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STRONGLY IRREDUCIBLE DECOMPOSITION AND
SIMILARITY CLASSIFICATION OF OPERATORS

HUA HE AND KUI JI

Abstract. Let H be a complex separable Hilbert space and let L(H)
denote the collection of bounded linear operators on H. In this paper,

we show that if T = A
(n1)
1 ⊕ A

(n2)
2 ⊕ · · · ⊕ A

(nk)
k , where Ai 6∼ Aj for

1 ≤ i 6= j ≤ k, andA′(Ai)/ radA′(Ai) is commutative, K0(A′(Ai)) ∼= Z
for i = 1, 2, . . . , k, and for any positive integer n and minimal idempo-
tent P ∈ A′(T (n)), A′(T (n)|PH(n) )/ radA′(T (n)|PH(n) ) is commuta-
tive, then T is a stably finitely decomposable operator and has a stably
unique (SI) decomposition up to similarity. Moreover, we give a simi-
larity classification of the operators which satisfy the above conditions
by using the K0-group of the commutant algebra as an invariant.

1. Introduction

Let H be a complex separable Hilbert space, and let L(H) denote the
collection of bounded linear operators on H. A basic problem in operator
theory is to determine when two operators A and B in L(H) are similar, that
is, when there exists an invertible operator X on H satisfying A = X−1BX.
One of the most important problems in operator theory is to find invariants
that can be used to determine when two operators are similar.

When H is a finite dimensional space, from the Jordan theorem we see
that the characteristic roots and generalized characteristic subspaces of the
operator are complete similarity invariants. WhenH is an infinite dimensional
space, a general solution to this problem is not known; we can only find
similarity invariants for some special classes of operators. For two star cyclic
normal operators or star cyclic subnormal operators A and B, J.B. Conway
showed that A and B are similar if and only if the scalar value spectral
measures induced by A and B are equivalent (cf. [Co]). A.L. Shields (cf.
[Sh]) proved that a complete similarity invariant for injective shift operators
is the rate of the weighted sequence.
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As the basic element of non-commutative topology, K-theory opens up
wide prospects for studying the structure theory of C∗-algebra. In K-theory
one considers a pair of functors, K0 and K1. The group K0(A) is given an
ordering that makes it an ordered Abelian group. For certain classes of C∗-
algebras, the K-group is a complete invariant. In the early 1970s, G. Elliott
(cf. [El1], [El2]) showed that AF-algebras (the so-called “approximately finite
dimensional” C∗-algebras) are classified by their ordered K0-groups. Today
K-theory is an active research area, and a much used tool for the study of
C∗-algebras.

In [EGL] and [Go], G. Elliott, G. Gong and L. Li successfully classified
simple AH-algebras of finite dimensional local spectra using scaled order K-
groups, spaces of tracial states and the relation between them as invariants.
If one further assumes that the AH algebras are of real rank zero, then the
scaled ordered K-group alone is an invariant (the other parts of the invariant
are redundant). This result was previously obtained in [EG] and [DG].

In the spirit of the above work, we seek to obtain complete similarity invari-
ants of operators in terms of the ordered K-groups of the commutant algebras
of the operators.

For a unital Banach algebra A, radA denotes the Jacobson radical of A and
A′(T ) denotes the commutant algebra of an operator T , i.e., A′(T ) = {S ∈
L(H)|ST = TS} (cf. [Co], [Gi], [JW], [Jia]). Also, C denotes the complex
plane, Z denotes the group of integers, and N = {0, 1, 2, . . . }.

The famous Jordan theorem in matrix algebra states that every n × n
matrix can be written uniquely up to similarity as the direct sum of finite
Jordan blocks, i.e., for all A ∈ Mn(C), we have A ∼

⊕l
i=1(λi + Jni)

(mi),
where λi ∈ C, Jni is an ni×ni nilpotent Jordan block, and (λi, ni) 6= (λj , nj)
for i 6= j. Note that Jni is not similar to Jnj (denoted by Jni 6∼ Jnj ) for
ni 6= nj , and if Jni ·S = S ·Jnj and Jnj ·T = T ·Jni , then ST ∈ radA′(Jni). A
simple computation shows that A′(A)/ radA′(A) ∼=

⊕l
i=1 Mmi(C). We can

prove that two n× n matrices A and B are similar if and only if

(K0(A′(A⊕B)),
∨

(A′(A⊕B)), I)
h∼=(Z(l), N (l), 1),

and h([I]) =
∑l

i=1 niei, where I is the unit of A′(A⊕B), and {ei}li=1 are the
generators of N (l). The above theorem is equivalent to the Jordan theorem
(cf. [CFJ]).

When H is an infinite dimensional Hilbert space, such results are only
known for special classes of operators.

An operator A in L(H) is said to be strongly irreducible, and we write
A ∈ (SI), if A′(T ) has no non-trivial idempotent. It is well-known that
strongly irreducible operators are analogues of Jordan blocks in L(H) (cf.
[Co], [Gi], [JW], [Ji]). Thus we consider the following generalization of the
Jordan decomposition for an element A ∈ L(H): A ∼

⊕l
i=1 A

(mi)
i , where
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Ai ∈ (SI), and Ai 6∼ Aj when i 6= j. D.A. Herrero, C.L. Jiang and Z.Y.
Wang (cf. [He1], [He2], [JW]) proved that the operator class F = {T : T can
be written as the direct sum of finite (SI) operators} is dense in L(H) under
the norm topology. Therefore, it is of interest to find a complete similarity
invariant of F .

M.J. Cowen and R.G. Douglas (cf. [CD]) introduced a class of operators
related to complex geometry, which are now referred to as Cowen-Douglas
operators. The Cowen-Douglas operators play an important role in studying
the structure of non-self-adjoint operators (cf. [He2], [JW]). Using techniques
of complex geometry and K-theory, C.L. Jiang showed that two strongly irre-
ducible Cowen-Douglas operators A and B are similar if and only if

(K0(A′(A⊕B)),
∨

(A′(A⊕B)), I) ∼= (Z,N, 1),

where I is the unit of A′(A⊕B) (cf. [Jia]). This shows that the scaled or-
dered K0-group of the commutant algebra is a similarity invariant for strongly
irreducible Cowen-Douglas operators.

The main result of this paper is as follows:

Main Theorem (Theorem 4.4). Suppose A,B ∈ L(H), and

A = A
(n1)
1 ⊕A

(n2)
2 ⊕ · · · ⊕A

(nk)
k ,

B = B
(m1)
1 ⊕B

(m2)
2 ⊕ · · · ⊕B

(ml)
l ,

where Ai, Bj ∈ (SI) for i = 1, 2, . . . , k, j = 1, 2, . . . , l, Ai and Bj are not
similarity equivalent to each other, and A,B and Ai, Bj (i = 1, 2 . . . , k, j =
1, 2, . . . , l) satisfy the following conditions:

(1) K0(A′(Ai)) = Z, K0(A′(Bj)) = Z for i = 1, 2, . . . , k, j = 1, 2, . . . , l.
(2) For any positive integer n and minimal idempotent P ∈ A′(T (n)),
A′(T (n)|PH(n))/ radA′(T (n)|PH(n)) is commutative, where T ∈ {A,B}.

