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ON SMOOTH SURFACES IN P4 CONTAINING A PLANE
CURVE

PH. ELLIA AND C. FOLEGATTI

Abstract. Let Σ ⊂ P4 be an integral hypersurface of degree s with a
(s− 2)-uple plane. We show that the degrees of smooth surfaces S ⊂ Σ
with q(S) = 0 are bounded by a function of s. We also show that if
S ⊂ P4 is a smooth surface with q(S) = 0 and if S lies on a quartic
hypersurface Σ such that dim(Sing(Σ)) = 2, then deg(S) ≤ 40.

1. Introduction

We work over an algebraically closed field of characteristic zero.
In this paper we study smooth surfaces S in P4 which contain a plane

curve, P . The first part contains some generalities about the linear system
|H−P |. In particular, we prove that its base locus has dimension zero and we
describe it. In the second part we consider surfaces lying on a hypersurface
of degree s containing a (s-2)-uple plane (we suppose s ≥ 4). Indeed, if the
surface does not lie on a hyperquadric, this implies that it contains a plane
curve (Lemma 3.1). The main results are the following:

Theorem 1.1. Let Σ ⊂ P4 be an integral hypersurface of degree s con-
taining a plane in its singular locus with multiplicity (s− 2). Then the degree
of smooth surfaces S ⊂ Σ with q(S) = 0 is bounded by a function of s.

We then restrict to the case of regular surfaces lying on a hyperquartic
with singular locus of dimension two. It turns out that, if deg(S) ≥ 5, the
hyperquartic must have a double plane (Lemma 3.4). In this situation we can
compute an effective bound.

Theorem 1.2. Let S ⊂ P4 be a smooth surface with q(S) = 0 and lying
on a quartic hypersurface Σ, such that Sing(Σ) has dimension two. Then
d = deg(S) ≤ 40.
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The assumption q(S) = 0 is due to technical reasons. In fact, we believe
that it is not strictly necessary (see 3.12).

Theorem 1.2 is of some interest for the classification of surfaces that are
not of general type, since in this case one only needs to consider surfaces lying
on low degree hypersurfaces. For similar results concerning smooth surfaces
on hyperquartics with isolated singularities see [2].

We thank the referee for useful remarks.

2. Smooth surfaces containing a plane curve

Let S ⊂ P4 be a smooth, nondegenerate surface, of degree d, containing a
plane curve, P , of degree p. If p ≥ 2, there is a unique plane, Π, containing P .
Otherwise, if P is a line, there are ∞2 such planes, and we choose one of them
and call it Π. We assume that P is the one-dimensional part of Π ∩ S. We
denote by δ the linear system cut out on S, residually to P , by the hyperplanes
containing Π. Since, by Severi’s theorem [5], H0(OS(1)) ' H0(OP4(1)) (we
assume S is not a Veronese surface), δ = |H−P | if p ≥ 2. If P is a line, δ is a
pencil in the ∞2 linear system |H−P |. Finally, we denote by YH the element
of δ cut out by the hyperplane H, and by CH = P ∪ YH the corresponding
hyperplane section of S.

Lemma 2.1.
(i) The curve P is reduced and the base locus of δ is empty or zero-

dimensional and contained in Π. The general element YH ∈ δ is
smooth off of Π and has no component in Π.

(ii) If p = 1, the linear system |H − P | is base point free.

Proof. (i) Clearly the base locus of δ is contained in Π. Assume an irre-
ducible component of P , P1, is in the base locus of δ. Then, for every H
through Π, CH = H ∩ S is singular along P1. It follows that TxS ⊂ H, for
every x ∈ P1. Since this holds for every H through Π, we get TxS = Π for
all x ∈ P1, but this contradicts Zak’s theorem [6] which states that the Gauss
map is finite. The same argument shows that P is reduced. We conclude by
Bertini’s theorem.

