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FROM A FORMULA OF KOVARIK TO THE
PARAMETRIZATION OF IDEMPOTENTS IN BANACH

ALGEBRAS

JULIEN GIOL

Abstract. If p, q are idempotents in a Banach algebra A and if p+q−1
is invertible, then the Kovarik formula provides an idempotent k(p, q)
such that pA = k(p, q)A and Aq = Ak(p, q). We study the existence of
such an element in a more general situation. We first show that p+q−1
is invertible if and only if k(p, q) and k(q, p) both exist. Then we deduce
a local parametrization of the set of idempotents from this equivalence.
Finally, we consider a polynomial parametrization first introduced by
Holmes and we answer a question raised at the end of his paper.

1. Introduction

Let X be a Banach space and let p, q be idempotents (i.e., p2 = p and
q2 = q) in the algebra L(X) of bounded linear operators on X. If the element
p+ q − 1 is invertible, then the formula

(1) k := p(p+ q − 1)−2q

defines an idempotent in L(X). We call (1) the Kovarik formula since it first
appeared in the proof of a theorem of Kovarik [5, Theorem 1, (ii)]. Moreover,
k is the unique idempotent which shares its range with p and its nullspace with
q (i.e., Im k = Im p and Ker k = Ker q). More generally, if X is equal to the
topological direct sum Im p ⊕Ker q, then we denote by k(p, q) the idempotent
k that is determined by the latter conditions. Thanks to the Kovarik formula,
the invertibility of p + q − 1 is a sufficient condition for k(p, q) to exist. The
following example in L(R2),

p =
(

1 0
0 0

)
, q =

(
0 0
1 1

)
, k(p, q) =

(
1 1
0 0

)
,

shows that k(p, q) may exist although p+ q − 1 is not invertible.
The first aim of this paper is to give a necessary and sufficient condition

for the element p + q − 1 to be invertible, with respect to the interpolating
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function k(p, q). In fact, we will do so in the general context of a real Banach
algebra A with unit.

Definition 1.1. Given two idempotents p and q in A, there is at most
one idempotent k in A that satisfies both conditions kA = pA and Ak = Aq.
If it exists, then we denote it by k(p, q).

This definition will be justified in Section 2; the reader may check that it
generalizes the case A = L(X) treated in the above paragraph. Section 3 is
devoted to the proof of the following equivalence:

(2) p+ q − 1 invertible ⇐⇒ k(p, q) and k(q, p) exist.

As observed by Esterle in [2], the Kovarik formula (1) yields an immediate
proof of the implication “=⇒” in this context; we only prove it here for the
sake of completeness (Proposition 3.1). The proof of the converse relies on
a second formula (Proposition 3.2) that may be derived, for instance, from
the study of the particular case q = p∗ in a C∗-algebra. We also give an
illuminating interpretation of the equivalence (2) through a diagram which
may inspire further applications.

Let p be an idempotent in A and let Ip(A) denote the connected component
of p in the set of idempotents in A with respect to the topology inherited from
the norm ‖ ‖ of A. It is a well-known fact that Ip(A) is a submanifold of A
which is modeled on the Banach space

(3) Tp := {h ∈ A | ph+ hp = h}.

We refer to another article of Kovarik [6, Proposition 2] for a proof of this
claim. In fact, one has to adapt the latter from involutions (τ2 = 1) to
idempotents through the application τ 7→ (1+τ)/2. Now it is an easy exercise
to check that the tangent space Tp is complemented in A by the commutant
of p. As a consequence, we can see that Ip(A) is arcwise connected and that
p is isolated in the set of idempotents if and only if it is central (i.e., pa = ap
for every a ∈ A). These properties have been proved in the complex case by
Zemánek [8] and in the general case by Aupetit [1], independently from this
geometric viewpoint.

After this brief account intended to motivate the study of the manifold
Ip(A), we come to the main purpose of this paper, which is to parametrize a
certain neighborhood of p with the help of the Kovarik formula (1). This is
accomplished in Section 4, where the following result is proved:

Theorem 1.2. Let Up denote the set of idempotents q in A such that
p+ q − 1 is invertible and let φp be the map defined on Up by

φp(q) := k(p, q) + k(q, p)− 2p.
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Then φp is a homeomorphism from Up onto the following open subset of Tp:

Ωp := {h ∈ Tp | 2p− 1 + h invertible}.
Moreover, for every h ∈ Ωp we have

φ−1
p (h) = (1 + h)p(1 + h2)−1p(1 + h).

