a replacement rule R and let vi be
a vertex in a graph G which is replaceable by Hi. Define the set ∂Rn(vi)
to be all vertices w ∈ Rn(vi) that are adjacent to one of the deg(vi) edges
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Figure 4. (R2(G), 1), (R3(G), 1), and the limit of {(Rn(G), 1)}.

outside of Rn(vi) that were adjacent to vi ∈ G. So ∂Rn(vi) is the set of
possible vertices through which a path in Rn(G) must pass when entering
or exiting Rn(vi) ⊂ Rn(G). Note that |∂Rn(vi)| = |∂Hi|. For example, if
R is the replacement rule given in Figure 1 and w3 is as in Figure 2, then
Figure 5 depicts the two vertices in ∂R3(w3) with circles. To determine the
growth of diam(Rn(G)) (and the growth in complexity of (Rn(G), 1)), we
need to measure the distance between points in ∂Rn(vi). Hence we define the
function

ai(n) = distRn(vi)(u, u′),
where u, u′ ∈ ∂Rn(vi) for u 6= u′. We also define the function

bi(n) = sup
z∈Rn(vi)

{distRn(vi)(u, z) | u ∈ ∂Rn(vi)}.

By the symmetry of each Hi about ∂Hi, the above definitions are independent
of the choices of u and u′ in ∂Rn(vi). Clearly ai(n) ≤ bi(n). Let

amax(n) = max
i=1,...,p

ai(n), amin(n) = min
i=1,...,p

ai(n),

bmax(n) = max
i=1,...,p

bi(n), bmin(n) = min
i=1,...,p

bi(n).

.
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Figure 5. The graph R3(w3).

Definition 2.5. A path σ in a replacement graph is called a simple bound-
ary connecting path if σ is a simple path with boundary vertices for endpoints
and no boundary vertices on its interior.

For each n, there is a path in Rn(vi) that realizes ai(n) and projects via
πn−1 to a simple boundary connecting path σi(n) in Hi. It is extremely dif-
ficult to combinatorially determine the σi(n) given an arbitrary replacement
rule R since, in general, σi(n) 6= σi(m) for n 6= m. Hence, we restrict to
simple replacement rules.

For a simple path γ, let L(γ) denote the length of γ.

Definition 2.6. A replacement rule R given by the graphs H1, . . . ,Hp

is simple if for all i = 1, . . . , p and any pair of simple boundary connecting
paths σ1 and σ2 in Hi, we have L(σ1) = L(σ2) and Nj(σ1) = Nj(σ2) for all
j = 1, . . . , p.

Definition 2.7. Let R be a replacement rule given by the graphs H1,
. . . , Hp and let {σ1, . . . , σp} be a set of simple boundary connecting paths,
where σi ⊂ Hi for all i = 1, . . . , p. We call the matrix

A =

N1(σ1) · · · Np(σ1)
...

. . .
...

N1(σp) · · · Np(σp)


a path matrix of R. If every path matrix A of R is primitive, i.e., Ak has only
positive entries for some power k, then R is called primitive.

In the case where a replacement graph Hi has only one boundary ver-
tex (and hence it has no path between distinct boundary vertices), we have
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L(σi) = 0 and the row N1(σi), . . . , Np(σi) in the path matrix A above is either
a row of zeros (when the boundary vertex of Hi is nonreplaceable) or else a
row in which all but the jth entry is a zero (when the boundary vertex of Hi

is replaceable by Hj).
The replacement rule R in Figure 1 is simple and primitive. So if σ1 and

σ2 are simple boundary connecting paths in H1 and H2, respectively, then
the path matrix of R is

A =
[
N1(σ1) N2(σ1)
N1(σ2) N2(σ2)

]
=

[
1 2
1 2

]
.

Of course not every replacement rule is simple and primitive. Figure 6 shows
an example of a replacement rule which is simple but not primitive since its
path matrix is [ 0 2

2 0 ]. The replacement rule in Figure 7 is not simple because
there are two simple boundary connecting paths in H1 which give rise to two
different path matrices: [ 1 2

1 2 ] comes from taking the upper route between the
boundary vertices of H1 and [ 0 3

1 2 ] comes from taking the lower route between
the boundary vertices of H1.