(ii) Assume P is a line. Clearly the base locus of |H − P | is contained in
P . Take x ∈ P . Now let H be a hyperplane containing P , but not containing
TxS. Then CH = P ∪ YH is smooth at x, so x /∈ YH . �

Remark 2.2. (i) If p = 1, |H−P | is base point free and yields a morphism
f : S → P2, which is nothing else than the projection from the line P . If there
is no plane curve on S in a plane through P , f is a finite morphism of degree
d− 2 + P 2.

(ii) Let S ⊂ P4 be an elliptic scroll. Then S contains a one-dimensional
family of cubic plane curves which are unisecants (see, e.g., [1]). If P is such
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a cubic, and if H is a general hyperplane through P , then H ∩S = P ∪f ∪f ′,
where f, f ′ are two rulings. This shows that the general curve YH ∈ |H − P |
need not be irreducible.

Since δ is a pencil and since the base locus, B, is zero-dimensional, the
degree of B is (H − P )2. Now we give a geometric description of B. Let
Z := Π∩S. Then Z is a 1-dimensional subscheme of Π (and also of S) and is
composed by P and possibly by some 0-dimensional component, which may
be isolated or embedded in P .

Definition 2.3. We define R as the residual scheme of Z with respect to
P (in S). Hence IR = (IZ : IP ).

Since R ⊂ Z, we can view R as a subscheme of Π or of S.

Lemma 2.4. We have B = R.

Proof. We observe that R ⊂ B and that deg(B) = d − 2p + P 2. Then we
only have to compute deg(R).

Considering a section of ωS(3) (which is always globally generated, by
Kodaira’s vanishing theorem and Castelnuovo-Mumford’s lemma), we can as-
sociate to S a reflexive sheaf F of rank two and an exact sequence

0 → OP4
t→ F → IS(2) → 0

such that (t)0 = S. The singular locus of F is a divisor in |2H + K| (because
ωS(3) is globally generated) and the Chern classes of F are c1 = 2, c2 = d.

We can restrict the sequence above to Π and get a section

0 → OΠ
tΠ→ FΠ.

Clearly P ⊂ (tΠ)0. Then dividing by an equation of P we get a non-zero
section t̄Π of FΠ(−p)). We compute

deg((t̄Π)0) = c2(FΠ(−p)) = c2(F(−p)) = −2p + d + p2.

The section t̄Π will vanish on R and on the intersection with Π of the singular
locus of F , which is a curve X ∈ |3H +K|. Thus (t̄Π)0 = R∪ (X ∩Π). When
we restrict to Π we have X ∩Π = X ∩ P and we get

#(X ∩Π) = (3H + K)P = 3p + PK.

It follows that
deg(R) = −5p + d + p2 − PK.

Now we use adjunction to get PK = p2 − 3p − P 2, and combining this with
the previous equation we obtain the result. �
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Remark 2.5. There is a cheaper proof of this result. Using the argument
of [4], page 155, we infer that deg(R) = d− 2p + P 2.

Indeed, we can view S ∩ Π as the intersection of two hyperplane divisors
on S, H1 and H2, such that H1 ∩ H2 = Π. Moreover, P is a Weil divisor
on the smooth surface S, and hence a Cartier divisor. Then we compute the
equivalence of P in the intersection H1 ∩H2, namely

(H1 ·H2)P = (H1 + H2 − P ) · P = 2p− P 2.

This means that the “exceeding” curve P counts for 2p−P 2 points in H1∩H2.
Thus the degree of its zero-dimensional component, R, drops by 2p− P 2. It
follows that deg(R) = d− 2p + P 2, and hence the result.

3. Degree s hypersurfaces with a (s-2)-uple plane

Lemma 3.1. If S ⊂ P4 is a smooth surface, lying on a degree s integral
hypersurface Σ with a (s-2)-uple plane, then S contains a plane curve or
h0(IS(2)) 6= 0.