It should be noticed at this stage that Up is an open neighborhood of p in
Ip(A), which is not necessarily connected. The so-called rational parametriza-
tion of Up given by the inverse formula φ−1

p (h) = (1 + h)p(1 + h2)−1p(1 + h)
turns out to be strikingly easy to compute in many situations. For example,
let us consider the algebra M2(K) with K = R or C,

p =
(

1 0
0 0

)
and Tp ' K2.

Then the above map φ−1
p is nothing but the function

(s, t) 7−→ 1
1 + st

(
1 s
t st

)
.

The remainder of this paper is motivated by the following result of Holmes
[4, Theorem 7].

Theorem 1.3 (Holmes). The polynomial map defined on the tangent space
Tp by

fp(h) := p+ h+ hph− ph2p− ph2ph

is idempotent-valued. Moreover, it is a local homeomorphism from a certain
neighborhood of 0 in Tp onto a neighborhood of p in Ip(A).

In particular, the map fp is such that, for every h ∈ Tp, the polynomial path
t ∈ [0, 1] 7→ fp(th) connects p and fp(h) in the set of idempotents. Moreover,
the degree of the latter polynomial does not exceed 3. This has to be compared
with the following result of Esterle [2]: if p and q lie in the same connected
component of the set of idempotents, or more briefly if p and q are homotopic,
then there exists a polynomial idempotent-valued path which connects p and
q. Thus we may consider the minimal degree d(p, q) of such polynomials.
Following earlier work of Trémon who had treated the matrix case, Esterle
and the author proved recently in [3] that the estimate d(p, q) ≤ 3 holds
for every pair of homotopic idempotents in a finite-dimensional real algebra.
With a view towards a possible extension of this result to a larger class of
Banach algebras, it might be of interest to note that for every q ∈ fp(Tp) we
are provided with an explicit proof of the estimate d(p, q) ≤ 3. Hence it would
be desirable to have a simple characterization of the range of fp.

The major drawback of Theorem 1.3 is that the proof given in [4] does not
yield explicit neighborhoods. Therefore Holmes raises two questions at the
end of his paper.
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• Must the functions fp be 1-1?
• Must these functions be homeomorphisms?

We answer these questions in Section 6, where we prove the following:

Theorem 1.4. Let Vp denote the set of idempotents q in A such that
k(p, q) exists. Then the polynomial map fp is a homeomorphism from Tp onto
Vp. Moreover, for every q ∈ Vp we have

f−1
p (q) = k(p, q)− p+ (1− p)qp.

Thanks to the introduction of the function k(p, q), our proof reduces to
simple algebraic computations. The topological part of the proof, namely
the continuity of q 7→ k(p, q) (Corollary 5.3), follows from the characteriza-
tion of the idempotents that lie in Vp among those which are similar to p
(Theorem 5.1).

Another direct consequence of Theorem 5.1 is that Vp is an open subset of
Ip(A) whose closure is equal to Ip(A) if the set of invertible elements is every-
where dense in the subalgebra (1−p)A(1−p) (Corollary 5.2). In particular, if
there exists an increasing sequence A1 ⊂ A2 ⊂ · · · of finite-dimensional sub-
algebras in A such that A =

⋃
n≥1An, then the set of idempotents q which

satisfy the estimate d(p, q) ≤ 3 is everywhere dense in the connected com-
ponent Ip(A). In fact, we know how to prove that the estimate d(p, q) ≤ 5
holds for every pair of homotopic idempotents in such an algebra (i.e., an AF-
algebra). However, the above observation seems to indicate that the optimal
bound should be 3. The precise determination of this bound will be achieved
in a forthcoming paper.

Final remark. If the algebra A has no unit, then we can consider its
unitization Ã := A⊕R1 and observe that Ip(A) = Ip(Ã) for every idempotent
p in A. Hence we may assume without loss of generality that A has a unit.

Acknowledgement. We thank Professor Jean Esterle for numerous dis-
cussions on the Kovarik formula. More precisely, the generalized formula of
Theorem 5.1 is due to him. This paper was written when the author was
working under the warm atmosphere of the University of Aix-Marseille III.

2. Definition and first properties of k(p, q)

We shall assume throughout the whole paper that A is a real Banach al-
gebra with unit denoted by 1. The letters p and q will always stand for
idempotents in A, i.e., elements p, q ∈ A such that p2 = p and q2 = q.