Then A ∼ B if and only if:

(1) (K0(A′(A⊕B)),
∨

(A′(A⊕B)), 1A′(A⊕B)) ∼= (Z(k), N (k), 1).
(2) For all J ∈ m(A ⊕ B), we have A′(A ⊕ B)/J ∼= Mm(C), m ∈

(2n1, 2n2, . . . , 2nk).

The paper is organized as follows. In Section 2, we introduce some defini-
tions and basic results. In Section 3, we consider the problem of stably finitely
(SI) decomposition of operators. In Section 4, we prove our main theorem us-
ing the results of Section 3, and we complete the similarity classification of
some classes of operators.
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2. Preliminary results

To formulate our results, we need to introduce the following definitions,
notations and theorems.

Definition 2.1. An operator T ∈ L(H) is called strongly irreducible (SI)
if T does not commute with any nontrivial idempotent operator, i.e., if there
is no non-trivial idempotent operator in A′(T ). Let T ∈ L(H). A family of
operators P = {Pλ}λ∈Λ ⊆ A′(T ) is called a commutative idempotents set of
T , if Pλ

2 = Pλ, PλPη = PηPλ, Pλ, Pη ∈ P. Naturally, each commutative
idempotents set is contained in a maximal commutative idempotent set in
A′(T ). Let P ∈ A′(T ) be a non-trivial idempotent. Then P is said to be a
minimal idempotent if there is no nontrivial idempotent Q ∈ A′(T ) such that
QP = PQ = Q. Obviously, P is a minimal idempotent in A′(T ) if and only
if T |PH is a strongly irreducible operator in L(PH).

Definition 2.2. T ∈ L(H) is called a finitely decomposable operator if
the cardinality of an arbitrary maximal commutative idempotents set inA′(T )
is finite, and T is called a stably finitely decomposable operator if T (n) is a
finitely decomposable operator for all n = 1, 2, 3, . . . .

Definition 2.3. Let T ∈ L(H), and let P = {Pi}ni=1 (n <∞) be a family
of idempotents in A′(T ), satisfying:

(1) 0 6= Pi ∈ A′(T ), 1 ≤ i ≤ n.
(2) PiPj = PjPi = 0, 1 ≤ i 6= j ≤ n.
(3)

∑n
i=1 Pi = I.

Then P = {Pi}ni=1 is called a unit finite (SI) decomposition of T .
If T |PiH is a strongly irreducible for 1 ≤ i ≤ n, then we call P is a unit

finite (SI) decomposition of T .

Definition 2.4. Let T ∈ L(H), and suppose that if P = {Pi}ni=1 and
Q = {Qi}mi=1 are both unit finite (SI) decompositions of T , then:

(1) m = n.
(2) There is an invertible operator X ∈ A′(T ) and a permutation Π ∈ Sn

such that XQΠ(i)X
−1 = Pi for 1 ≤ i ≤ n.

Then we say that T has a unique finite (SI) decomposition up to similarity. We
say that T has a unique stably finite (SI) decomposition up to similarity if T (n)

has a unique finite (SI) decomposition up to similarity for all n = 1, 2, 3, . . .

In [CD] M.J. Cowen and R.G. Douglas began a systematic study of a class
of geometry operators, now called the Cowen-Douglas operators, which have
an open set of eigenvalues.
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Definition 2.5. An operator A ∈ L(H) is said to be a Cowen-Douglas
operator if there exists a connected open subset Ω of C and a positive integer
n such that:

(1) Ω ⊂ σ(A) = {z ∈ C|A− z is not invertible }.
(2) ran(A− z) = H, z ∈ Ω.
(3)

∨
z∈Ω ker(A− z) = H.

(4) dim ker(A− z) = n, z ∈ Ω.

C.L. Jiang proved that if T is a (SI) Cowen-Douglas operator, then A′(T )
is an essentially commutative algebra, i.e., A′(T )/ radA′(T ) is commutative,
where radA′(T ) is the Jacobson radical of A′(T ) (cf. [Jia]). We note that
for each Cowen-Douglas operator T , if T = A1 ⊕ A2 · · · ⊕ An is a unit (SI)
decomposition of T , then Ai (i = 1, 2, . . . , n) are all Cowen-Douglas operators.

To proceed further, we recall briefly some notations of K-theory. Let A be
a unital Banach algebra. Let e and f be idempotents in A. Then e and f are
said to be algebraically equivalent (denoted by ∼a), if there exist x, y ∈ A such
that xy = e, yx = f . Moreover, e and f are said to be similarity equivalent,
if there exists an invertible element z ∈ A such that zez−1 = f .

Let Mn(A) = {(aij)n×n|aij ∈ A}. Then M∞(A) is the algebraic direct
limit of Mn(A), under the embedding a→ diag(a, 0) = (a⊕ 0).

The symbol Proj(Mn(A)) denotes the set of algebraic equivalence classes
of idempotents in M∞(A), and we let

∨
(A) = Proj(Mn(A)).

There is a binary operation (orthogonal addition) on
∨

(A) defined as fol-
lows: If [e], [f ] ∈

∨
(A), choose e′ ∈ [e], f ′ ∈ [f ] with e′f ′ = f ′e′ = 0. Then

[e] + [f ] = [e′ + f ′]. Since for all e we have e ⊕ 0 ∼a e ∼a 0 ⊕ e, we can
choose e′ = e⊕ 0, f ′ = 0⊕ f . Thus [e] + [f ] = [e⊕ f ]. This operation is well
defined and it makes

∨
(A) an Abelian semigroup with identity. From classic

K-theory one obtains exactly the same semigroup starting with ∼ (A) instead
of ∼a, since the two notions coincide on M∞(A).

Note that
∨

(A) depends onA only up to stable isomorphism. If M∞(A1) is
isomorphic (∼=) to M∞(A2), then

∨
(A1) ∼=

∨
(A2), and K0(A) is the Grothen-

dick group of
∨

(A).
From basic results of operator theory we deduce the following properties:

(2.1) If T = T1 ⊕ T2 ⊕ . . . Tn, then A′(T ) = {(Sij)n×n | Sij ∈ ker τTi,Tj , 1 ≤
i, j ≤ n} is a unital Banach algebra, where τTi,Tj is the Rosenblum
operator defined by τTi,Tj (C) = TiC − CTj , C ∈ L(Hj ,Hi).

(2.2) ker τTi,Tj is a linear space, and ker τTi,Ti = A′(Ti) is a unital Banach
algebra.

(2.3) Let eA′(T ) denote the unit of A′(T ). Then eA′(T ) = eA′(T1) ⊕ · · · ⊕
eA′(Tn).

(2.4) If Sij ∈ ker τTi,Tj
, and Sjk ∈ ker τTj ,Tk

, then SijSjk ∈ ker τTi,Tk
. In

particular, if Sij ∈ ker τTi,Tj , Sji ∈ ker τTj ,Ti , then SijSji ∈ A′(Ti).
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(2.5) If S = (Sij)n×n ∈ A′(T ), then

S(i, j)
4
=



0 . . . 0 . . . 0
...

...
...

0 . . . Sij . . . 0
...

...
...

0 . . . 0 . . . 0

 ∈ A
′(T ).