Proof. Let Π be the (s-2)-uple plane in Σ and let H be a hyperplane con-
taining Π. Then H ∩ Σ = (s − 2)Π ∪ Q, where Q is a quadric surface and
CH = S ∩ H ⊂ (s − 2)Π ∪ Q. If dim(CH ∩ Π) = 0, then CH ⊂ Q, i.e.,
h0(ICH

(2)) 6= 0. From the exact sequence

0 → IS(1) → IS(2) → ICH
(2) → 0

we get h0(IS(2)) 6= 0 (because h1(IS(1)) = 0 by Severi’s theorem). Therefore
we can assume dim(CH ∩ Π) = 1 and this is equivalent to saying that S
contains a plane curve. �

Notations 3.2. Let Σ ⊂ P4 be an integral hypersurface of degree s con-
taining a plane, Π, in its singular locus, with multiplicity (s− 2). Let S ⊂ Σ
be a smooth surface. If h0(IS(2)) 6= 0, then d := deg(S) ≤ 2s. From now on
we assume h0(IS(2)) = 0. By Lemma 3.1, dim(S ∩Π) = 1 and we denote by
P the 1-dimensional component of Π ∩ S. Also we let p := deg(P ).

We assume q(S) = 0. This assumption implies that every hyperplane
section C = H ∩ S is linearly normal in H ' P3.

If H is a hyperplane through Π, we denote by C = YH ∪P the hyperplane
section H ∩ S. We have C ⊂ Σ ∩H = (s− 2)Π ∪QH , where QH is a quadric
surface. By Lemma 2.1, if H is general, YH ⊂ QH . If we restrict to Π,
the surfaces qH = QH ∩ Π form, as H varies, a family of conics in Π. Let
us set Bq =

⋂
H⊃Π qH , where Bq is the base locus of the conics qH . Since

YH ∩Π ⊂ QH ∩Π = qH , we have R ⊂ Bq.
Recall that if

µ = c2(NS(−s)) = d(d + s(s− 4))− s(2π − 2)
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(where π is the sectional genus of S), then, by Lemma 1 of [3],

0 ≤ µ ≤ (s− 1)2d−D(3H + K),

where D is the one-dimensional part of the intersection of S with Sing(Σ). In
our situation P ⊂ D, so

µ ≤ (s− 1)2d− P (3H + K) = (s− 1)2d− 3p− PK.

By adjunction we compute P 2 + PK = p2 − 3p and therefore

µ ≤ (s− 1)2d− p2 + P 2 = s(s− 2)d− p2 + 2p + r

(since r = d− 2p + P 2).

Lemma 3.3. With the notations above, the base locus Bq of the conics qH

is (s-1)-uple for Σ.

Proof. We assume the plane Π is given by x0 = x1 = 0. Thus if φ = 0 is
an equation of Σ, we have φ ∈ (x0, x1)s−2. We can write, for example,

φ =
s−2∑
i=0

Qi(x0, x1, x2, x3, x4)xi
0x

s−2−i
1 ,

where the Qi are quadratic forms.
The general hyperplane Hα containing Π has an equation of the form x0 =

αx1, α ∈ k. We consider φ|Hα
, the equation of the surface Σ ∩Hα:

φ|Hα
=

s−2∑
i=0

Qi(αx1, x1, x2, x3, x4)αixs−2
1

= xs−2
1

s−2∑
i=0

Qi(αx1, x1, x2, x3, x4)αi.

Clearly
s−2∑
i=0

Qi(αx1, x1, x2, x3, x4)αi = 0

is an equation defining QH for the hyperplane Hα. Let x = (0 : 0 : x2 : x3 : x4)
be a point in Bq. Hence

s−2∑
i=0

Qi(x)αi = 0

for all α ∈ k, and this implies that Qi(x) = 0.
Now, we see that the (s-2)-th derivatives of φ all vanish at a point x ∈ Bq;

equivalently, x is a (s-1)-uple point for Σ. �
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Lemma 3.4. If S ⊂ P4 is a smooth surface with q(S) = 0, lying on a quar-
tic hypersurface Σ having singular locus of dimension two, then, if deg(S) ≥ 5,
the component of dimension two in Sing(Σ) is a plane (or a union of planes)
and S contains a plane curve.

