# CLIFFORD LINKS ARE THE ONLY MINIMIZERS OF THE ZONE MODULUS AMONG NON-SPLIT LINKS 

GRÉGOIRE-THOMAS MONIOT


#### Abstract

The zone modulus is a conformally invariant functional over the space of two-component links embedded in $\mathbf{R}^{3}$ or $\mathbf{S}^{3}$. It is a positive real number and its lower bound is 1 . Its main property is that the zone modulus of a non-split link is greater than $(1+\sqrt{2})^{2}$. In this paper, we will show that the only non-split links with modulus equal to $(1+\sqrt{2})^{2}$ are the Clifford links, that is, the conformal images of the standard geometric Hopf link.


## 0. Introduction

Langevin and O'Hara introduced in [1] a conformally invariant functional for knots, called the measure of acyclicity. It is the volume (with respect to a conformally invariant measure on the space of all round spheres) of the set of spheres that cut the knot in at least four points. There exists a constant $C$ such that a curve with measure of acyclicity below $C$ is the unknot. To prove this, they introduced a knot modulus called the zone modulus.

This work comes after O'Hara's definition in [3] of the concept of a knot energy. Roughly, a functional on the space of knots is an energy when it blows up near a self-intersection. An energy is also expected to possess thresholds such that a curve with energy lower than a particular threshold must belong to a particular knot type. A knot representative in a knot class that realizes the minimum energy provides the best shaped knot of its class.

One of the most famous knot energy functionals, introduced by O'Hara in [3], is

$$
E(\gamma)=\iint\left\{\frac{1}{|\gamma(v)-\gamma(u)|^{2}}-\frac{1}{D(\gamma(u), \gamma(v))^{2}}\right\}\left|\gamma^{\prime}(u) \| \gamma^{\prime}(v)\right| d u d v
$$

where $\gamma$ is an embedded curve and $D(\gamma(u), \gamma(v))$ denotes the length of the shortest path from $\gamma(u)$ to $\gamma(v)$ on $\gamma$. In [4] Freedman, He and Wang proved

[^0]the conformal invariance of $E$ and called $E$ the Möbius energy. In the same paper they showed that the energy of a closed curve is always greater than or equal to 4 and that equality holds only for circles. They proved also that each prime knot class has an energy-minimizing representative, and that, given $m>0$, there are finitely many knot types such that $E \leq m$. In [5], Kim and Kusner constructed explicit examples of knotted curves which are critical for $E$.

In [2], Langevin and the author proved that the minimum of the zone modulus over all non-split two-component links is $(\sqrt{2}+1)^{2}$. This minimum is attained by a special configuration of two circles called a Clifford link, defined as follows:

Definition 1. We say that a link is a Clifford link when it consists of two circles such that each sphere containing one of the circles is perpendicular to each of the spheres containing the other circle. Equivalently, a Clifford link is a conformal image of the standard geometric Hopf link.

In [4], Freedman, He and Wang defined the mutual Möbius energy of two curves as

$$
E\left(\gamma_{1}, \gamma_{2}\right)=\iint \frac{\left|\gamma_{1}^{\prime}(u)\right|\left|\gamma_{2}^{\prime}(v)\right|}{\left|\gamma_{1}(u)-\gamma_{2}(v)\right|^{2}} d u d v
$$

Kim and Kusner showed in [5] that the standard geometric Hopf link is critical for $E$. In [7], He gave a geometric interpretation of the Euler-Lagrange equation for any $E$-critical pair of curves. He showed that there exists a pair of curves that minimizes $E$ over all linked pairs of loops and that every such pair is ambiently isotopic to the Hopf link. As far as the author knows, it is still a conjecture that Clifford links are the only configurations that minimize the Möbius energy among two-component non-split links.

The purpose of the present paper is to solve the analogous conjecture for the zone modulus. We will show:

ThEOREM 1. The two-component links that realize the minimum zone modulus among all non-split two-component links are the Clifford links.

It should be noted that the standard geometric Hopf link or its conformal class, the Clifford links, seems to be a recurrent minimizer or maximizer of various functionals. For example, Kusner proved in [6] that the thickness of a non-split two-component link in $\mathbf{S}^{3}$ cannot exceed that of the standard geometric Hopf link, which equals $\pi / 4$. In [2], we proved that the standard geometric Hopf is the only non-split two-component link with thickness $\pi / 4$.