(2.6) By Property (2.5), we can define a canonical map Φij from A′(T ) to
ker τTi,Tj by Φij(S) = Sij , for S = (Sij)n×n ∈ A′(T ). Then Φij is a
linear map and Φii(S) ∈ A′(Ti) for S ∈ A′(T ).

(2.7) Throughout this paper an ideal J means a proper two-sided ideal.
Let J be an ideal of A′(T ), and define

Jij =
{

Sij | Sij ∈ ker τTi,Tj ,



0 . . . 0 . . . 0
...

...
...

0 . . . Sij . . . 0
...

...
...

0 . . . 0 . . . 0

 ∈ J
}

.

Then we have:
(2.7.1) Jii is an ideal of A′(Ti) or Jii = A′(Ti).
(2.7.2) Jij is a subspace of ker τTi,Tj

.
(2.7.3) S = (Sij)n×n ∈ J for S(i, j) ∈ J .

(2.8) Let J be a closed ideal of A′(T ). By Property (2.7), we can define
a canonical map from ker τTi,Tj to ker τTi,Tj /Φij(J ) by Sij−→[Sij ]J ,
where ker τTi,Tj /Φij(J ) is the quotient space of ker τTi,Tj by the sub-
space Φij(J ). If J is closed, then A′(T )/J = {([Sij ]J )n×n|Sij ∈
ker τTi,Tj} is a unital Banach algebra. It is easy to see that the canon-
ical map ΦJ from A′(T ) to A′(T )/J is ΦJ ((Sij)n×n) = ([Sij ]J )n×n.
Moreover, if ([Sij ]J )n×n = ΦJ (S) ∈ A′(T )/J , then

0 . . . 0 . . . 0
...

...
...

0 . . . [Sij ]J . . . 0
...

...
...

0 . . . 0 . . . 0

 = ΦJ (S(i, j)) ∈ A′(T )/J .

Definition 2.6. A finite irreducible algebra A is a Banach algebra such
that for every continuous irreducible representation π on a Banach space X
of A, π(A) is finite-dimensional, i.e., dim X < ∞. A Banach algebra A is
said to be n-homogeneous if all its continuous irreducible representations are
isomorphism to Mn(C).
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By Gelfand theory, if A is a Banach algebra, and if A/ radA is commu-
tative, then A is a 1-homogeneous algebra. Conversely, a 1-homogeneous
algebra A must be essentially commutative, i.e., A/ radA is commutative.

Lemma 2.7 (cf. [Jia]). Let T =
⊕n

k=1 Tk, and suppose J1 is an ideal of
A′(T1). Then there exists an ideal J of A′(T ) satisfying Φ11(J ) = J1, and
if there is another ideal J ′ of A′(T ) such that Φ11(J ′) = J1, then J⊆J ′.

Lemma 2.8 (cf. [Jia]). Let T =
⊕n

k=1 Tk, and suppose that J ∈ m(A′(T )).
Then Φkk(J ) = A′(Tk) or Φkk(J ) ∈ m(A′(Tk)), k = 1, 2, . . . , n.

Lemma 2.9 (cf. [Jia]). If T is a strongly irreducible Cowen-Douglas oper-
ator, then K0(A′(T )) ∼= Z,

∨
(A′(T )) ∼= N .

3. The stably finite (SI) decomposition of operators

Lemma 3.1 (Theorem CFJ, cf. [CFJ]). Let T ∈ L(H), and let H(n) denote
the direct sum of n copies of Hilbert space H, and T (n) the operator

⊕n
1 T on

H(n). Then the following are equivalent:

(1) T is similar to (∼)
⊕k

i=1 A
(ni)
i with respect to the decomposition

H =
⊕k

i=1H
(ni)
i , and for each natural number n, T (n) has a unique

finite (SI) decomposition, where k, n1, . . . , nk are natural numbers,
A1, . . . , Ak are strongly irreducible operators, and Ai 6∼Aj for 1 ≤ i 6=
j ≤ k.

(2) K0(A′(T )) ∼= Z(k) and V (A′(T )) ∼= N (k). If h denotes the isomor-
phism from V (A′(T )) to N (k), then h sends [I] to (n1, n2, . . . , nk),
i.e., h([I]) = n1e1 +n2e2 + · · ·+nkek, where k, n1, . . . , nk are natural
numbers and {ei}ki=1 are generators of N (k).

Lemma 3.2. Let T = A
(m1)
1 ⊕A

(m2)
2 ⊕· · ·⊕A

(mk)
k , Ai ⊂ (SI), and Ai 6∼ Aj

for 1 ≤ i 6= j ≤ k. Then
∨

(A′(T )) ∼= N (k)⇔
∨

(A′(
⊕k

i=1 A
(ni)
i ) ∼= N (k),

where {m1, . . . ,mk} and {n1, . . . , nk} are positive integers.

Proof. We need only to prove “⇒”. By Theorem CFJ,
∨

(A′(T )) ∼= N (k)

implies that
⊕k

i=1 A
(mmi)
i is finitely decomposable, where m =

∑k
i=1 nni.

Let T1 =
⊕k

i=1 A
(ni)
i . Then T

(n)
1 =

⊕k
i=1 A

(nni)
i . Note that mmi ≥ nni for

1 ≤ i ≤ k and
⊕k

i=1 A
(mmi)
i = T (n) ⊕

⊕k
i=1 A

(mmi−nni)
i . So T (n) is a finitely

decomposable operator and has a unique (SI) decomposition up to similarity.
By Theorem CFJ again, we have

∨
(A′(

⊕k
i=1 A

(ni)
i )) ∼= N (k). �

Lemma 3.3. Suppose A is a unital finite irreducible Banach algebra, J⊆A
is a closed ideal, and 0 → J → A → A/J → 0 is the short exact sequence.
If V (A) ∼= N and [1A] = 1, then π∗ : K0(A)→ K0(A/J ) is injective.
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Proof. Let n be a positive integer and p, q ∈ Mn(A) be two idempotents.
Since V (A) ∼= N , we have [p] = [er], [q] = [es], where ek = diag(1A, . . . , 1A,
0, . . . , 0) with k terms 1A on the diagonal. If π∗([p]) = π∗([q]), then [π(er)] =
[π(es)]. Since A is a unital finite irreducible Banach algebra, A/J is also
a unital finite irreducible Banach algebra, A/J is stably finite, and r = s.
Therefore the map π∗ : K0(A)→ K0(A/J ) is injective. �

Lemma 3.4. Suppose A is a unital finite irreducible Banach algebra, and
J1 6= J2 are two maximal ideals of A. Let J = J1 ∩ J2. Then A/J ∼=
A1/J1 ⊕A2/J2.

Proof. Let φi (i = 1, 2) be the quotient from A to A/Ji. Define φ : A−→
A1/J1 ⊕A2/J2 by φ(a) = φ1(a)⊕φ2(a). Then φ is a homomorphism. By the
Chinese Remainder Theorem, φ is onto. Note that kerφ = kerφ1 ∩ ker φ2 =
J1 ∩ J2 = J . So A/J ∼= A1/J1 ⊕A2/J2. �

Lemma 3.5 (cf. [CFJ]). Let T ∈ L(H), and suppose P1, P2 are idempo-
tents of A′(T ). If P1 ∼a P2 in (A′(T )), then T |P1H ∼ T |P2H.