Proof. Let us suppose that Sing(Σ) contains an irreducible surface of degree
> 1. Then the general hyperplane section S ∩ H = C lies on F = Σ ∩ H,
which is a quartic surface of P3 having an irreducible curve of degree > 1 in its
singular locus. From the classification of quartic surfaces in P3 it follows that
such a surface is a projection of a (nondegenerate) quartic surface F ′ ⊂ P4

(we will say that F is not “linearly normal”).
Let us recall briefly how to obtain this fact. If a quartic surface, F ⊂ P3,

contains a conic or a twisted cubic in its singular locus, then one easily sees
that F is rational. The general plane section is a quartic plane curve with
two (or three) nodes. Hence on a smooth model F ′′ it is a smooth curve, H,
of genus one (or zero) and with H2 = 4. From the exact sequence

0 → OF ′′ → OF ′′(H) → OH(H) → 0,

we get h0(OF ′′(H)) > 4. By the way, arguing in a similar way, one can prove
that a degree s surface in P3 with a (s−1)-uple line is a rational, “non linearly
normal” surface.

Returning to our proof, the curve C ⊂ F (which is smooth) is the isomor-
phic projection of a curve C ′ ⊂ F ′, since h0(OC(1)) = h0(OC′(1)), and since
C is linearly normal, we conclude that C ′ is degenerate, and hence contained
in a hyperplane section of F ′. It follows that d = deg(C ′) ≤ 4. So we may
assume that the singular locus of Σ does not contain irreducible surfaces of
degree > 1. Thus Sing(Σ) contains a plane, say Π, which is double in Σ.
Indeed, Σ cannot have a triple plane, for otherwise F = Σ ∩ H would be a
quartic surface in P3 with a triple line, and we can argue as before because
such a surface is not linearly normal in P3. By Lemma 3.1, S contains a plane
curve. �

Proof of Theorems 1.1 and 1.2. We distinguish between different cases, ac-
cording to the behaviour of the curves qH . Note that it is not possible that
qH = 0 for every H. Indeed, if it were so, Π would be an (s-1)-uple for Σ.
Then for all hyperplanes H ⊃ Π, Σ∩H = (s−1)Π∪ΠH , where ΠH is a plane.
With notations as above we would get that QH = Π ∪ ΠH , but we know by
Lemma 2.1 that, if H is general, YH does not have any component in Π, so
YH ⊂ ΠH is a plane curve and h0(IC(2)) 6= 0, which is absurd.

So we are left with the following possibilities. The conics may move, i.e.,
vary as H varies, so that at least two of them intersect properly. Then
dim(Bq) = 0. Conversely, they may all be equal to a fixed conic q or they
can be all reducible and contain a fixed line D, while the remaining line is
moving. Observe that there are always two possibilities: the one-dimensional
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part of Bq may or may not be contained in S. We start the proof by showing
that h1(IC(2)) = 0, where C = YH ∪ P . Indeed, if this is so, then from

0 → IS(1) → IS(2) → IC(2) → 0

we obtain h1(IS(2)) = 0. Using

0 → IS(2) → IS(3) → IC(3) → 0

and the fact that h0(IC(3)) 6= 0, we get that h0(IS(3)) 6= 0, and this implies
d ≤ 3s.

The proof will follow from the lemmas below.

Lemma 3.5. If pa(YH) ≤ 2(d− p− 4) and if r ≤ 4, then d is bounded by
a function of s. More precisely, if s = 4, d ≤ 40.

Proof. We have

π = pa(YH) +
(p− 1)(p− 2)

2
+ d− p− r − 1,

so

π − 1 ≤ 3(d− p) +
p2 − 3p

2
− 9− r.

Since
µ ≤ s(s− 2)d− p2 + 2p + r,

and, on the other hand,

µ = d(d + s2 − 4s)− 2s(π − 1),

this yields

π − 1 ≥ d2 − 2sd + p2 − 2p− r

2s
.