H1

H2

Figure 6. A replacement rule which is simple but not primitive.

H1

H2

Figure 7. A replacement rule which is not simple.
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Another important matrix associated with a replacement rule R is called
the replaceable vertex matrix of R. This matrix allows us to compute the
total number of replaceable vertices in Rn(G) for any initial graph G.

Definition 2.8. Let R be a replacement rule given by the replacement
graphs H1, . . . ,Hp. The replaceable vertex matrix of R is defined as

M =

N1(H1) · · · Np(H1)
...

. . .
...

N1(Hp) · · · Np(Hp)

 .

3. Convergence results

Before stating the convergence results, let us recall some facts about the
Gromov-Hausdorff metric. For any metric space X, distX will denote the
metric on X. Let Z be a metric space. For C ⊂ Z and ε > 0, let Cε = {z ∈
Z : distZ(z, C) < ε}.

Definition 3.1. The Hausdorff distance between two nonempty compact
subsets A and B of a metric space Z is defined by

distHaus
Z (A,B) = inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}.

The Hausdorff distance defines a metric on the set of all compact subsets
of Z.

We are now able to define the Gromov-Hausdorff distance. Informally,
when measuring the Gromov-Hausdorff distance between spaces X and X ′,
we place X and X ′ into some space in such a way that they are as close
together as possible and then measure the resulting Hausdorff distance. Let
S denote the collection of all isometry classes of compact metric spaces.

Definition 3.2. The Gromov-Hausdorff distance between two compact
metric spaces X and X ′ is defined by

distGH
S (X, X ′) = inf

Z∈S
I,J

{ε > 0 : distHaus
Z (I(X), J(X ′)) < ε},

where I and J are isometric embeddings of X and X ′ into Z, respectively.

The space (S,distGH
S ) is a complete metric space. Moreover, distGH

S (X, X ′)
= 0 if and only if X is isometric to X ′. (See [5].)

For a finite graph G, let (Rn(G), 1) be the metric space Rn(G) normalized
to have diameter 1, i.e., every edge in (Rn(G), 1) has length 1/ diam(Rn(G)).

Theorem 3.3 ([9]). Let H1, . . . ,Hp define a simple, primitive vertex re-
placement rule R with p ≥ 2 and let G be a finite graph with at least one
replaceable vertex. Then the normalized sequence {(Rn(G), 1)} converges in
the Gromov-Hausdorff metric.
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It should be noted that Theorem 3.3 extends to primitive replacement rules
which are eventually simple (see [9]), but to streamline the arguments, this
paper will discuss only simple replacement rules.

We now define convenient sets of points in a graph G which we will use
to construct nets for (Rn(G), 1). The nets will be used in the proofs of the
formulas for both the box and Hausdorff dimensions. Recall the definition of
an ε-net.

Definition 3.4. Let ε > 0. A finite subset S of a metric space X is an
ε−net of X if X = Sε := {x ∈ X : distX(x, S) < ε}.

For any finite graph G, define ∆0(G) to be the set of all midpoints of edges
that are adjacent to replaceable vertices in G. Clearly x ∈ ∆0(G) is not a
vertex, and hence not replaceable. So for n ≥ 0, we can identify x ∈ ∆0(G) ⊂
G with Rn(x) ∈ Rn(G). For notational purposes, we write Rn(x) as x(n) and
Rn(∆0(G)) as ∆n(G). Note that |∆n(G)| = |∆0(G)| for all n. For example, if
the replacement rule R is as in Figure 1 and initial graph G is as in Figure 2,
then Figure 8 points out the elements of ∆0(G) ⊂ (G, 1),∆1(G) ⊂ (R(G), 1)
and ∆2(G) ⊂ (R2(G), 1) with arrows.