Lemma 2.1. The following conditions are equivalent:
(i) pA = qA (respectively Ap = Aq).
(ii) pq = q and qp = p (respectively pq = p and qp = q).
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Proof. Assume (i) first and observe that p and q both belong to pA = qA,
so that p = qx and q = py for some x, y ∈ A. Then it is easily seen that
the condition (ii) is satisfied. Assume conversely that pq = q and qp = p.
Then we have qA = pqA ⊂ pA and pA = qpA ⊂ qA, so pA = qA and we
get (i)⇐⇒(ii). The equivalence of the respective conditions, i.e., (i)’ Ap = Aq
and (ii)’ pq = p and qp = q, may be established in a similar manner. �

Remark 2.2. If p is an idempotent and if r is an element of A which
satisfies pr = r and rp = p, then r2 = (pr)2 = p(rp)r = p2r = pr = r, so
r is an idempotent. Hence condition (ii) of Lemma 2.1 implies that q is an
idempotent, whereas condition (i) does not.

Definition 2.3. The relations pA = qA and Ap = Aq define two equiva-
lence relations on the set of idempotents. We denote the equivalence classes
by

Fp := {q ∈ A | q2 = q, pA = qA} and Gp := {q ∈ A | q2 = q, Ap = Aq}.

Lemma 2.4. The subset Fp ∩ Gq is either empty or equal to a singleton.
In particular, if p = q, then we have Fp ∩ Gp = {p}.

Proof. Assume Fp ∩ Gq is not empty and take an element k in it. In
particular, k belongs to the equivalence class Fp, so Fk = Fp. Since k ∈ Gq,
we also have Gk = Gq. Therefore Fp∩Gq = Fk∩Gk and it follows immediately
from Lemma 2.1 that k = k′ for every k′ ∈ Fk ∩ Gk. �

Definition 2.5. If the subset Fp ∩ Gq is not empty then we denote by
k(p, q) its unique element. In other words, we have

Fp ∩ Gq = ∅ or Fp ∩ Gq = {k(p, q)}.

Thus Definition 1.1 is justified. We now give some obvious consequences
of these algebraic definitions.

Proposition 2.6. The following properties hold for every pair of idem-
potents.

(1) The element k(p, q) exists if and only k(1 − q, 1 − p) exists. In this
case we have

k(p, q) = 1− k(1− q, 1− p).

(2) If k(p, q) and k(q, p) both exist, then so does k(k(q, p), k(p, q)) and we
have

k(k(q, p), k(p, q)) = q.

Proof. First we notice that the equivalences pA = qA ⇐⇒ A(1 − p) =
A(1−q) and Ap = Aq ⇐⇒ (1−p)A = (1−q)A follow easily from Lemma 2.1.
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So we get the subset equalities Fp = 1 − G1−p = {1 − k | k ∈ G1−p} and
Gq = 1−F1−q = {1− k | k ∈ F1−q}, which yield the first property.

To prove the second property, it suffices to observe that q lies in both Fk(q,p)

and Gk(p,q), by the definitions of k(q, p) and k(p, q). �

We conclude these preliminaries with two observations which illustrate the
deep link between the existence of k(p, q) and particular forms of arcwise
connectedness in the set of idempotents. The first is just a generalization of
the so-called poor man’s path in the paper of Kovarik [5]; it involves affine
segments [a, b] := {(1− t)a+ tb | t ∈ [0, 1]} of A which are actually contained
in the set of idempotents. The second goes back to Esterle [2].

Proposition 2.7. Assume p and q are such that k(p, q) exists. Then the
following properties hold.

(1) The segments [p, k(p, q)] and [k(p, q), q] are both contained in the set
of idempotents. Moreover, the functions r 7→ k(p, r) and r 7→ k(r, q)
are well-defined on each of these segments.

(2) If we set u := q−k(p, q) and v := p−k(p, q), then we have u2 = v2 = 0
and q = (1 + u)(1 + v)p(1 − v)(1 − u). In particular, the element
σ := (1+u)(1+ v) is invertible with inverse σ−1 = (1− v)(1−u) and
the idempotents p and q are similar.