Lemma 3.6. Let Ai ∈ (SI) and Ai 6∼Aj for 1 ≤ i 6= j ≤ k. Let {n1, n2,

. . . , nk} be positive integers. Let T =
⊕k

i=1 A
(ni)
i ⊕B, S1 = A

(n1)
1 ⊕B, S2 =⊕k

i=2 A
(ni)
i , where B is an arbitrary bounded operator. Note that T = S1⊕S2.

Let A12 = ker τS1,S2 , A21 = ker τS2,S1 . If
∨

(A′(S2)) ∼= N (k−1), then

Ĵ1 =

{
n∑

i=1

xiyi, xi ∈ A12, yi ∈ A21, 1 ≤ i ≤ n, n = 1, 2, . . .

}
is a proper ideal of A′(S1).

Proof. By Property (2.7.1), Ĵ1 = A′(S1) or Ĵ1 is a proper ideal of A′(S1).
If Ĵ1 = A′(S1), then there exist x1, x2, . . . , xn ∈ ker τS1,S2 , and y1, y2, . . . , yn ∈
ker τS2,S1 such that x1y1 + · · · + xnyn = 1A′(S1). It is easy to see that there
exists an idempotent P ∈ Mn(A′(S2)) such that 1A′(S1) ⊕ 0 ∼a 0 ⊕ P in
A′(S1 ⊕ S

(n)
2 ). Assume S1 ∈ B(K1), S

(n)
2 ∈ B(K2). By Lemma 3.5, we have

A
(n)
1 ⊕B = S1 = (S1 ⊕ S

(n)
2 )|(1A′(A1)⊕0)(K1⊕K2) ∼ (S1 ⊕ S

(n)
2 )|(0⊕P )(K1⊕K2)

= S
(n)
2 |PK2 .

Since
∨

(A′(S2)) ∼= N (k−1), S
(n)
2 has a unique (SI) decomposition up to simi-

larity by Theorem CFJ. Since A
(n)
1 ⊕B ∼ S

(n)
2 |PK2 , we have A1 ∼ Aj for some

2 ≤ j ≤ k. This contradicts our assumption that Ai 6∼ Aj , 1 ≤ i 6= j ≤ k. So
Ĵ1 is an ideal of A′(S1). �
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Lemma 3.7 (cf. [Jia]). Let T =
⊕n

k=1 Tk, where A′(Ti)/ radA′(Ti) is
commutative for 1 ≤ i ≤ n. Then for each J ∈ m(A′(T )) there exists a
positive integer lJ ≤ n such that A′(T )/J ∼= MlJ .

Lemma 3.8. Let A ∈ L(H) be a strongly irreducible operator, such that
A′(A)/ rad A′(A) is commutative. Then A is a stably finitely decomposable
operator. Furthermore, A(n) has a stably (SI) decomposition for n = 1, 2, . . . ,
if and only if K0(A′(A)) ∼= Z.

Proof. Let {P1, P2, . . . , Pm} be a unit decomposition of A(n). Then from
the proof of Lemma 3.7 we see that there exists a continuous natural homo-
morphism Φ : A′(A(n)) → Mn(C(m(A))), where m(A) is the set of maximal
ideals of A′(A). Let Pk = (P k

ij)n×n
, 1 ≤ k ≤ m. Then Φ(Pk) = (P k

ij(J))
n×n

,
where (P k

ij(J)) is a continuous function on m(A), 1 ≤ i, j ≤ k. Hence
(trPk)(J) =

∑n
i=1 (P k

ij(J)) is continuous on m(A). By the Shilov idempo-
tent theorem, m(A) is connected. Therefore (trPk)(J) ≡ nk ≥ 1. Note that
for J ∈ m(A), {(P k

ij)}n×n
is a unit idempotent decomposition in Mn(C).

Therefore
∑m

k=1(trPk)(J) = n, that is,
∑m

k=1 nk = n. So m ≤ n. Thus A is
a stably finite decomposition operator.

For P ∈ A′(An), let S = A(n)|PH. Then we can prove that A′(S) is a
homogeneous algebra. In fact, we see that (trP )(J) ≡ k for all J ∈ m(A) for
J1 ∈ m(S), and there exists a unique J ∈ m(A(n)) such that J ∩A′(S) = J1.
Hence

ΦJ1(A′(S)) = φJ(P )φJ(A′(A(n)))φJ(P ) ∼= Mk(C),

where φJ is the canonical quotient homomorphism from A′(A(n)) to
A′(A(n))/J . Therefore A′(S) is a k-homomorphism algebra.

The “only if” part follows from Lemma 3.1, so it remains to show the “if”
part. We know that (K0(A′(A)),

∨
(A′(A))) is an ordered group. We also

have K0(A′(A)) ∼= Z. Now, if G = Z and (G, G+) is an order group, then
there exists an isomorphism φ from G to Z such that φ(G+) ⊆ N . Thus we
may assume that

∨
(A′(A)) ⊆ N .

Let p = diag(I, 0, 0 . . . ) ∈M∞(A′(A)) and r = [p] ∈
∨

(A′(A)), r ∈ N . Let
q ∈Mn(A′(A)) be a non-zero idempotent. Then 0 6= [q] = s ∈

∨
(A′(A)). Let

B = A(n)|qH(n) . From the above proof we see that A′(B) is a k-homogeneous
algebra. Note that rs = r[q] = s[p]. So there exists n′ ≥ n such that

Q = diag(q, . . . , q(r), 0, . . . , 0) ∼a diag(p, . . . , p(s), 0, . . . , 0) = P,

where Q,P ∈ P(H(n′)). By Lemma 3.4, B(r) = A(n′)|QH(n′) ∼ A(n′)|PH(n′) =
A(s). ThereforeA′(B(r)) ∼= A′(A(s)), i.e., Mr(A′(B)) ∼= Ms(A′(A)). Note that
Mr(A′(B)) is an (rk)-homogeneous algebra. But Ms(A′(A)) is s-homogeneous,
so s = rk and

∨
(A′(A)) = {kr, k = 0, 1, 2, . . . } . Since (K0(A′(A)),

∨
(A′(A)))
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is an ordered group, r = 1, and
∨

(A′(A)) ∼= N . In view of Theorem CFJ, the
“if” part is proved. �

Lemma 3.9. Let T = A
(n1)
1 ⊕ A

(n2)
2 ⊕ · · · ⊕ A

(nk)
k , where Ai is a strongly

irreducible operator, Ai 6∼ Aj for 1 ≤ i 6∼ j ≤ n, and A′(Ai)/ radA′(Ai) is
commutative. Suppose the following conditions are satisfied:

(1) K0(A′(Ai)) = Z for i = 1, 2, . . . , n.
(2) For any positive integer n and any minimal idempotent P ∈ A′(T (n)),
A′(T (n)|PH)/ radA′(T (n)|PH) is commutative.

Then T is a stably finitely decomposable operator and T has a stably unique
(SI) decomposition up to similarity.