(G, 1)
(R(G), 1)

(R2(G), 1)

Figure 8. The elements of ∆0(G), ∆1(G), and ∆2(G)
pointed out with arrows.
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Figure 9 points out the elements of ∆0(R(G)) ⊂ (R(G), 1). Notice that
∆0(R(G)) is a finer net of (R(G), 1) than ∆1(G) is.

Figure 9. The elements of ∆0(R(G)) are pointed out in (R(G), 1).

We conclude this section with two lemmas required to prove the formulas
for the dimensions of limits of vertex replacements. The first lemma follows
from Perron-Frobenius theory. See [2] for details.

Lemma 3.5. Let A be a nonnegative primitive matrix and let r be the
spectral radius of A. Then limn→∞(A/r)n is a positive matrix.

The next lemma is a result from [9]. It says that the ai’s and bi’s grow at
the same rate.

Lemma 3.6. If the replacement rule R is simple and primitive and ρ is
the spectral radius of the path matrix of R, then there exist positive constants
K̃, κ1, and κ2 such that

κ1 ≤
ai(n)
bj(n)

≤ κ2,(1)

κ1

ρm
≤ bi(n)

bj(n + m)
≤ κ2

ρm
,(2)

κ1

ρm
≤ ai(n)

bj(n + m)
≤ κ2

ρm
(3)

for all i, j = 1, . . . , p and for all n > K̃.
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4. The box dimension of limits of vertex replacements

Before calculating the box dimension of a limit of vertex replacements,
recall the definition of the box dimension of a compact metric space.

Definition 4.1. For any compact metric space X, define Cov(X, ε) to be
the smallest number of closed balls of radius ε which cover X.

Definition 4.2. The box dimension (or box-counting dimension) of a
compact metric space X is defined to be

dimBox(X) = lim sup
ε→0

ln(Cov(X, ε))
− ln ε

.

Theorem 4.3. Let R be a simple primitive replacement rule and suppose
that the sequence {(Rn(G), 1)} converges in the Gromov-Hausdorff metric to
the metric space X. Then

dimBox(X) =
ln r

ln ρ
,

where r and ρ are the spectral radii of the replaceable vertex and path matrices
of R.

Proof. We first show that dimBox(X) ≤ ln r/ ln ρ. Let ε > 0 be given.
Choose m so that

(4) κ2/ρm < ε ≤ κ2/ρm−1,

where κ2 is the positive constant from Lemma 3.6. The idea of the proof is to
construct an ε-net of (Rn+m(G), 1) which for large n yields a corresponding
2ε-net D in X. Thus, any element of a cover of X by 4ε-balls must contain at
least one element of D. Since the number of elements in D is given in terms of
Mm, where M is the replaceable vertex matrix of R, the result follows from
a simple computation.

We now show that the set ∆n(Rm(G)) forms an ε-net of (Rn+m(G), 1)
for all sufficiently large n. Recall bmax(n) = maxi bi(n). For each x(n) ∈
∆n(Rm(G)), consider the ball B(x(n), bmax(n)+1) of radius bmax(n)+1 cen-
tered at x(n) in the (unscaled) graph Rm+n(G). Let V denote the set of
all replaceable vertices in Rm(G). Since 2bmax(n) ≥ diam(Rn(v)) for any
replaceable vertex v, the union of these balls covers Rn(V ) for all n ≥ 1.
Moreover, since Rn+m(G) \ Rn(V ) contains no replaceable vertices for all
n and diam(Rn+m(G)) → ∞ as n → ∞, for large enough n the balls
B(xm(n), bmax(n) + 1) form a cover of all of Rn+m(G).

Now in order to prove that ∆n(Rm(G)) forms an ε-net of the normalized
graph (Rn+m(G), 1), it remains to show that the scaled balls
B(x(n), (bmax(n) + 1)/ diam(Rn+m(G))) have positive radius less than ε. Since
R is primitive, we may assume without loss of generality that the initial
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graph G contains at least two replaceable vertices of each type. Therefore,
2bmax(n + m) ≤ diam(Rn+m(G)). Hence,

bmax(n) + 1
diam(Rn+m(G))

≤ bmax(n) + 1
2bmax(n + m)

.