Proof. Take an element r = (1− t)p+ tk(p, q) in [p, k(p, q)]. It follows from
the definition of k(p, q) and from Lemma 2.1 that we have pr = (1 − t)p2 +
tpk(p, q) = (1−t)p+tk(p, q) = r and rp = (1−t)p2+tk(p, q)p = (1−t)p+tp =
p. So r is an idempotent by Remark 2.2 and we deduce again from Lemma 2.1
that r lies in the equivalence class Fp = Fk(p,q). Then it is obvious that k(p, r)
and k(r, q) exist, for we have k(p, r) = r and k(r, q) = k(p, q). We can verify
in a similar manner that every element s ∈ [k(p, q), q] is an idempotent such
that k(p, s) = k(p, q) and k(s, q) = s exist. This completes the proof of the
first property.

To prove the second property, first observe that the definition of k(p, q)
and Lemma 2.1 imply, by direct computations, the relations u2 = v2 = vp =
uq = 0, pv = v and uq = q. By expanding and simplifying we then get the
identities (1 + v)p(1 − v) = k(p, q) = (1 − u)q(1 + u), from which the result
follows. �

Corollary 2.8. The set of idempotents q such that k(p, q) exists, which
is denoted by Vp, is arcwise connected. Moreover, for every q ∈ Vp, there exists
a polynomial idempotent-valued path which connects p and q with degree 3 at
most.

Proof. The first assertion is a direct consequence of Property (1) of Propo-
sition 2.7. Now if q lies in Vp, it follows from Property (2) of this proposition
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that we can write q = (1 + u)(1 + v)p(1 − v)(1 − u) with u2 = v2 = 0.
Following Esterle’s construction [2], we then consider the polynomial map
t 7→ (1+ tu)(1+ tv)p(1− tv)(1− tu) whose values are all similar to p. Thus we
obtain a polynomial path which connects p and q in the set of idempotents.
Since vp = 0, it is easily seen that its degree does not exceed 3 and the proof
is complete. �

3. A necessary and sufficient condition for the element p+ q − 1 to
be invertible

To begin with, we recall the well-known necessary condition that has al-
ready been used, for instance, in [1], [2], [7], [3].

Proposition 3.1 (Kovarik formula). If the element p+ q−1 is invertible
then the element k(p, q) exists and we have the formula

k(p, q) = p(p+ q − 1)−2q.

Proof. We first note that we have p(p + q − 1) = (p + q − 1)q = pq. So
if we set ω := (p + q − 1)2, this yields the relations pω = ωp = pqp and
qω = ωq = qpq. The element ω is invertible by assumption, so the latter
equations imply in particular that ω−1 commutes with p and q. Then it
follows from a routine verification that the element k := pω−1q fulfills the
required conditions, namely k2 = k, kp = p and pk = k (i.e., k ∈ Fp by
Lemma 2.1), kq = k and qk = q (i.e., k ∈ Gq). So k(p, q) exists and it is equal
to k. �

By the symmetry of the assumption in Proposition 3.1, we point out that
the invertibility of p + q − 1 also implies the existence of k(q, p). In fact,
it turns out that the simultaneous existence of k(p, q) and k(q, p) implies
the invertibility of p + q − 1. As claimed in the introduction, this converse
statement arises quite naturally from the study of the particular case below.

Assume for a moment that A is the algebra L(H) of bounded linear oper-
ators on a Hilbert space H and let p be an idempotent in L(H), that is, a
(possibly oblique) projection onto Im p along Ker p. Then p∗ is the projection
onto Im p∗ = (Ker p)⊥ along Ker p∗ = (Im p)⊥. So k(p, p∗) and k(p∗, p) both
exist since they are equal, respectively, to the orthogonal projections onto Im p
and (Ker p)⊥. In addition to this first observation, we note that the element
(p+ p∗ − 1)2 = 1− (p− p∗)2 is invertible since it is of the form 1 + u∗u with
u = p− p∗. So Proposition 3.1 provides us with the following formulas:

k(p, p∗) = p(p+ p∗ − 1)−2p∗ and k(p, p∗) = p∗(p+ p∗ − 1)−2p.



436 JULIEN GIOL

Since (p+ p∗ − 1)−2 commutes with p and p∗, we therefore obtain

k(p, p∗) + k(p∗, p)− 1 = (pp∗ + p∗p− (p+ p∗ − 1)2)(p+ p∗ − 1)−2

= (p+ p∗ − 1)(p+ p∗ − 1)−2

= (p+ p∗ − 1)−1.

Returning to the general case of a real Banach algebra, we can generalize
the above computation as follows.

Proposition 3.2. If the elements k(p, q) and k(q, p) both exist then p +
q − 1 is invertible with inverse given by the formula

(p+ q − 1)−1 = k(p, q) + k(q, p)− 1.