Proof. By Lemma 3.2, we may assume that T = A1⊕A2⊕· · ·⊕Ak, and we
only need to prove that, for all n ∈ N , T (n) has a unique (SI) decomposition
up to similarity.

If A′(T )/ radA′(T ) is commutative, i.e., A′(T ) is a 1-homogeneous algebra,
then

A′(T )/ radA′(T ) ∼= (A′(A1)/ radA′(A1))⊕ (A′(A2)/ radA′(A2))

⊕ . . . · · · ⊕ (A′(Ak)/ radA′(Ak))

by Lemma 3.8. We know that
∨
A′(Ai) ∼= N . Therefore∨

(A′(T )) ∼=
∨

(A′(T )/ radA′(T ))

∼=
∨

(A′(A1)/ radA′(A1))⊕
∨
A′(A2)/ radA′(A2))

⊕ · · · ⊕
∨

(A′(Ak)/ radA′(Ak))

∼= N (2).

By Lemma 3.1, the result follows for this case.
Therefore, we can assume that there exists J̆ ∈ m(T ) such that A′(T )/J̆ ∼=

Mr(C) for r ≥ 2, where m(T ) denotes the set of the maximal ideals of A′(T ).
Let T (n) = A

(n)
1 ⊕ A

(n)
2 ⊕ · · · ⊕ A

(n)
k . Suppose there exists another finite

(SI) decomposition of T (n),

T (n) ∼ A
(m1)
1 ⊕A

(m2)
2 ⊕ · · · ⊕A

(mk)
k ⊕B1 ⊕ · · · ⊕Bm,

where mi ≥ 0, i = 1, 2, . . . , k, m ≥ 0, and Bj ∈ (SI), and Bj 6∼Ai for all
1 ≤ i ≤ k, 1 ≤ j ≤ m.

Claim 1. mi + m ≤ n for i = 1, 2, . . . , k. Therefore T is a stably finitely
decomposable operator.

If the claim is not true, then, without loss of generality, we can assume
m1 + m > n.
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Let B = B1⊕B2⊕· · ·⊕Bm and S = A2⊕A3⊕· · ·⊕Ak, R = T (n)⊕S. We
proceed by induction on k. By Lemma 3.1 and Lemma 3.7, we know the result
is true when k = 1. We now assume Lemma 3.9 to be true when n ≤ k − 1.
Let Ĵ be the subalgebra of A′(T (n)) generated by ker τT (n),S and ker τS,T (n) .
By Lemma 3.6, Ĵ is a proper ideal of A′(T (n)). Let J1 be the closure of Ĵ
in A′(T (n)). Then J1 is a closed ideal of A′(T (n)).

Let

J =
[

J1 ker τT (n),S

ker τS,T (n) A′(S)

]
⊆A′(R).

Then J is a closed ideal of A′(R), and A′(R)/J = A′(T (n))/J1 ⊕ 0. Let
A = A′(T (n))/J1.

When T (n) = A
(n)
1 ⊕A

(n)
2 ⊕ · · · ⊕A

(n)
k , we have

ker τT (n),S =



ker τA1,S

...
ker τA1,S

A′(S)
. . .
A′(S)


,(1)

ker τS,T (n) = [ker τS,A1 , . . . , ker τS,A1 ,A′(S), . . . ,A′(S)],

ker τT (n),S · ker τS,T (n) =
[

[ker τA1,S · ker τS,A1 ]n×n ∗
∗ [A′(S)]n×n

]
,

where S = A
(n)
2 ⊕ · · · ⊕A

(n)
k .

Next, consider the case

T (n) ∼ A
(m1)
1 ⊕A

(m2)
2 ⊕B1 ⊕ · · · ⊕Bm

= A
(m1)
1 ⊕A

(m2)
2 ⊕B ∼ A

(m1)
1 ⊕B ⊕A

(m2)
2 .

By a simple computation we get

ker τT (n),S · ker τS,T (n) = diag(A1 ⊕B1 ⊕ . . . Bm ⊕A2 ⊕ . . . Ak),

where

A1 = [ker τA1,S · ker τS,A1 ]m1×m1 ,

Bi = ker τBi,A2 · ker τA2,Bi , i = 1, 2, . . . ,m,

Ai = [A′(Ai)]mi×mi .

Note that m1 + m > n. Therefore J is not a maximal ideal. In fact, by the
proof of Lemma 3.6 and

∨
(A′(S)) ∼= N , we have

JBj = {x1y1 + x2y2 + · · ·+ xnyn, xi ∈ ker τBj ,S ,

yi ∈ ker τS,Bj , i = 1, 2, . . . }
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and the closure of JBj
is not equal to A′(Bj) for 1 ≤ j ≤ m. If J is a maximal

ideal, then A′(T (n))/J1
∼= Mn(C) and A′(A(m1)

1 ⊕B)/J ∼= Mm1+m(C). Since
m1 + m > n, we get a contradiction.

Note that A′(T (n)) = diag(A′(A(n)
1 ),A′(S(n))). Let J1 = diag(J11, J22).

By (1),
∨

(A′(S)) ∼= N , and Lemma 3.6, J11 is a closed ideal of A′(A(n)
1 ) and

J22 = A′(S(n)) = [A′(S)]n×n. So

(3) A = A′(T (n))/J1 = A′(A(n)
1 )/J11 ⊕ 0.

On the other hand,

A′(T (n)) = diag(A′(A(m1)
1 ),A′(B1), . . . ,A′(Bm),A′(A(m2)

2 ), . . . ,A′(A(mk)
k )).

Similarly, from (2),
∨

(A′(A2)) ∼= N , and Lemma 3.6 we obtain

J1 = diag(J11,J22, . . . ,Jm+k,m+k),

where J11 is a closed ideal of A′(A(m1)
1 ), Jii is a closed ideal of A′(Bi−1), and

Jm+j,m+j = A′(A(mj)
j ) for j = 2, 3, . . . , k. Therefore

(4) A = A′(T (n))/J1 = A′(A(m1)
1 ⊕B)/J ′1 ⊕ 0,

where J ′1 = diag(J11,J22, . . . ,Jm+1,m+1).
Without loss of generality, we may assume that m1,m2 > 0; otherwise, we

can consider

T (2n) = T (n) ⊕ T (n) ∼ A
(n+m1)
1 ⊕A

(n+m2)
2 ⊕ · · · ⊕A

(n+mk)
k ⊕B1 ⊕ · · · ⊕Bm,

and
T (2n) = A

(2n)
1 ⊕A

(2n)
2 ⊕ · · · ⊕A

(2n)
k .

By (4), there exists a homomorphism φ : A′(A(m1)
1 ⊕ B)−→A, which is

onto. By (3) and since A′(A1)/ radA′(A1) is commutative, A′(A(m1)
1 ) is n-

homogeneous. So A is n-homogeneous. By the second decomposition of T (n)

and (4), we have

A = diag(A1,A2, . . . ,A1+m)

= (A′(A(m1)
1 )/J11,A′(B1)/J22, . . . ,A′(Bm)/Jm+1,m+1).