Therefore, by Lemma 3.6 and inequality (4), we have

0 <
bmax(n) + 1

2bmax(n + m)
≤ κ2

ρm
< ε

for all sufficiently large n. Thus, the set ∆n(Rm(G)) forms an ε-net of
(Rn+m(G), 1) for all sufficiently large n.

For large enough n, distGH
S (X, (Rn+m(G), 1)) ≤ ε. Thus, by definition

of the Gromov-Hausdorff metric, the set of points ∆n(Rm(G)) ⊂ Rn+m(G)
produces a corresponding 2ε-net D in X. So any element of a cover of X
by 4ε-balls must contain at least one element of D. Therefore, Cov(X, 4ε) ≤
|D| = |∆n(Rm(G))|.

Let M be the replaceable vertex matrix ofR. Let vG = [N1(G), . . . , Np(G)]
and vR = [|∂H1|, . . . , |∂Hp|]. The number of points in ∆n(Rm(G)) is at most

|∆n(Rm(G))| ≤ vG ·MmvT
R.

Hence, Cov(X, 4ε) ≤ vG ·MmvT
R. So

ln(Cov(X, 4ε))
− ln(4ε)

≤ ln(vG ·MmvT
R)

ln
(

ρm−1

4κ2

) .

By inequality (4), when ε → 0, then m → ∞. From Lemma 3.5, we have
that limm→∞(M/r)m is a positive matrix. So

dimBox(X) = lim sup
ε→0

ln(Cov(X, 4ε))
− ln(4ε)

≤ lim sup
m→∞

ln
(
vG · (M/r)mvT

R
)

+ ln (rm)
ln (ρm)− ln(4κ2ρ)

=
ln r

ln ρ
.

Next, we prove the reverse inequality dimBox(X) ≥ ln r/ ln ρ. Let ε > 0 be
given. Fix m so that

(5)
κ1

N(G)ρm
≥ ε >

κ1

N(G)ρm+1
,

where κ1 is as in Lemma 3.6. The idea of the proof is to create an ε/2-
separated set Sn in (Rn+m(G), 1) which for large n yields a corresponding
ε/4-separated set S in X. Thus, any element of a cover of X by ε/8-balls can
contain at most one element of S. Since the number of elements in S is given
in terms of Mm, where M is the replaceable vertex matrix of R, the result
follows from a simple computation.

Let V be the set of all replaceable vertices in Rm(G). For each vertex
w ∈ V , let wn be the midpoint of a path in Rn(w) ⊂ Rn+m(G) that realizes
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ai(n), where i is such that w is replaceable by Hi. Let Sn ⊂ Rn+m(G) be the
set of all such points.

We now show that the elements of Sn are ε/2-separated in (Rn+m(G), 1).
Let B(wn, ai(n)/2) be the closed ball of radius ai(n)/2 centered at wn. By
construction, the balls B(wn, ai(n)/2) are disjoint. Recall from Lemma 3.6
that for large enough n, there are positive constants κ1 and κ2 so that

(6)
κ2

ρm
≥ amin(n)

bmax(n + m)
≥ κ1

ρm
.

Since diam(Rn+m(G)) ≤ N(G)bmax(n + m) + diam(G), for large enough n
inequalities (5) and (6) imply that

amin(n)
diam(Rn+m(G))

≥ amin(n)
N(G)bmax(n + m) + diam(G)

≥ κ1

2N(G)ρm
≥ ε/2.

Hence, the scaled balls B(wn, ai(n)/2) in (Rn+m(G), 1) have radius at least
ε/4. So for large n, the points in Sn are more than ε/2-separated in
(Rn+m(G), 1).

Choose n large enough so that distGH
S (X, (Rn+m(G), 1)) < ε/8. Then for

each wn in Sn, one can choose an associated point x(wn) in X and create an
ε/4-separated set S in X. Thus, any element of a cover of X by ε/8-balls can
contain at most one element of S. So the number of balls in such a cover is at
least |S| = |V | = vG ·Mm1, where M is the replaceable vertex matrix of R,
1 is the vector in Rp consisting solely of ones, and vG = [N1(G), . . . , Np(G)].