Now comparing the lower and the upper bounds on π − 1, we obtain

d2 − 8sd + p2(1− s) + p(9s− 2) + 18s + r(2s− 1) ≤ 0,

and since r ≥ 0 this becomes

d2 − 8sd + p2(1− s) + p(9s− 2) + 18s ≤ 0.

This implies

(∗) d ≤ 4s +
√

∆,

where
∆ = 16s2 + p2(s− 1)− p(9s− 2)− 18s.

A short calculation shows that
√

∆ ≤ p
√

s− 1 + 4s

for all s ≥ 0. In conclusion,

d ≤ 8s + p
√

s− 1.
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We again use the relation

0 ≤ µ ≤ s(s− 2)d− p2 + 2p + 4.

Together with the above bound on d, this becomes

s(s− 2)(8s + p
√

s− 1) ≥ p2 − 2p− 4.

This implies that p is bounded by a function of s. We conclude since d ≤
8s + p

√
s− 1.

If s = 4, we can give a better bound for
√

∆. Indeed,
√

∆ ≤ p
√

3− 8

if p ≥ 19, and thus
d ≤ 8 + p

√
3.

The same relation used above now gives

8d ≥ p2 − 2p− 4,

and hence
p2 − 2p− 8

√
3p− 68 ≤ 0,

which implies p ≤ 19 and consequently, by (∗), d ≤ 40. On the other hand, if
p ≤ 18, then, again by (∗), we have d ≤ 39. �

Lemma 3.6. If r ≤ 4 and if R does not contain three collinear points,
then d is bounded by a function of s. In particular, if s = 4, d ≤ 40.

Proof. Assume first QH is a smooth quadric surface. We have

YH ∩Π = YH ∩ P +R,

so
0 → IC(2) → IP (2) → OYH

(R+ 1) → 0.

The curve YH has bidegree (a, b), a ≤ b. We may assume a ≥ 4, for otherwise
pa(YH) ≤ 2(d− p− 4) and we conclude by Lemma 3.5.

Thus YH is linearly normal. We have

h0(OYH
(1 +R)) = 4

if and only if R gives independent conditions to ωYH
(−1). This is equivalent

to saying that R gives independent conditions to the curves of bidegree (a−
3, b− 3). If a = b = 4, then deg(YH) = d− p = 8 and using

s(s− 2)d− p2 + 2p + 4 ≥ 0

we get
0 ≤ −d2 + d(18 + s(s− 2))− 76.

This shows that d is bounded by a function of s. In particular, if s = 4,
d ≤ 22. So we may assume a ≥ 4, b ≥ 5. Since r ≤ 4 and no three points of
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R are collinear, the curves of bidegree (a− 3, b− 3) separate the points of R.
It follows that the map

H0(IP (2)) → H0(OYH
(1 +R))

is surjective, and hence
h1(IC(2)) = 0.

As noted before, this implies d ≤ 3s.
Now we suppose QH is an irreducible quadric cone (recall that every re-

duced curve on a quadric cone is a.C.M.). If d − p is even, then YH is a
complete intersection ((d− p)/2, 2) and

ωYH
∼= OYH

(
d− p

2
− 2

)
.

So if (d− p)/2− 3 ≥ 3, arguing as above, we get

h0(OYH
(1 +R)) = 4.

On the other hand, if this condition is not satisfied, then d − p ≤ 11, i.e.,
p ≥ d− 11. Recall that

0 ≤ µ ≤ s(s− 2)d− p2 + 2p + 4.