## 1. Preliminary definitions and known facts

We will recall in this section the definition of the zone modulus of a twocomponent link and some results of [2].
1.1. The modulus of a zone between two spheres. We first define the modulus of a zone between two disjoint spheres, which we call for simplicity the modulus of two spheres.

Definition 2. Given two disjoint spheres $S_{1}$ and $S_{2}$ in $\mathbf{R}^{3}$, let us choose a conformal transformation that makes the two spheres concentric with radii $R_{2}>R_{1}$. Then the modulus $\mu\left(S_{1}, S_{2}\right)$ of the two spheres is the ratio $R_{2} / R_{1}>$ 1.

We can express the modulus in terms of the cross-ratio. Recall that the cross-ratio of four collinear points is defined as

$$
\operatorname{Cr}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{3}\right)\left(x_{2}-x_{4}\right) /\left(x_{2}-x_{3}\right)\left(x_{1}-x_{4}\right) .
$$

The cross-ratio is invariant by any homography of the line. We can extend its definition to four concircular points as follows: The cross-ratio of four points on a circle is the cross-ratio of the four image points by a stereographic projection of the circle onto a line.

Two disjoint spheres $S_{1}$ and $S_{2}$ generate a pencil of spheres with limit points. It is the set of spheres perpendicular to all the circles perpendicular to both $S_{1}$ and $S_{2}$. The limit points are the two points of intersection of these circles. Consider a circle perpendicular both to $S_{1}$ and $S_{2}$ as in Figure 1. It contains the limit points $l_{1}$ and $l_{2}$ of the pencil generated by $S_{1}$ and $S_{2}$ and intersects each $S_{i}$ in two points. Let us take two of these points, $p_{1}$ and $p_{2}$, such that $l_{1}, p_{1}, p_{2}, l_{2}$ are in this order on the circle.

Let $I$ be a Möbius transformation that sends $l_{2}$ to infinity. The spheres $I\left(S_{1}\right)$ and $I\left(S_{2}\right)$ are now concentric and we have

$$
\operatorname{Cr}\left(I\left(p_{1}\right), I\left(p_{2}\right), I\left(l_{2}\right), I\left(l_{1}\right)\right)=R_{2} / R_{1}
$$

where $R_{1}$ and $R_{2}$ are the radii of $I\left(S_{1}\right)$ and $I\left(S_{2}\right)$. By definition, we have $\mu\left(S_{1}, S_{2}\right)=R_{2} / R_{1}$. Thus

$$
\mu\left(S_{1}, S_{2}\right)=\operatorname{Cr}\left(p_{1}, p_{2}, l_{2}, l_{1}\right)
$$



Figure 1. Modulus in term of cross-ratio.

Remark 1. Let $P$ be a plane and $S$ a sphere disjoint from $P$ as in Figure 2. The abscissa $\lambda$ of the limit point of the pencil generated by $S$ and $P$ is $\sqrt{a b}$. Then,

$$
\mu(P, S)=\operatorname{Cr}(0, a, \lambda,-\lambda)=\frac{\sqrt{a b}+a}{\sqrt{a b}-a}
$$



Figure 2. Modulus of a sphere and a plane.

REMARK 2. As a consequence, if $P$ is a plane and $S_{1}$ and $S_{2}$ are two spheres with the same radius and if $S_{1}$ is closer to the plane than $S_{2}$, then we have $\mu\left(P, S_{1}\right)<\mu\left(P, S_{2}\right)$.

REmARK 3. As another consequence, if a sphere $S$ of constant radius approaches a plane $P$, without intersecting it, then the modulus of $P$ and $S$ tends to 1 . Indeed, if $b-a$ is constant and $a$ tends to 0 , then $\mu(P, S)$ tends to 1 .

Remark 4. Let $S_{1}, S_{2}$ and $S_{3}$ be three disjoint spheres. Suppose the open 3-ball bounded by $S_{2}$ contains $S_{3}$, but is disjoint from $S_{1}$. Then $\mu\left(S_{1}, S_{2}\right)<$ $\mu\left(S_{1}, S_{3}\right)$.

This can be proved by performing a conformal transformation that turns $S_{1}$ into a plane and computing the two cross-ratios.
1.2. The zone modulus of a link. Let $K_{1}$ and $K_{2}$ be two embedded curves in $\mathbf{S}^{3}$.

Definition 3. A pair $\left(S_{1}, S_{2}\right)$ of spheres is said to be non-trivial for $K_{1}$ and $K_{2}$ if they are disjoint and if, for each sphere, there is at least one point of $K_{1}$ and one point of $K_{2}$ on it.