Hence,
Cov(X, ε/8) ≥ vG ·Mm1

and
ln (Cov(X, ε/8))

ln(8/ε)
≥ ln (vG ·Mm1)

ln (8N(G)ρm+1/κ1)
.

By inequality (5), as ε → 0, we have m →∞. So by Lemma 3.5,

dimBox(X) = lim sup
ε→0

ln(Cov(X, ε))
− ln(ε)

≥ lim sup
m→∞

ln (vG · (M/r)m1) + ln (rm)
ln (8N(G)ρ/κ1) + ln (ρm)

=
ln r

ln ρ
.

Thus, dimBox(X) = ln r/ ln ρ, where r and ρ are the spectral radii of the
replaceable vertex and path matrices of R. �

5. The Hausdorff dimension of limits of vertex replacements

Before calculating the Hausdorff dimension of the limits of vertex replace-
ments, let us recall the definition of the Hausdorff dimension of a metric space.
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We say a cover U of a metric space X is a δ-cover if 0 < diam(U) ≤ δ for all
U ∈ U . Let s be a non-negative number. For δ > 0, define

Hs
δ(X) = inf

∞∑
i=1

(diam Ui)s,

where the infimum is over all countable δ-covers of X. Let

Hs(X) = lim
δ→0

Hs
δ(X) = sup

δ>0
Hs

δ(X).

Definition 5.1. The Hausdorff dimension of a metric space X, denoted
by dimH(X), is the unique s′ such that Hs(X) = ∞ for 0 ≤ s < s′ and
Hs(X) = 0 for s > s′.

It follows directly from the definitions (see [4]) that for any X,

dimH(X) ≤ dimBox(X).

The above inequality gives:

Corollary 5.2. If R is a simple primitive replacement rule and X is the
limit space of a sequence (Rn(G), 1), then dimH(X) ≤ ln r/ ln ρ.

We calculate the Hausdorff dimension of the limit space X of a sequence
{(Rn(G), 1)} in the case when every replacement graph in the simple primitive
replacement rule R has replaceable boundary vertices. When the boundary
vertices of the replacement graphs are replaceable, then Lemma 5.3 shows
that the function Q defined below remains constant under replacement.

For any edge e and any replaceable vertex v in any finite graph G, let
Q(e, v) be the number of distinct edges adjacent to v which can be connected
to e by a nonreplaceable path (containing no interior replaceable vertices).
Let Q(e) =

∑
v∈V (G) Q(e, v), where V (G) is the set of replaceable vertices in

G.
To illustrate how Q(e) is computed, consider the replacement rule given

by the graphs H1 and H2 depicted in Figure 10. Notice that the boundary
vertices of the replacement graphs are not replaceable. Figure 11 shows an
edge e in (G, 1) and the corresponding edges in (R(G), 1), (R2(G), 1), and
(R3(G), 1) (also denoted by e). For any replaceable vertex v in Rn(G), we
have that Q(e, v) is either 1 or 0, depending upon where v is located inRn(G).
So Q(e) = 2n, where e is the edge depicted in Rn(G).

If the boundary vertices of every replacement graph Hi are replaceable
(i.e., have degree |∂Hj |−1 for some j), then we have that Q(R(e)) = Q(e) for
R(e) ⊂ R(G). Let Q(G) = maxe⊂E(G) Q(e), where E(G) is the set of edges
in G. Thus we have the following:
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H H1 2

Figure 10. A replacement rule R = {H1,H2}.

e

e

e
e

Figure 11. (G, 1), (R(G), 1), (R2(G), 1), and (R3(G), 1).

Lemma 5.3. Let {H1, . . . ,Hp} define a simple primitive vertex replace-
ment rule R. Suppose that the boundary vertices of each replacement graph
of R are replaceable. Then for all n ≥ 0, we have Q(Rn(G)) = Q(R(G)).