It follows that
(d− 11)(d− 13) ≤ s(s− 2)d + 4

and, for fixed s, this implies that d is bounded. If s = 4, we have

d2 − 32d + 139 ≤ 0,

which yields d ≤ 26.
If d− p is odd, then YH is linked to a line L by a complete intersection T

of type ((d− p + 1)/2, 2). Since L can be any ruling of QH , we may assume
L ∩R = ∅. The exact sequence of liaison

0 → IT

(
d− p− 5

2

)
→ IL

(
d− p− 5

2

)
→ ωYH

(−1) → 0

shows that the divisors of ωYH
(−1) are cut on YH by surfaces of degree δ =

(d− p− 5)/2, containing L but not T , residually to L∩YH . We may consider
surfaces of the form H1∪ . . .∪Hδ, where H1 contains L and where H2, . . . ,Hδ

are general planes. It follows that our condition is satisfied if δ − 1 ≥ 3. If
δ ≤ 3, then p ≥ d− 11 and we conclude as above.

If QH is the union of two distinct planes, then YH is the union of two
distinct plane curves. We have

pa(YH) ≥
(

d− p

2
− 1

) (
d− p

2
− 2

)
− 1,
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because the minimal value for the arithmetical genus of a union of two plane
curves of global degree δ is achieved when each curve has degree δ/2 and the
two components do not intersect. Consequently,

π − 1 ≥ d2 + p2 − 2pd− 6d + 6p + 4
4

+
p2 − 3p + 2

2
+ d− p− r − 2.

We may assume that the general hyperplane section of S does not lie on
a cubic surface (otherwise h0(IS(3)) 6= 0 and d ≤ 3s), so π − 1 ≤ d2/8.
Comparing these two inequalities (and using r ≤ 4) we obtain

6p2 − 8p− 4dp + d2 − 4d− 32 ≤ 0.

If d ≥ 25, no value of p can satisfy this inequality, so d ≤ 24 (for all s). �

Corollary 3.7. If dim(Bq) = 0, then r ≤ 4 and d is bounded by a
function of s. If s = 4, d ≤ 40.

Proof. Since Bq is the intersection of the conics qH , IBq
(2) is globally gener-

ated. Hence Bq is contained in a complete intersection of two conics. Recalling
that R ⊂ Bq, it follows that r ≤ 4 and that R does not contain three collinear
points. We conclude by Lemma 3.6. �

Lemma 3.8. Assume dim(Bq) = 1, that Bq contains a line D and that
D 6⊂ S. Then d ≤ s.

Proof. Under these assumptions, we claim that the general curve C is
smooth. Indeed, let |L| be the linear system cut on S by the hyperplanes
containing D and let B = D ∩ S = {p1, . . . , pr}. Clearly B is the base locus
of |L| and the general element of |L| is smooth out of B. If all curves in |L|
were singular at a point pi ∈ B, then Tpi

S ⊂ H for all H ⊃ D. Since the
intersection of all H ⊃ D is nothing but D, this is absurd. The same holds
for all p ∈ B. It follows that the singular curves in |L| form a closed subset
of |L|.

Since D is contained in the Bq, D is (s− 1)-uple for Σ (see 3.3). Let H be
a general hyperplane through D. Then F = Σ ∩ H is a degree s surface of
P3 with a line, D, of multiplicity (s − 1). Such a surface is a projection of a
degree s surface F ′ ⊂ P4. We have S ∩ H = C ⊂ F and we may assume C
smooth and irreducible. Moreover, since q(S) = 0, C is linearly normal in P3.
Now C is the isomorphic projection of a degree d curve C ′ ⊂ F ′ (in particular,
OC′(1) ∼= OC(1)). Hence C ′ is degenerate in P4, and this implies d ≤ s. �

Lemma 3.9. Assume that the one-dimensional part of Bq is a line D and
that D ⊂ S. Then r ≤ 1 and Lemma 3.6 applies.

Proof. In this case qH = D∪DH and the DH
′s are moving. The base locus

of the DH
′s, D, is either empty or a point, b. If D = ∅, then YH ∩Π ⊂ P and

it follows that r = 0. Hence we assume from now on that D = {b}.
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If b ∈ D, we have Bq = D ∪ ηb, where ηb is the first infinitesimal neigh-
bourhood of b in Π. Let x ∈ YH ∩ Π for a general H and let ξx be the
zero-dimensional subscheme of YH ∩Π supported at x. We then have:

Claim. Let x ∈ YH ∩Π. If ξx 6⊂ P , then x = b and, moreover, ξx ⊂ ηb if
b ∈ D.