Definition 4. The zone modulus of $K_{1}$ and $K_{2}$ is the supremum of the moduli of all non-trivial pairs of spheres for $K_{1}$ and $K_{2}$.

The main result of [2] is the following:

TheOrem 2. Two linked curves have a zone modulus greater than or equal to $(1+\sqrt{2})^{2}$.
1.3. Trisecants. The following lemma is a concise rewriting of results of [2].


Figure 3. A trisecant.

Lemma 1. Let $K_{1}$ and $K_{2}$ be two linked curves such that $K_{1}$ goes through infinity and let $x$ be a point of $K_{2}$. There exists a straight line $L$ through $x$ that cuts $K_{1}$ in $y \neq \infty$ and $K_{2}$ again in $z$ (see Figure 3). We call such a line a trisecant through $x$. If the zone modulus of $K_{1}$ and $K_{2}$ equals $(1+\sqrt{2})^{2}$, then $y$ is the midpoint between $x$ and $z$ and there is no other point of intersection between $L$ and $K_{1}$ or $K_{2}$.

Trisecants may be seen as a conformal version of quadrisecants for two linked curves. This subject goes back to 1933 (see Pannwitz's work in [8]). A more modern treatment appears in Kuperberg's paper [9] and Denne's thesis.

## 2. Proof of Theorem 1

Let $K_{1}$ and $K_{2}$ be two linked curves. Two cases may occur:
(1) For every point $x$ on each curve, the other curve is contained in a sphere perpendicular at $x$ to the first curve.
(2) On one of the curves, say $K_{1}$, there exists a point $x_{1}$ such that no sphere perpendicular at $x_{1}$ to $K_{1}$ contains $K_{2}$.
If the first case occurs, there exist two points $x_{1}$ and $x_{2}$ on $K_{1}$ and two distinct spheres $S_{1}$ and $S_{2}$ containing $K_{2}$ and perpendicular at $x_{1}$ and $x_{2}$ to $K_{1}$. Thus $K_{2}$ is the round circle intersection of $S_{1}$ and $S_{2}$. For the same reasons, $K_{1}$ is also a round circle. Since $K_{1}$ is perpendicular to $S_{1}$ and $S_{2}$, it is perpendicular to each sphere going through $S_{1} \cap S_{2}=K_{2}$. Thus each sphere containing $K_{1}$ is perpendicular to each sphere containing $K_{2}$, so according to Definition 1, $K_{1}$ and $K_{2}$ form a Clifford link and the theorem is proved in the first case.

To conclude the proof, it is enough to prove that the second case never occurs when modulus $\left(K_{1}, K_{2}\right)=(1+\sqrt{2})^{2}$. We will suppose the contrary and show in the remainder of this section that this is impossible.

From now on, we suppose that modulus $\left(K_{1}, K_{2}\right)=(1+\sqrt{2})^{2}$ and that there exists a point $x_{1}$ on $K_{1}$ such that no sphere perpendicular at $x_{1}$ to $K_{1}$ contains $K_{2}$. By a suitable Möbius transformation, we send $x_{1}$ to infinity and the tangent at $x_{1}$ to a vertical line. The spheres perpendicular to $K_{1}$ at $x_{1}$ are now all the horizontal planes. Then there exist two distinct horizontal planes $P_{\text {top }}$ and $P_{\text {bottom }}$ tangent to $K_{2}$ such that $K_{2}$ lies between these planes.

Let $\tilde{K}_{1}$ denote $K_{1} \backslash \infty$. Let $x_{2} \in K_{2}$. By Lemma 1, there exists a trisecant $L$ through $x_{2}$ which cuts $\tilde{K}_{1}$ in a point $x_{3}$ and $K_{2}$ again in a point $x_{4}$. The point $x_{3}$ is the midpoint between $x_{2}$ and $x_{4}$. The following lemma shows that $K_{2}$ is trapped between spheres in particular position with $L$.


Figure 4. The spheres $\Sigma$ and $S$.
Lemma 2. Let c be the midpoint between $x_{2}$ and $x_{3}$. Let $\Sigma$ and $S$ be the spheres centered at $c$ with $\Sigma$ going through $x_{4}$ and $S$ going through $x_{2}$ and $x_{3}$ (see Figure 4). The curve $K_{2}$ lies between $\Sigma$ and $S$.