Theorem 5.4. Let {H1, . . . ,Hp} define a simple primitive vertex replace-
ment rule R. Suppose that the boundary vertices of each replacement graph
of R are replaceable and that G is a graph containing replaceable vertices
with (Rn(G), 1) → X in the Gromov-Hausdorff metric as n → ∞. Then
dimH(X) = ln r/ ln ρ.

Proof. By Corollary 5.2, it suffices to show that dimH(X) ≥ ln r/ ln ρ. We
will show that for s = ln r/ ln ρ, there exists a positive constant K such that
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for all δ > 0,

(7) Hs
δ(X) = inf

∑
U∈U

(diam U)s ≥ K > 0,

where the infimum is over all δ-covers U of X. By showing that Hs
δ(X) is

bounded away from 0 by a positive constant which is independent of δ, we
obtain that Hs(X) = supδ>0Hs

δ(X) is bounded away from 0. Once we know
that Hs(X) 6= 0, then by definition of the Hausdorff dimension, dimH(X) ≥
s = ln r/ ln ρ, and we are done.

Consider a δ-cover U of X. Since U may not be open, create an open over Ũ
of X as follows: for each U ∈ U , define Ũ to be all points in X which are less
than diam(U) away from a point in U . Then clearly 3 diam(U) ≥ diam(Ũ).
Thus

(8)
∑
U∈U

(diam U)s ≥ 1
3s

∑
U∈eU

(diam Ũ)s.

Since X is compact, we may assume that Ũ is a finite cover.
For each Ũ` ∈ Ũ , choose m` so that

(9) 1/ρm` > diam(Ũ`) > 1/ρm`+2.

By Lemma 3.6, for large enough n, there are positive constants κ1 and κ2 so
that

(10)
κ2

ρm
>

ai(n−m)
bj(n)

>
κ1

ρm

for all i, j = 1, . . . , p. Furthermore, since (Rn(G), 1) → X, we may also fix
n so that the open cover Ũ has an associated open cover {V`} of (Rn(G), 1)
satisfying

(11) 1/ρm` ≥ diam(V`) ≥ 1/ρm`+2.

Hence

(diam V`)ln r/ ln ρ ≥
(

1
ρm`+2

)ln r/ ln ρ

= eln[ρ−(m`+2)ln r/ ln ρ](12)

=
1

rm`+2
=

rn−m`

rn+2
.

Thus

(13)
∑

`

(diam V`)ln r/ ln ρ ≥ 1
rn+2

∑
`

rn−m` .

Since {V`} is a cover of (Rn(G), 1), the sum of the maximum number
of replaceable vertices in the V`’s must be bounded below by the number of
replaceable vertices inRn(G). We will find this sum and state it in terms of the
right hand side of inequality (13) to get a lower bound for

∑
`(diam V`)ln r/ ln ρ
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which is independent of m`. This lower bound will then yield a lower bound
for

∑
U∈U (diam U)ln r/ ln ρ which is independent of the δ-cover U .

Let w be a replaceable vertex in Rm`(G). We will find the maximum
number of replaceable vertices in a V` by counting the number of copies of
Rn−m`(w) contained in V`. Since diam(Rn(G)) ≤ N(G)bmax(n) + diam(G),
by inequality (10) one can fix a positive constant C := κ1/(2(N(G) + 1)) such
that

(14)
amin(n−m`)
diam(Rn(G))

≥ C
1

ρm`

for all m`. Notice that C is independent of m`. Hence it is independent of
the δ-cover U . If V` contains an entire copy of Rn−m`(w), then

diam(V`) ≥ diam((Rn−m`(w), 1)) ≥ amin(n−m`)
diam(Rn(G))

.

However, by inequalities (11) and (14),

(15) diam(V`) ≤
1

ρm`
≤ amin(n−m`)

C diam(Rn(G))
.