Since Jii are all proper ideals, Ai 6= 0 for i = 1, 2, . . . , 1 + m. Let J ′11 be a
maximal ideal of A1. By Kaplansky’s theorem, there exists a unique maximal
ideal J2⊆A such that Φ11(J2) = J ′11, where Φ11 is the projection from A to
A1. Therefore

A/J2 = diag(A1/J ′11,A2/Φ22(J2), . . . ,A1+m/Φ1+m,1+m(J2)).

Since A is n-homogeneous, A/J2
∼= Mn(C). Since m1 + m > n, there

exists 1 ≤ j ≤ m such that Aj/Φjj(J2) = 0. We may assume j = m + 1,
or, equivalently, A1+m,1+m/Φ1+m,1+m(J2) = 0. Let J ′1+m,1+m be a maximal
ideal of A1+m. By Kaplansky’s theorem, there exists J3, a maximal ideal
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of A, such that Φ1+m,1+m(J3) = J ′1+m,1+m. Then J2 6= J3. Since A is
n-homogeneous, A/J3

∼= Mn(C). Let J4 = J2 ∩ J3. By Lemma 3.4, there
exists a homomorphism Φ1 : A−→A/J4

∼= Mn(C)⊕Mn(C), such that

Φ1(1A1 ⊕ 0⊕ · · · ⊕ 0) = (1⊕ 0⊕ · · · ⊕ 0)⊕ P,

Φ1(0⊕ · · · ⊕ 0⊕ 1A1+m) = 0⊕ (0⊕ · · · ⊕ 0⊕ 1).

Let Φ = Φ1 · φ. Then Φ is a homomorphism from A′(A(m1)
1 ⊕ B) onto

Mn(C)⊕ Mn(C), such that

Φ(1A′(A(m1)
1 )

⊕ 0⊕ · · · ⊕ 0) = (1⊕ 0⊕ · · · ⊕ 0)⊕ P,

Φ(0⊕ · · · ⊕ 0⊕ 1A′(Bm)) = 0⊕ (0⊕ · · · ⊕ 0⊕ 1).

Since A′(R)/J = A′(T (n))/J1 ⊕ 0 = A ⊕ 0, there exists a closed ideal
J ⊇ J such that A′(R)/J = A/J4 ⊕ 0 = A′(A(m1)

1 ⊕B)/ ker Φ⊕ 0.
We consider R = A

(n)
1 ⊕ S(n) ⊕ S and J ⊇ J . There exists a closed ideal

J ′′1 of A′(A(n)
1 ) such that

(5) A′(R)/J = A′(A(n)
1 )/J ′′1 ⊕ 0 = A′(A(m1)

1 ⊕B)/ ker Φ⊕ 0.

Let

π : A′(R)→ A′(R)/J,

π1 : A′(A1
(n))→ A′(A1

(n))/J1

′′
,

π2 : A′(A(m1)
1 ⊕B)−→A′(A(m1)

1 ⊕B)/ ker Φ

be quotient maps. We will prove

π1∗(K0(A′(A(n)
1 ))) ∼= π∗(K0(A′(R))) ∼= π2∗(K0(A′(A(m1)

1 ⊕B))).

Let α∗ : π1∗(K0(A′(A(n)
1 )))−→π∗(K0(A′(R))) be such that

α∗(π1∗([e])) = π∗([e⊕ 0⊕ · · · ⊕ 0]), e ∈ P∞(A′(A(n)
1 )).

First we show that α∗ is injective. If π∗([e⊕ 0⊕ · · ·⊕ 0]) = 0, then π∗(e⊕ 0⊕
· · · ⊕ 0) ∼s 0, so there exists r such that

π∗(e⊕ 0⊕ · · · ⊕ 0)⊕ r ∼a 0⊕ r.

Then π1∗(e)⊕ 0⊕ · · · ⊕ 0⊕ r ∼a 0⊕ r, since, for all r, r is an idempotent and
0⊕ r ∼a r. So if we set r′ = 0⊕ · · · ⊕ 0⊕ r, we get

π1∗(e)⊕ r′ ∼a 0⊕ r′.

Consequently, π1∗(e) ∼a 0. Therefore [π1∗(e)] = π1∗([e]) = 0.
Next, we prove that α∗ is surjective. For all β ∈ K0(A′(R)), by (5), there

exists e such that π1∗([e]) = π∗([β]). For (βij)n×n ∈ Mn(K0(A′(R))), there
exists eij such that π1∗([eij ]) = π∗([βij ]). In fact, by K-Theory, we have
[(π∗(eij)⊕ 0 · · · ⊕ 0)n×n]0 = [π∗((eij)n×n)⊕ 0]0. So α∗ is surjective.
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Similarly, we obtain π∗(K0(A′(R))) ∼= π2∗(K0(A′(A(m1)
1 ⊕B))).

By Lemma 3.3, π1∗ is injective. Therefore

π2∗(K0(A′(A(m1)
1 ⊕B))) ∼= π∗(K0(A′(R)))

∼= π1∗(K0(A′(A(n)
1 ))) ∼= K0(A′(A(n)

1 )) ∼= Z.

On the other hand, Φ induces an isomorphism

Ψ : A′(A(m1)
1 ⊕B)/ ker Φ−→Mn(C)⊕Mn(C).

By the property of the K0 group, we get

Φ∗ = Ψ∗ · π2∗ : K0(A′(A(m1)
1 ⊕B))−→K0(Mn(C)⊕Mn(C)) = Z ⊕ Z.

Since Ψ∗ is an isomorphism, we have

(6) Φ∗(K0(A′(A(m1)
1 ⊕B))) = Ψ∗(π2∗(K0(A′(A(m1)

1 ⊕B)))) ∼= Z.

Since
Φ(1A′(A(m1)

1 )
⊕ 0⊕ · · · ⊕ 0) = (1⊕ 0⊕ · · · ⊕ 0)⊕ P

and
Φ(0⊕ · · · ⊕ 0⊕ 1A′(Bm)) = 0⊕ (0⊕ · · · ⊕ 0⊕ 1),

we get

Φ∗([1A′(A(m1)
1 )

⊕ 0⊕ · · · ⊕ 0]) = [1⊕ 0⊕ · · · ⊕ 0]⊕ [P ] = 1⊕ [P ],

Φ∗([0⊕ · · · ⊕ 0⊕ 1A′(Bm)]) = [0]⊕ [0⊕ · · · ⊕ 0⊕ 1] = 0⊕ 1.

By (6), there exists n ∈ Z such that

Φ∗([1A′(A(m1)
1 )

⊕ 0⊕ · · · ⊕ 0]) = nΦ∗([0⊕ · · · ⊕ 0⊕ 1A′(Bm)]),

i.e., we have 1⊕P = n(0⊕1) = 0⊕n ∈ Z⊕Z. This is a contradiction. Hence
mi + m ≤ n for i = 1, 2.

Claim 2. mi + m = n for i = 1, 2, . . . , k.

By Claim 1, we only need to show that mi + m ≥ n for i = 1, 2, . . . , k.
By Lemma 3.9, each A′(Bi)/ radA′(Bi), 1 ≤ i ≤ m, is commutative.