Proof. Suppose that there exists a point $x$ on $K_{2}$ outside the zone bounded by $S$ and $\Sigma$. Then $x$ is either outside $\Sigma$ or inside $S$; see Figure 5 . We will show that there exists a non-trivial pair of spheres of modulus strictly greater than $(1+\sqrt{2})^{2}$, contradicting our assumption that modulus $\left(K_{1}, K_{2}\right)=(1+\sqrt{2})^{2}$.

When $x$ is outside $\Sigma$, consider the line $L^{\prime}$ through $c$ and $x$ and the plane $P^{\prime}$ through $x$ that is perpendicular to $L^{\prime}$. Since $P^{\prime}$ contains $x_{1} \in K_{1}$ and $x \in K_{2}$, the pair $\left(S, P^{\prime}\right)$ is non-trivial. Let $a$ and $b$ be the two points of intersection of $S$ with $L^{\prime}$. By Remark $1, \mu\left(S, P^{\prime}\right)$ is a function of the abscissa of $a$ and $b$ on $L^{\prime}$ if $x$ marks the origin. With $x$ outside $\Sigma$, we have $|b-a|<|x-a|$. Therefore, $\mu\left(S, P^{\prime}\right)>(1+\sqrt{2})^{2}$.

When $x$ is inside $S$, consider the sphere $S^{\prime}$ through $x$ that is tangent to $S$ at $x_{3}$ and the plane $P$ through $x_{4}$ that is perpendicular to $L$. Since $S^{\prime}$ contains $x_{3} \in K_{1}$ and $x \in K_{2}$, the pair $\left(S^{\prime}, P\right)$ is non-trivial. By Remark 4, $\mu\left(S^{\prime}, P\right)>\mu(S, P)=(1+\sqrt{2})^{2}$.

Corollary 1. The curves $K_{1}$ and $K_{2}$ are perpendicular to $L$.


Figure 5. A point $x$ of $K_{2}$ outside $\Sigma$ or inside $S$ exhibits a non-trivial pair of spheres whose modulus is too large.

Proof. Let $c_{1}$ be the midpoint between $x_{2}$ and $x_{3}$ and let $c_{2}$ be the midpoint between $x_{3}$ and $x_{4}$. Let $\Sigma_{1}$ and $S_{1}$ be the spheres centered at $c_{1}$ such that $\Sigma_{1}$ goes through $x_{4}$ and $S_{1}$ goes through $x_{2}$ and $x_{3}$. Let $\Sigma_{2}$ and $S_{2}$ be the spheres centered at $c_{2}$ such that $\Sigma_{2}$ goes through $x_{2}$ and $S_{2}$ goes through $x_{3}$ and $x_{4}$ (see Figure 6).


Figure 6. The four spheres that enclose $K_{2}$.
By Lemma 2, $K_{2}$ must lie between $\Sigma_{1}$ and $S_{1}$ and between $\Sigma_{2}$ and $S_{2}$. Therefore $K_{2}$ must be tangent to $S_{1}$ and $\Sigma_{2}$ at $x_{2}$ and tangent to $S_{2}$ and $\Sigma_{1}$ at $x_{4}$. Therefore $K_{2}$ is perpendicular to $L$.

We can now choose a Möbius transformation that keeps $L$ fixed and that exchanges $x_{1}$ with $x_{2}$. The same argument with $K_{1}$ and $K_{2}$ interchanged shows that $K_{1}$ is also perpendicular to $L$.

Corollary 2. The trisecant $L$ through $x_{2}$ is unique.
Proof. Suppose, to the contrary, that there exists another trisecant $\tilde{L}$ through $x_{2}$ which cuts $\tilde{K}_{1}$ in $\tilde{x_{3}}$ and $K_{2}$ again in $\tilde{x_{4}}$. For convenience, let us work in the plane that contains $L$ and $L^{\prime}$ (see Figure 7). Let $c$ be the midpoint between $x_{2}$ and $x_{3}$ and let $C$ be the circle through $x_{4}$ centered at $c$. By Lemma 2, $\tilde{x_{4}}$ lies in the interior of $C$. Therefore we have $\left|x_{2}-\tilde{x_{4}}\right|<\left|x_{2}-x_{4}\right|$. Analogously, if we consider $\tilde{c}$ the midpoint between $x_{2}$ and $\tilde{x_{3}}$ and let $\tilde{C}$ be


Figure 7. Uniqueness of the trisecant through $x_{2}$.
the circle through $\tilde{x_{4}}$ centered at $\tilde{c}$, then we have $\left|x_{2}-x_{4}\right|<\left|x_{2}-\tilde{x_{4}}\right|$. This is a contradiction.