Therefore, any path in V` that realizes the diameter of V` can intersect at
most [1/C] + 1 copies of Rn−m`(w), where [·] is the greatest integer func-
tion. Now because each replaceable vertex has degree at most maxi |∂Hi|
and each edge adjacent to a replaceable vertex in Rm`(G) can be connected
via nonreplaceable paths to at most Q(Rm`−1(G)) replaceable vertices, each
replaceable vertex can be connected via nonreplaceable paths to at most
maxi |∂Hi|Q(Rm`−1(G)) replaceable vertices. Therefore, the total number of
copies of Rn−m`(w) which V` can intersect is at most C ′ :=
(maxi |∂Hi|Q(Rm`−1(G)))[1/C]+1.

For example, suppose maxi |∂Hi| = 3 and Q(Rm`−1(G)) = 2. Then a
replaceable vertex w ∈ Rm`(G) can be connected via nonreplaceable paths
to no more than 6 replaceable vertices. If C = 1/2, then inequality (15)
together with the fact that amin(n −m`) ≤ diam(Rn−m`(w)) imply that V`

can intersect no more than 6[1/C]+1 = 63 copies of Rn−m`(w). Actually, this
is a bit of overkill. Figure 12 illustrates that in this case, a better bound on
the maximum number of copies of Rn−m`(w) intersected by V` is 6 · 5 + 1.
Each vertex in the figure represents a copy of Rn−m`(w) intersected by V`

and each edge represents a nonreplaceable path between each of these copies.
If, however, C = 1/3, then V` can intersect no more than 6[1/C]+1 = 64 copies
of Rn−m`(w). Figure 13 illustrates that in this case, a better bound on the
maximum number of copies of Rn−m`(w) intersected by V` is 6 · 52 + 1.

By Lemma 5.3, we have that C ′ = (maxi |∂Hi|Q(R(G)))[1/C]+1. Notice
that C ′ is independent of m` and is therefore independent of the cover U .
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Figure 12. Counting copies of Rn−m`(w) intersected by V`

when C = 1/2.

Figure 13. Counting copies of Rn−m`(w) intersected by V`

when C = 1/3.

Since for any replaceable vertex w ∈ Rm`(G), we have that Rn−m`(w) con-
tains at most maxi N(Hi)n−m` replaceable vertices, V` can contain at most
C ′maxi N(Hi)n−m` replaceable vertices.

Now that we have determined the maximum number of replaceable vertices
contained in each V`, we use the fact that {V`} is a cover of (Rn(G), 1) to get a
lower bound for the sum of these maxima. This lower bound will then yield a
lower bound for

∑
`(diam V`)ln r/ ln ρ. Let M be the replaceable vertex matrix

of R, vG = [N1(G), . . . , Np(G)], and let 1 be the vector in Rp containing all
ones. As stated earlier, each V` has at most C ′maxi N(Hi)n−m` replaceable
vertices. However, Rn(G) contains exactly vG · Mn1 replaceable vertices.
Since {V`} is a cover of (Rn(G), 1), the sum of the maximum number of
replaceable vertices in the V`’s must be bounded below by the number of
replaceable vertices in Rn(G). That is,

(16)
∑

`

C ′max
i

N(Hi)n−m` ≥ vG ·Mn1.

We now seek to restate inequalities (16) and (13) in terms of the replaceable
vertex matrix M ofR. Fix j ∈ {1, . . . , p} so that N(Hj) = maxi N(Hi). Then
maxi N(Hi)n−m` = ej · Mn−m`1, where ej is the j-th column of the p × p
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identity matrix. Hence,

(17)
∑

`

C ′max
i

N(Hi)n−m` =
∑

`

C ′ej ·Mn−m`1 ≥ vG ·Mn1.

Let vM be the positive eigenvector of M corresponding to r whose j-th entry
is 1. Then

rn−m` = rn−m`ej · vM = ej ·Mn−m`vM .

Let k be the minimum entry in vM . Then inequality (13) may be rewritten
as ∑

`

(diam V`)ln r/ ln ρ ≥ 1
rn+2

∑
`

ej ·Mn−m`vM(18)

≥ k

rn+2

∑
`

ej ·Mn−m`1.