Proof. Set k := k(p, q) ∈ Fp ∩ Gq and k′ := k(q, p) ∈ Fq ∩ Gp. We recall
that Lemma 2.1 implies the following relations: kp = p, pk = k, kq = k, qk =
q, k′p = k′, pk′ = p, k′q = q and qk′ = k′. Then it only remains to expand the
products (p+ q− 1)(k+ k′− 1) and (k+ k′− 1)(p+ q− 1). In fact, after some
immediate cancellations we get (p+q−1)(k+k′−1) = (k+k′−1)(p+q−1) = 1;
the details are left to the reader. �

Thus the equivalence (2) announced in the introduction is now established:
the element p+q−1 is invertible if and only if the elements k(p, q) and k(q, p)
both exist.

These properties may be represented by a simple diagram constructed ac-
cording to the following rule: Given two idempotents k, l in A, we draw

�
�

�

k

l

if kA = lA,

@
@

@

k

l if Ak = Al.

Then the simultaneous existence of k(p, q) and k(q, p) is equivalent to the
existence of two idempotents r and s which fulfill the diagram below.

�
�

�@
@

@
�

�
�@

@
@

p

r

q

s

Conversely, if such a diagram makes sense, then the following properties
hold:

(i) (p+ q − 1)(r + s− 1) = (r + s− 1)(p+ q − 1) = 1.
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(ii) r = k(p, q), s = k(q, p), p = k(r, s) and q = k(s, r).
Moreover, the Kovarik formula may be applied to compute each the four
idempotents above.

4. Rational parametrization

Let p be an idempotent in A. We recall that the connected component of
p in the set of idempotents is denoted by Ip(A) and we set

Up := {q ∈ A | q2 = q, p+ q − 1 invertible},
Tp := {h ∈ A | ph+ hp = h},
Ωp := {h ∈ Tp | 2p− 1 + h invertible}.

It is obvious that Tp is a closed subspace of A, so it is a Banach space itself.
Since (2p−1)2 = 1, the element 2p−1 is invertible, so p lies in Up and 0 lies in
Ωp. Moreover, the fact that the set of invertible elements is open in a Banach
algebra implies that Up is open in the set of idempotents and that Ωp is open
in Tp. In fact, it follows from Proposition 3.1 and from Proposition 2.7(1)
that Up is contained in Ip(A).

The purpose of this section is to construct a homeomorphism φp : Up −→
Ωp from the open neighborhood Up of p in A onto the open neighborhood Ωp

of 0 in Tp. We begin with an alternate description of Tp.

Lemma 4.1. The Banach space Tp is equal to the topological direct sum

Tp = pA(1− p)⊕ (1− p)Ap

of the closed subspaces pA(1−p) and (1−p)Ap, which appear in the following
descriptions of the equivalence classes Fp = {q ∈ A | q2 = q, pA = qA} and
Gp = {q ∈ A | q2 = q, Ap = Aq} as affine subspaces of A:

Fp = p+ pA(1− p) and Gp = p+ (1− p)Ap.

The mapping h 7→ (p + ph, p + hp) is 1-1 and sends Tp onto Fp × Gp with
inverse (q, r) 7→ q + r − 2p.

Proof. It is easily seen that the closed subspaces pA(1−p) and (1−p)Ap are
contained in Tp with trivial intersection, i.e., pA(1−p)⊕(1−p)Ap ⊂ Tp. Now
assume that h = ph+ hp lies in Tp. Then h(1− p) = ph(1− p) + hp(1− p) =
ph(1 − p), so ph = h − hp = h(1 − p) = ph(1 − p) lies in pA(1 − p). We can
prove similarly that hp lies in (1− p)Ap. Hence Tp = pA(1− p)⊕ (1− p)Ap.
We now prove that Fp = p + pA(1 − p). Take q in p + pA(1 − p) and write
q = p+px(1−p). By direct computations it follows that the relations q2 = q,
pq = q and qp = p hold. So q lies in Fp by Lemma 2.1 and the inclusion
p + pA(1 − p) ⊂ Fp is proved. Now assume that q lies in Fp and set x :=
q − p. Then by Lemma 2.1 we get the relations px = x and xp = 0. Hence
x = px1 = px(p+1−p) = pxp+px(1−p) = px(1−p) and so q = p+px(1−p)
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lies in p+ pA(1− p). Thus we get the first relation, Fp = p+ pA(1− p). The
second relation, Gp = p+ (1− p)Ap, may be established in a similar manner,
or derived from the first using Proposition 2.6(1). The latter follows by direct
computations with the given maps; we leave the details to the reader. �

In other words, the tangent space Tp may be identified with the product
space Fp×Gp. We also point out that the affine structure of Fp and Gp implies
that these spaces are both contained in the connected component Ip(A). Thus
the first property of Proposition 2.7 becomes obvious.