As a corollary, by moving the point $x_{2}$ on $K_{2}$, we can define a map $F$ : $K_{2} \rightarrow K_{1}$ that sends $x_{2}$ to $x_{3}$ and a map $G: K_{2} \rightarrow K_{2}$ that sends $x_{2}$ to $x_{4}$. More precisely:

Definition 5. Let $x$ be any point of $K_{2}$. There exists a unique trisecant $L$ through $x$ that cuts $\tilde{K}_{1}$ and $K_{2}$ again. We define $F(x)$ to be the point where $\tilde{K}_{1}$ intersects $L$ and $G(x)$ to be the point other than $x$ where $K_{2}$ intersects $L$.

Lemma 3. The maps $F$ and $G$ are continuous.
Proof. Let $x \in K_{2}$ and let $x_{n}$ be a sequence of points of $K_{2}$, which converges to $x$. The curve $K_{2}$ is compact, so the sequence $y_{n}=G\left(x_{n}\right)$ has at least one point of accumulation $a$ in $K_{2}$. Let $y_{u_{n}}$ be a subsequence converging to $a$ and let $L_{n}$ denote the trisecant through $x_{u_{n}}$. These lines cut $\tilde{K}_{1}$ in a sequence of points $z_{u_{n}}=F\left(x_{u_{n}}\right)$. Since $z_{u_{n}}=\left(x_{u_{n}}+y_{u_{n}}\right) / 2$, the sequence $z_{u_{n}}$ converges to a point $z=(x+a) / 2$ of $\tilde{K}_{1}$. Hence there exists a line $L$ that cuts $\tilde{K}_{1}$ in $z$ and $K_{2}$ in $x$ and $a$ and that is therefore the unique trisecant through $x$. Thus, there exists only one accumulation point of the sequence $y_{n}$ which converges to $y=G(x)$. Therefore $G$ is continuous. Since $x_{n}$ and $y_{n}$ are both convergent, $z_{n}$ converges to the point $z=F(x)$, and therefore $F$ is continuous.

Lemma 4. The map $G$ is a homeomorphism of $K_{2}$ with no fixed points such that $G \circ G(x)=x$.

Proof. Let $x$ and $y$ be two points of $K_{2}$ such that $G(x)=G(y)=z$. This means that there exists a trisecant $L$ through $x, F(x)$ and $z$, and another trisecant $L^{\prime}$ through $y, F(y)$ and $z$. Since there exists only one trisecant through $z$, we must have $L=L^{\prime}$. By Lemma $1, K_{2}$ intersects $L$ in exactly
two distinct points. Since $x \neq z$, we must have $x=y$. The map $G$ is therefore one-to-one.

Let $x$ be a point of $K_{2}$ and $y=G(x)$. The line through $x$ and $y$ is the unique trisecant through $y$. Hence $G(y)=x$.

LEMmA 5. The curve $K_{2}$ is symmetric about a vertical line. The image $F\left(K_{2}\right)$ is a segment of this line.

Proof. Recall that $P_{\text {top }}$ and $P_{\text {bottom }}$ are distinct horizontal planes that are tangent to $K_{2}$, such that $K_{2}$ lies between $P_{\text {top }}$ and $P_{\text {bottom }}$. Let $t_{2}$ be a point of $K_{2} \cap P_{\text {top }}$ and $t_{4}=G\left(t_{2}\right)$. Let $b_{2}$ be a point of $K_{2} \cap P_{\text {bottom }}$ and $b_{4}=G\left(b_{2}\right)$. Choose an orientation on $K_{2}$ such that $t_{2}, b_{2}$ and $t_{4}$ are in this order on $K_{2}$. The image by $F$ of the arc joining $t_{2}$ to $t_{4}$ is a continuous path $\delta$ of $K_{1}$ that contains $F\left(b_{2}\right)=b_{3}$. Thus $\delta$ joins $F\left(t_{2}\right)=t_{3}$ to $F\left(t_{4}\right)=t_{3}$ through $b_{3}$. But since $K_{1}$ is a simple curve through infinity, $\delta$ is described twice. Thus for every point $z \in K_{1}$ between $t_{3}$ and $b_{3}$ there exist at least two distinct points $x$ and $y$ on the arc of $K_{2}$ joining $t_{2}$ to $t_{4}$ such that $F(x)=F(y)=z$. Since $G$ is orientation preserving, $G(x)$ is on the arc of $K_{2}$ joining $G\left(t_{2}\right)=t_{4}$ to $G\left(t_{4}\right)=t_{2}$. Thus $G(x) \neq y$. The trisecants $L$ through $x$ and $z$ and $L^{\prime}$ through $y$ and $z$ are distinct. By Corollary $1, L$ and $L^{\prime}$ are perpendicular to $K_{1}$. Since the tangent to $K_{1}$ at $x_{1}$ has been chosen to be a vertical line, $L$ and $L^{\prime}$ are horizontal. The plane containing $L$ and $L^{\prime}$ is therefore horizontal and perpendicular to $K_{1}$ at $z$. Thus, the tangent to $K_{1}$ at $z$ is vertical. The arc of $K_{1}$ between $t_{3}$ and $b_{3}$ is therefore a segment of a vertical line. For any $x \in K_{2}$, the points $x$ and $G(x)$ are symmetric about this line since $F(x)$ is the midpoint of $x$ and $G(x)$.