Since A = A′(T (n))/J1 = A′(A(n)
1 )/J11 ⊕ 0 is a homogeneous algebra and

diagA = (A′(A(n)
1 )/J11,A′(B1)/J22, . . . ,A′(Bm)/J1+m,1+m, 0), for all 1 ≤

j ≤ m, A′(Bj)/Jj+1,j+1 is essentially commutative. By Lemma 3.7, it follows
that A/J ′ ∼= Ml(C), l ≤ m1 + m for every maximal ideal J ′ of A. Since A
is an n-homogeneous algebra, we conclude m1 + m ≥ n.

Similarly, we obtain mi + m ≥ n for i = 2, 3, . . . , k.

Claim 3. m = 0, i.e., we have mi = n for 1 ≤ i ≤ k. Therefore T (n) has
a unique (SI) decomposition up to similarly.
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Since T = A1 ⊕ A2 ⊕ · · · ⊕ Ak, and A′(Ai)/ rad A′(Ai), i = 1, 2, are
commutative, we have for all J ∈ m(A′(T )), A′(T )/J ∼= Mr(J )(C), where
1 ≤ r(J ) ≤ k. Let

r0 = max
{
r(J ) : A′(T )/J ∼= Mr(J )(C), J ∈ m(A′(T ))

}
.

Let Ĵ be the maximal ideal of A′(T ) such that A′(T )/Ĵ ∼= Mr0(C). If r0 = 1,
we are done. If r0 ≥ 2, then

A′(T (n))/Mn(Ĵ ) ∼= Mn(A′(T ))/Ĵ ) ∼= Mnr0(C).

For 1 ≤ i ≤ k we have mi = n−m since

T (n) ∼ A
(m1)
1 ⊕A

(m2)
2 ⊕· · ·⊕A

(mk)
k ⊕B1⊕· · ·⊕Bm = T (n−m)⊕B1⊕· · ·⊕Bm.

Note that A′(T (n)) is an algebra, diag(A′(T (n−m)),A′(B1), . . . ,A′(Bm)).
Therefore, for J̄ ∈ m(A′(T (n))), Φ11(J̄ ) = A′(T (n−m)) or Φ11(J̄ ) is a max-
imal ideal of A′(T (n−m)). So for arbitrary J ∈ m(A′(T (n))), A′(T (n))/J ∼=
Ms(C), where s ≤ (n−m)r0 +m. Hence nr0 ≤ (n−m)r0 +m, i.e., mr0 ≤ m.
Since r0 ≥ 2, we get m = 0. �

4. Main results

Lemma 4.1. Let T = A
(n1)
1 ⊕ A

(n2)
2 , and suppose T and Ai, i = 1, 2,

satisfy the following conditions:
(1) K0(A′(Ai)) = Z for i = 1, 2.
(2) For any positive integer n and minimal idempotent P ∈ A′(T (n)),
A′(T (n)|PH)/ radA′(T (n)|PH) is commutative.

Then for arbitrary J ∈ m(A′(T )) we have

J =

[
J11 ker τ

A
(n1)
1 ,A

(n2)
2

ker τ
A

(n2)
2 ,A

(n1)
1

A′(A(n2)
2 )

]
or

J =

[
A′(A(n1)

1 ) ker τ
A

(n1)
1 ,A

(n2)
2

ker τ
A

(n2)
2 ,A

(n1)
1

J22

]
,

where Jii is a maximal ideal of A′(A(ni)
i ) (i = 1, 2).

Proof. First, we assume that T = A1 ⊕ A2. Note that A′(A1)/ radA′(A1)
and A′(A2)/ radA′(A2) are both commutative. If the result is not true, there
exists

J =
[
J11 J12

J21 J22

]
∈ m(A′(T )),

where J12⊂ (6=)ker τA1,A2 and J21⊂ (6=)ker τA2,A1 .
Let

J̃ = J +̇1 =
[
A′(A1) J12

J21 A′(A2)

]
.
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From the exact sequence

0−→J−→A′(T )−→A′(T )/J−→0,

using the property of the K0-group, we obtain the following six-term exact
sequence:

K0(J ) i∗−→ K0(A′(T )) π∗−→ K0(A′(T )/J )
∂ ↑ ∂ ↓

K1(A′(T )/J ) ←− K1(A′(T )) ←− K1(J )

Since A′(T )/J ∼= M2(C), we have K0(A′(T )/J ) ∼= Z and K1(A′(T )/J ) ∼= 0.
Moreover, we have K0(A′(T )) ∼= Z(2). Since

π∗

[
IA′(A1) 0

0 0

]
= 1, π∗

[
0 0
0 IA′(A2)

]
= 1,

π∗ : Z ⊕ Z−→Z is surjective. Therefore we obtain the following split exact
sequence:

0−→K0(J ) i∗−→ Z ⊕ Z
π∗

 Z−→0.

Since π∗(K0(A′(T ))) ∼= Z, we get K0(J ) ∼= Z.
From the split exact sequence

0−→J−→J +̇1
(J +̇1)/J−→0,

using the property of the K0-group, we get following split exact sequence:

0−→K0(J )−→K0(J +̇1)
K0((J +̇1)/J )−→0.

Since (J +̇1)/J ∼= C⊕C, we have K0((J +̇1)/J ) ∼= Z(2). Therefore K0(J +̇1)
∼= Z⊕Z⊕Z, and there exist three minimal idempotents that are not similarity
equivalent to one another in M∞(J +̇1). Let

P1 =
[

1 0
0 0

]
, P2 =

[
0 0
0 1

]
be two minimal idempotents of P∞(J +̇1), and let the third one be P in
M∞(J +̇1). Then P 6∼aP1, P 6∼aP2 in M∞(J +̇1).

Claim 4. I − P ∼a P in M∞(J +̇1).

Otherwise, I − P 6∼aP in M∞(J +̇1). Then I − P ∼a P1 or I − P ∼a P2

in M∞(J +̇1). Therefore P ∼a P2 or P ∼a P1 in M∞(J +̇1). This is a
contradiction.

Since M∞(J +̇1)⊂M∞(A′(T )), we have P ∼a P1 and (I − P ) ∼a P1 (or
P ∼a P2 and (I − P ) ∼a P2) in A′(T ). By Lemma 3.4, we have T |ran P ∼
T |ran(I−P ). But T |ran P ∼ A1, T |ran(I−P ) ∼ A2, so A1 ∼ A2. This contradicts
the relation A1 6∼A2.

Therefore K0(J +̇1) ∼= Z⊕Z, and K0(J ) = 0. But we have already proved
that K0(J ) ∼= Z, so this is impossible.
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Next, assume T = A
(n1)
1 ⊕A

(n2)
2 . Let J be a maximal ideal of A′(T ). If

J =



 J11 . . . J11

... . . .
...

J11 . . . J11


n1×n1

 J12 . . . J12

... . . .
...

J12 . . . J12


n1×n2 J21 . . . J21

... . . .
...

J21 . . . J21


n2×n1

 J22 . . . J22

... . . .
...

J22 . . . J22


n2×n2


,

where J12⊂ (6=)ker τA1,A2 and J21⊂ (6=)ker τA2,A1 , then

J =

266666666666664

»
J11 J12

J21 J22

–
∗

∗

26666666664

264 J11 . . . J11

... . . .
...

J11 . . . J11

375
k×k

264 J12 . . . J12

... . . .
...

J12 . . . J12

375
k×l264 J21 . . . J21

... . . .
...