We can summarize the principle of the so-called coordinates map φp and
that of the parametrization map in the following two diagrams (see the end
of the preceding section).

Coordinates

�
�

�@
@

@
�

�
�@

@
@

p

k(p, q)

q

k(q, p)

Parametrization

�
�

�@
@

@
�

�
�@

@
@

p

p+ ph

p+ hp

k(p+ hp, p+ ph)

By the equivalence (2), the left-hand diagram makes sense if and only if
p + q − 1 is invertible. So (k(p, q), k(q, p)) ∈ Fp × Gp is a natural pair of
coordinates for every q in Up. After composition with the map (q, r) 7→
q + r − 2p, which sends Fp × Gp onto Tp, we obtain

φp : q 7−→ k(p, q) + k(q, p)− 2p,

which is a well-defined map from Up into Tp. Since 2p− 1 + φp(q) = k(p, q) +
k(q, p) − 1, Proposition 3.2 implies that φp actually takes its values in Ωp.
Moreover, by Proposition 3.1, the Kovarik formula may be applied to compute
k(p, q) and k(q, p). Hence φp is easily seen to be continuous on Up.

As illustrated by the right-hand diagram above, the map

θ : h 7−→ k(p+ hp, p+ ph)

is well-defined on Ωp. Indeed, if the pair of idempotents (p + hp, p + ph) is
such that (p+hp)+(p+ph)−1 = 2p−1+h is invertible, then Proposition 3.1
applies. Thus θ is continuous on Ωp and it follows from Proposition 3.2 that
p + θ(h) − 1 is invertible with inverse 2p − 1 + h for every h ∈ Ωp. Hence θ
takes its values in Up and the Kovarik formula yields

θ(h) = (1 + h)p(1 + h2)−1p(1 + h),

after an easy simplification using the identity (2p− 1 +h)2 = 1 +h2, which is
satisfied by every h ∈ Ωp.
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It only remains to check that φp◦θ = IdΩp
and θ◦φp = IdUp

. Let h lie in Ωp

first and observe that k(p, θ(h)) = p+ph and k(θ(h), p) = p+hp; this is a direct
consequence of Definition 2.5, which may also be seen from the right-hand
diagram above. Then φp(θ(h)) = k(p, θ(h)) + k(θ(h), p) − 2p = ph + hp = h
and the first identity follows. Now if q lies in Up, it is easy to check that
p + φp(q)p = k(q, p) and p + pφp(q) = k(p, q) with the help of Lemma 2.1.
Thus θ(φp(q)) = k(p + φp(q)p, p + pφp(q)) = k(k(q, p), k(p, q)), and finally
θ(φp(q)) = q by Proposition 2.6(2). Hence the second identity holds and we
see that f is the inverse of φp. This completes the proof of Theorem 1.2.

5. Characterization of similar idempotents

Let p be an idempotent in A. Having exploited the symmetries of the
Kovarik formula in the two preceding sections, we now turn our attention to
the asymmetrical properties of the function k(p, q). Consequently, we will no
longer consider the open set Up = {q ∈ A | q2 = q, p + q − 1 invertible}, and
instead focus on the larger sets

Vp := {q ∈ A | q2 = q, k(p, q) exists}

and
Wp := {q ∈ A | q2 = q, k(q, p) exists}.

We point out that the equivalence (2) may be restated as follows:

Up = Vp ∩Wp.

The purpose of this section is to show that both Vp andWp are open connected
neighborhoods of p in the component Ip(A) and that the mappings q 7→ k(p, q)
and q 7→ k(q, p) are continuous on Vp and Wp, respectively. We note that
Proposition 2.6(1) allows us to restrict our attention to Vp.

We have already proved in Corollary 2.8 that the set Vp is arcwise con-
nected, so it is contained in Ip(A). Hence, as is apparent from the proof of
this corollary, every element in Vp is similar to p. This raises the question:
Given an idempotent q which is similar to p, how can we determine whether
or not q lies in Vp?