Lemma 6. The length between a point of $K_{2}$ and its image under $F$ is constant.

Proof. Let $\gamma(t)$ be a parametrization of $K_{2}$. We have:

$$
\frac{d}{d t}|F(\gamma(t))-\gamma(t)|^{2}=2\left\langle(F \circ \gamma)^{\prime}(t)-\gamma^{\prime}(t), F(\gamma(t))-\gamma(t)\right\rangle
$$

By Corollary 1, $F(\gamma(t))-\gamma(t)$ is perpendicular to $K_{1}$ and $K_{2}$. Since $(F \circ \gamma)^{\prime}(t)$ is the tangent to $K_{1}$ and $\gamma^{\prime}(t)$ the tangent to $K_{2}$, we have

$$
\frac{d}{d t}|F(\gamma(t))-\gamma(t)|^{2}=0
$$

Let us summarize the situation: $K_{2}$ lies between two horizontal planes on a cylinder whose axis is a vertical line which coincides with $K_{1}$ in the region between the two planes (see Figure 8).

This configuration is in contradiction with Lemma 2. Indeed, the component $K_{2}$ is not contained in the interior of the sphere going through $t_{4}$ centered at the midpoint of $t_{2}$ and $t_{3}$.


Figure 8. The shape of $K_{2}$.

Acknowledgments. It is a pleasure to thank my advisor, Rémi Langevin, and also Jun O'Hara and John Crisp for helpful comments and corrections.

## References

[1] R. Langevin and J. O'Hara, Conformally invariant energies of knots, J. Inst. Math. Jussieu 4 (2005), 219-280. MR 2135138 (2006g:58038)
[2] R. Langevin and G.-T. Moniot, The zone modulus of a link, J. Knot Theory Ramifications 14 (2005), 819-830. MR 2172899 (2006g:58029)
[3] J. O'Hara, Energy of a knot, Topology 30 (1991), 241-247. MR 1098918 (92c:58017)
[4] M. H. Freedman, Z.-X. He, and Z. Wang, Möbius energy of knots and unknots, Ann. of Math. (2) 139 (1994), 1-50. MR 1259363 (94j:58038)
[5] D. Kim and R. Kusner, Torus knots extremizing the Möbius energy, Experiment. Math. 2 (1993), 1-9. MR 1246479 (94j:58039)
[6] R. Kusner, On thickness and packing density for knots and links, Physical knots: knotting, linking, and folding geometric objects in $\mathbb{R}^{3}$ (Las Vegas, NV, 2001), Contemp. Math., vol. 304, Amer. Math. Soc., Providence, RI, 2002, pp. 175-180. MR 1953339 (2003m:57017)
[7] Z.-X. He, On the minimizers of the Möbius cross energy of links, Experiment. Math. 11 (2002), 244-248. MR 1959266 (2003k:58016)
[8] E. Pannwitz, Eine elementargeometrische Eigenschaft von Verschlingungen und Knoten, Math. Ann. 108 (1933), 629-672. MR 1512869
[9] G. Kuperberg, Quadrisecants of knots and links, J. Knot Theory Ramifications 3 (1994), 41-50. MR 1265452 ( $94 \mathrm{~m}: 57019$ )

Grégoire-Thomas Moniot, Section de mathématiques, Université de Genève, C.P. 64, CH-1211 Genève 4, Switzerland

E-mail address: gt_moniot@yahoo.fr


[^0]:    Received October 5, 2004; received in final form August 20, 2006.
    2000 Mathematics Subject Classification. Primary 49Q10, 57M25. Secondary 53A30, 53 A 04.