Inequalities (17) and (18) imply∑
`

(diam V`)ln r/ ln ρ ≥ kvG ·Mn1
rn+2C ′

.

By Lemma 3.5, there is a positive matrix F so that∑
`

(diam V`)ln r/ ln ρ >
∑

`

1
ρm`+2

≥ kvG · F1
rC ′

.

Hence by inequalities (8) and (9), for K := (kvG · F1)/(3sC ′r),∑
U∈U

(diam U)ln r/ ln ρ ≥ K > 0

for all δ-covers U of X. That is,

dimH(X) ≥ ln r

ln ρ
.

Therefore, by Corollary 5.2, dimH(X) = ln r/ ln ρ. �

6. Examples

Recall that a fractal is a metric space with Hausdorff dimension strictly
greater than its topological dimension. It was shown in [11] that the limits
of vertex replacements have topological dimension 1. The examples below
illustrate a few replacement rules which yield metric spaces with Hausdorff
dimension greater than one. As in earlier examples, the boundary vertices of
the replacement graphs are depicted using circles.
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Example 1. In our first example, the replacement rule R (Figure 14) has
path matrix [ 1 2

1 2 ] and replaceable vertex matrix [ 1 4
1 2 ] . A few iterations of the

replacement are shown in Figure 15. The sequence {(Rn(G), 1)} converges in
the Gromov-Hausdorff metric to the Peter’s Cross depicted in Figure 16 which
has topological dimension 1 and Hausdorff dimension
(ln(3 +

√
17)− ln 2)/(ln 3).

H                              H                              G1                                                   2                                  

Figure 14. A replacement rule R = {H1,H2} and an initial
graph G.

Figure 15. (R(G), 1), (R2(G), 1), and (R3(G), 1).

Figure 16. Peter’s Cross.
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H 1 H 2 G

Figure 17. A replacement rule R = {H1,H2} and an initial
graph G.

Figure 18. (R(G), 1), (R2(G), 1), and (R3(G), 1).

Figure 19. A doily.

Example 2. For our second example, the replacement rule R is shown
in Figure 17 and a few iterations of the replacement are shown in Figure 18.



534 MICHELLE PREVITE

Since R has path matrix [ 2 3
2 1 ] and replaceable vertex matrix [ 4 3

4 1 ] , then the
sequence {(Rn(G), 1)} converges to a metric space with topological dimension
1 and Hausdorff dimension (ln(5 +

√
57)− ln 2)/(ln 4). The limit is depicted

in Figure 19.

Example 3. We now give an example which must be embedded in at
least three dimensions. In this case, the replacement rule R (Figure 20)
has path matrix [ 2 1

1 2 ] and replaceable vertex matrix [ 2 1
6 4 ] . A few iterations

of the replacement are shown in Figure 21, and the limit space of the se-
quence {(Rn(G), 1)} is depicted in Figure 22. Its Hausdorff dimension is
(ln(3 +

√
7))/(ln 3).

H 2H 1 G

Figure 20. A replacement rule R = {H1,H2} and an initial
graph G.

Figure 21. (R(G), 1), (R2(G), 1), and (R3(G), 1).

Example 4. In our final example, the replacement rule R (Figure 23)
has path matrix A = [ 0 2

1 2 ] and replaceable vertex matrix [ 0 2
6 4 ] . Note that

although A is not positive, it is primitive since A2 is positive. Consequently,
R is a primitive replacement rule. Therefore, for any initial graph G with
at least one replaceable vertex, the limit of the sequence {(Rn(G), 1)} has
topological dimension 1 and Hausdorff dimension (ln 6)/(ln(1 +

√
3)). Figure

24 shows a few iterations of the replacement for the initial graph G given in
Figure 23.



THE DIMENSIONS OF LIMITS OF VERTEX REPLACEMENT RULES 535

Figure 22. A modified Sierpinski tetrahedron.

1                                                         2H                                    H  G  

Figure 23. A replacement rule R = {H1,H2} and an initial
graph G.

Figure 24. (R(G), 1), (R2(G), 1), and (R3(G), 1).
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