The answer is given below. It requires the introduction of the Peirce de-
composition of the algebra A with respect to p, i.e., the identification

a↔
(

pap pa(1− p)
(1− p)ap (1− p)a(1− p)

)
between the elements a ∈ A and their coefficients in the subspace decomposi-
tion A = pAp⊕ pA(1− p)⊕ (1− p)Ap⊕ (1− p)A(1− p). We recall that the
Peirce decomposition provides a compatibility between operations on A and
matrix block computations.
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Theorem 5.1. Let σ be an invertible element and set q := σpσ−1. If σ
has the form

σ =
(
a b
c d

)
in the Peirce decomposition of A with respect to p, then the element k(p, q)
exists if and only if the coefficient d is invertible in the subalgebra (1−p)A(1−
p). In this case we have

k(p, q) =
(
p −bd−1

0 0

)
.

Proof. Assume that d is invertible in (1−p)A(1−p) and set k := p− bd−1.
Observe that k belongs to p+pA(1−p) = Fp (cf. Lemma 4.1) by construction.
Thus, in order to establish the existence of k(p, q) and the required formula,
it only remains to show that k lies in Gq.

According to Lemma 2.1, we have k ∈ Gq if and only if kq = k and qk = q.
We compute

kσ =
(
p −bd−1

0 0

) (
a b
c d

)
=

(
a− bd−1c b− bd−1d

0 0

)
=

(
a− bd−1c 0

0 0

)
.

Then it is easily seen that kσ(1 − p) = 0, so k − kq = kσ(1 − p)σ−1 = 0, so
the first relation is established.

In order to prove the second relation, namely qk = q ⇐⇒ pσ−1k = pσ−1,
we introduce the coefficients of σ−1:

σ−1 =
(
α β
γ δ

)
.

All we need to know about these coefficients is that they satisfy αb+ βd = 0.
To see this, we compute the (1,2)-coefficient in the product σ−1σ:

σ−1σ =
(
α β
γ δ

) (
a b
c d

)
=

(
∗ αb+ βd
∗ ∗

)
.

Since σ−1σ = 1, this coefficient must be equal to 0 and our claim is proved.
Moreover, we get

pσ−1k =
(
α −αbd−1

0 0

)
and pσ−1 =

(
α β
0 0

)
by direct computations. The relation pσ−1k = pσ−1 follows from this, since
we have (−αb)d−1 = (βd)d−1 = β.

We now prove that the existence of k(p, q) implies the invertibility of d. So
assume that k := k(p, q) exists. Since k ∈ Fp = p+ pA(1− p), we can write

k =
(
p x
0 0

)
.
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Moreover, k ∈ Gq so kq = k and qk = q. Hence we get the relations kσ(1−p) =
0 and pσ−1(1− k) = 0, which imply

b+ xd = 0 and β − αx = 0

by matrix computations. We also need the three relations

γb+ δd = 1− p, cβ + dδ = 1− p and cα+ dγ = 0,

which follow directly from the matrix computation of the identities σ−1σ = 1
and σσ−1 = 1. Then we get (δ − γx)d = δd+ γ(−xd) = δd+ γb = 1− p and
d(δ − γx) = dδ + (−dγ)x = dδ + cαx = dδ + cβ = 1− p. Thus d is invertible
in (1− p)A(1− p) with inverse

d−1 = δ − γx,

and the proof is complete. �

Corollary 5.2. The set Vp is an open connected neighborhood of p in
Ip(A).

Proof. Let q0 ∈ Vp and let σq0 be an invertible element such that q0 =
σq0pσ

−1
q0

. Now if q is any idempotent in A, it is a well-known trick to introduce
the element τq := 1 − q0 − q + 2qq0 in order to prove that q and q0 are
similar if they are close enough from each other. As a matter of fact, we
have τqq0 = qτq(= qq0) and we can write τq = 1 − (q0 − q)(2q0 − 1). So if
‖q − q0‖ < ‖2q0 − 1‖−1, then τq is invertible and we get q = τqq0τ

−1
q . Thus

we can set σq := τqσq0 , so that we have

q = σqpσ
−1
q with lim

q→q0
σq = σq0

for ‖q − q0‖ < ‖2q0 − 1‖−1. Now write the Peirce decomposition of σq with
respect to p as

σq =
(
aq bq
cq dq

)
.