J21 . . . J21

375
l×k

264 J22 . . . J22

... . . .
...

J22 . . . J22

375
l×l

37777777775

377777777777775
is a maximal ideal of the commutant of T = (A1⊕A2)⊕ (A(n1−1)

1 ⊕A
(n2−1)
2 ),

where k = n1 − 1, l = n2 − 1. Hence, by Lemma 3.6,[
J11 J12

J21 J22

]
is a maximal ideal of A′(A1 ⊕A2). This is a contradiction. �

Corollary 4.2. Let T = A
(n1)
1 ⊕A

(n2)
2 ⊕· · ·⊕A

(nk)
k , where A1, A2, . . . , Ak

and T satisfy the conditions of Lemma 3.9. Then for arbitrary Bij = A
(ni)
i ⊕

A
(nj)
j , i 6= j, we have

∨
(A′(Bij)) ∼= N (2), and for arbitrary J ∈ m(A′(T ))

we have

J =


J11 J12 . . . J1k

J21 J22 . . . J2k

. . . . . . . . . . . .
Jk1 Jk2 . . . Jkk

 ,

where Jij = ker τ
A

(ni)
i ,A

(nj)
j

when i 6= j, and there is a unique i such that

Jii ∈ m(A′(A(ni)
i )) and Jjj = A′(A(nj)

j ) when j 6= i.

Corollary 4.3. Let T = A
(n1)
1 ⊕A

(n2)
2 ⊕· · ·⊕A

(nk)
k , where A1, A2, . . . , Ak

and T satisfy the conditions of Lemma 3.8. Then for arbitrary Bij = A
(ni)
i ⊕

A
(nj)
j , i 6= j, we have

∨
(A′(Bij)) ∼= N (2), and for arbitrary J ∈ m(A′(T )),
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we have A′(T )/J ∼= Mni(C) for some i. Furthermore, A′(T )/J ∼= Mni(C) if
and only if Jii ∈ m(A′(A(ni)

i )) and Jjj = A′(A(nj)
j ) when j 6= i,

Theorem 4.4. Suppose A,B ∈ L(H), and

A = A
(n1)
1 ⊕A

(n2)
2 ⊕ · · · ⊕A

(nk)
k ,

B = B
(m1)
1 ⊕B

(m2)
2 ⊕ · · · ⊕B

(ml)
l ,

where Ai, Bj ∈ (SI) for i = 1, 2, . . . , k, j = 1, 2, . . . , l, Ai and Bj are not
similarity equivalent to each other, and A,B and Ai, Bj (i = 1, 2 . . . , k, j =
1, 2, . . . , l) satisfy the following conditions:

(1) K0(A′(Ai)) = Z, K0(A′(Bj)) = Z for i = 1, 2, . . . , k, j = 1, 2, . . . , l.
(2) For any positive integer n and minimal idempotent P ∈ A′(T (n)),
A′(T (n)|PH(n))/ radA′(T (n)|PH(n)) is commutative, where T ∈ {A,B}.

Then A ∼ B if and only if:

(1) (K0(A′(A⊕B)),
∨

(A′(A⊕B)), 1A′(A⊕B)) ∼= (Z(k), N (k), 1).
(2) For all J ∈ m(A ⊕ B), we have A′(A ⊕ B)/J ∼= Mm(C), m ∈

(2n1, 2n2, . . . , 2nk).

Proof. “⇐”: We assume that B = B
(s1)
1 ⊕B

(s2)
2 ⊕ · · · ⊕B

(sm)
m , where Bi ∈

(SI) for i = 1, 2, . . . ,m.

Claim 5. For each Bi, i = 1, 2, . . . ,m, there exists Aj, j = 1, 2, . . . , k
such that Bi ∼ Aj.

Otherwise, we may assume B1 is not similar to any Aj , but any Bi for i 6= 1
is similar to some Aj . Then (A ⊕ B) ∼ (A(t1)

1 ⊕ A
(t2)
2 ⊕ · · · ⊕ A

(tk)
k ⊕ B

(s1)
1 ).

By Lemma 3.8, we have
∨

(A(t1)
1 ⊕A

(t2)
2 ⊕ · · · ⊕A

(tk)
k ⊕B

(s1)
1 ) ∼= N (k+1). This

contradicts (1).

Claim 6. m = k.

By Claim 5, we have m ≤ k. We assume m < k and B1 ∼ A1, B2 ∼
A2, . . . , Bm ∼ Am. Then (A⊕B) ∼ (A(t1)

1 ⊕A
(t2)
2 ⊕ · · · ⊕A

(tm)
m ⊕A

(nm+1)
m+1 ⊕

· · · ⊕ A
(nk)
k ). By Corollary 4.3 there exists a maximal ideal J such that

A′(A ⊕ B)/J ∼= Mnk
(C), but from (2), we have A′(A ⊕ B)/J ∼= M2nk

(C).
This is a contradiction.

We may assume B1 ∼ A1, B2 ∼ A2, . . . , Bk ∼ Ak. Then

(A⊕B) ∼ (A(n1+s1)
1 ⊕A

(n2+s2)
2 ⊕ · · · ⊕A

(nk+sk)
k ).

Claim 7. si = ni for i = 1, 2, . . . , k.
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Otherwise, we can assume s1 6= n1. By Corollary 4.3, there exists a
maximal ideal J such that A′(A ⊕ B)/J ∼= Mn1+s1(C). By (2), we have
A′(A⊕B)/J ∼= M2n1(C). This is a contradiction.

“⇒”: Since A ∼ B, we have B = B
(n1)
1 ⊕ B

(n2)
2 ⊕ · · · ⊕ B

(nk)
k , where

Bi ∈ (SI) for i = 1, 2, . . . , k and Ai ∼ Bi for i = 1, 2, . . . , k. By Lemma 3.2,
we have

∨
(A′(A⊕B)) =

∨
(A′(

⊕k
i=1 A

(tk)
i ) =

∨
(A′(

⊕k
i=1 Ai) = N (k). Thus

(1) is true.
By Corollary 4.3, (2) is also true. �

C.L. Jiang and Z.Y. Wang proved the following theorem [JW, Chapter 3].

Lemma 4.5. Every Cowen-Douglas operator can be written as the direct
sum of finitely many strongly irreducible Cowen-Douglas operators.

Thus we have the following corollary (cf. [JGJ]).

Corollary 4.6. Let A,B ∈ Bn(Ω). Suppose that

A = A
(n1)
1 ⊕A

(n2)
2 ⊕ · · · ⊕A

(nk)
k ,

where 0 6= ni ∈ N , Ai ∈ (SI) for i = 1, 2, . . . , k and Ai 6∼Aj for i 6= j. Then
A ∼ B if and only if:

(1) (K0(A′(A⊕B)),
∨

(A′(A⊕B)), I) ∼= (Z(k), N (k), 1).
(2) The isomorphism h from

∨
(A′(A⊕B)) to N (k) sends [I] to (2n1, 2n2,

. . . 2nk), i.e., h([I]) = 2n1e1 +2n2e2 + · · ·+2nkek, where I is the unit
of A′(A⊕B) and {ei}ki=1 are the generators of N (k).
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