By Theorem 5.1 the coefficient dq0 is invertible in (1− p)A(1− p). Moreover,
dq = (1− p)σq(1− p) → dq0 when q → q0 and the set of invertible elements is
open in the Banach algebra (1 − p)A(1 − p). Hence the coefficient dq is also
invertible in an open neighborhood of q0, say Ω, in the set of idempotents.
Using Theorem 5.1 again, it follows that Ω is contained in Vp. Thus Vp is
open in Ip(A). Since it has already been shown in Corollary 2.8 that Vp is
arcwise connected, the proof is complete. �

Corollary 5.3. The mapping q 7−→ k(p, q) is continuous on Vp.

Proof. Consider the neighborhood Ω of q0 exhibited in the proof of Corol-
lary 5.2 above. For every q ∈ Ω we have k(p, q) = p− bqd

−1
q by Theorem 5.1.

The asserted continuity is now obvious. �
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6. Polynomial parametrization

This final section is devoted to the proof of Theorem 1.4. Let p be a
fixed idempotent in A and let fp : Tp −→ A denote the polynomial function
exhibited by Holmes and defined for every h ∈ Tp by the formula

fp(h) := p+ h+ hph− ph2p− ph2ph.

To begin with, we interpret this function in the Peirce decomposition of A
with respect to p. Since Tp = pA(1 − p) ⊕ (1 − p)Ap (cf. Lemma 4.1), an
element h ∈ A lies in Tp if and only if it has the form

h =
(

0 x
y 0

)
in this decomposition. Observe that x = ph and y = hp. By direct matrix
computations it follows that fp(h) is decomposed as

(4) fp(h) =
(
p− xy x− xyx
y yx

)
.

Let us consider an element σh ∈ A, defined by σh := 1 − ph + hp − ph2p
or, equivalently, by

(5) σh :=
(
p− xy −x
y 1− p

)
.

It is easy to verify that σh is invertible with inverse

σ−1
h =

(
p x
−y 1− p− yx

)
,

i.e., σ−1
h = 1 + ph− hp− (1− p)h2(1− p). Another matrix computation gives

the similarity relation
fp(h) = σhpσ

−1
h ;

the reader can check the details. Since (1− p)σh(1 − p) = 1 − p is obviously
invertible in (1− p)A(1− p), it follows from Theorem 5.1 that σhpσ

−1
h lies in

Vp. Thus we see that fp : Tp −→ Vp is a continuous map from Tp into Vp.
We now consider the map ψ : Vp −→ Tp defined for every q ∈ Vp by

ψ(q) := k(p, q)− p+ (1− p)qp.

It follows from Corollary 5.3 that ψ is continuous on Vp. Hence it only remains
to show that ψ is the inverse of fp, i.e., ψ ◦ fp = IdTp

and fp ◦ ψ = IdVp
.

Let h = x⊕y ∈ Tp = pA(1−p)⊕(1−p)Ap and recall that fp(h) = σhpσ
−1
h ,

where σh has the matrix form (5). Then Theorem 5.1 implies

k(p, fp(h)) =
(
p x
0 0

)
.
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Moreover, we derive from (4) the coefficient (1−p)fp(h)p = y and so ψ(fp(h)) =
k(p, fp(h)) − p + (1 − p)fp(h)p = p + x − p + y = x + y = h. Thus we have
established the first identity, namely ψ ◦ fp = IdTp .

The second identity is a little bit more difficult to prove. Take q ∈ Vp and
consider the Peirce decompositions of q and k(p, q) ∈ Fp = p⊕pA(1−p) with
respect to p,

q =
(
a b
c d

)
and k(p, q) =

(
p β
0 0

)
.

Then it is easily seen that ψ(q) = k(p, q) − p + (1 − p)qp has the following
matrix form

ψ(q) =
(

0 β
c 0

)
.

So by formula (4) we get

(6) fp(ψ(q)) =
(
p− βc β − βcβ
c cβ

)
.

Now recall that the condition k(p, q) ∈ Gq is equivalent, by Lemma 2.1, to
the relations k(p, q)q = k(p, q) and qk(p, q) = q. By matrix computations, the
latter relations become, respectively,(

a+ βc b+ βd
0 0

)
=

(
p β
0 0

)
and (

a aβ
c cβ

)
=

(
a b
c d

)
.

In particular, we get the equations p − βc = a, cβ = d and aβ = b. Also
β−βcβ = (p−βc)β = aβ = b, and after substitution in (6), we finally obtain
fp(ψ(q)) = q. Thus fp ◦ ψ = IdVp

, and the proof is complete.
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[7] M. Tremon, Polynômes de degré minimum connectant deux projections dans une algèbre
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