Proof of the Claim. We have ξx ⊂ S ∩ Π. If ξx 6⊂ P , then its residual
scheme with respect to P is nonempty and so is, a fortiori, the residual scheme
of Z = S ∩ Π with respect to P , namely R. So R has a component, Rx,
supported at x. Since R ⊂ Bq, we conclude that x = b or x ∈ D.

If x = b and b 6∈ D, we are done. So we assume x ∈ D. Since ξx ⊂ qH , if
x 6= D∩DH , then ξx ⊂ D ⊂ P , which is absurd. Thus x = D∩DH . If b ∈ D,
this implies x = b and ξx ⊂ ηb (because ξx ⊂ qH). So we may assume b 6∈ D.
In this case the DH

′s have no base point on D. Thus, if H is general, then
R∩D ∩DH = ∅, which is a contradiction since x ∈ R ∩D ∩DH . �

We return to the proof of the lemma. If D = {b} and b 6∈ D, then YH ∩Π ⊂
P but for at most one point (b), so YHP ≥ d− p− 1 and r ≤ 1.

If D = {b} and b ∈ D, then for all x ∈ YH ∩ Π, ξx ⊂ ηb, so the residual
scheme of ξx with respect to D is contained in the residual scheme of ηb with
respect to D, which is b. This shows that YHP ≥ d − p − 1, and hence
r ≤ 1. �

Lemma 3.10. Assume that Bq is a conic q (qH = q for all H). If q ⊂ S,
then r = 0 and Lemma 3.6 applies.

Proof. In this case q ⊂ P . Since YH ∩ Π ⊂ qH , we have YH ∩ Π ⊂ P , and
hence YHP = d− p, i.e., r = 0. �

Lemma 3.11. Assume that Bq is a conic q and that q 6⊂ S. Then d ≤
max{s, 20}.

Proof. If no component of q is contained in S (i.e., in P ), then YH ∩ Π =
YH ∩ q is fixed (otherwise, as H varies, the points of YH ∩ Π will cover a
component of q). So YH ∩ q = R, i.e., d − p = r. Since r = d − 2p + P 2, we
get P 2 = p and YHP = (H − P )P = 0. This means that CH = YH ∪ P is
disconnected, which is absurd.

It follows that q = D ∪ L with D ⊂ S and q 6⊂ S. If L 6= D, we have
L ⊂ Bq, L 6⊂ S and we conclude that d ≤ s thanks to Lemma 3.8.

So we may assume q = 2D, D ⊂ P ⊂ S, but 2D 6⊂ S (2D means D
doubled in Π). In this case, for all H, qH = 2D, so QH is tangent to Π
along D. This implies that, for a general H, QH is either a cone or the
union of two distinct planes through D. In the latter case, YH = P1 ∪P2 and
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YHD = P1D + P2D = d − p. Since YHD ⊂ YHP , it follows that r = 0, and
we conclude with Lemma 3.6.

From now on we assume that, for a general H, QH is a cone and D a ruling
of QH . If d− p is even, YH is a complete intersection ((d− p)/2, 2), then

pa(YH) =
d2 − 2pd− 4d + p2 + 4p + 4

4
and so

π − 1 =
d2 − 2pd− 4d + p2 + 4p + 4

4
+

p2 − 3p + 2
2

+ d− p− r − 2.

Now YH ∩D ⊂ YH ∩ P , so

YHD =
d− p

2
≤ d− p− r = YHP,

i.e., r ≤ (d− p)/2, and it follows that

π − 1 ≥ d2 − 2pd− 4d + p2 + 4p + 4
4

+
p2 − 3p + 2

2
+

d− p

2
− 2.

Now comparing this expression with π − 1 ≤ d2/8 (we can suppose as usual
h0(IC(3)) = 0) we get

6p2 − 8p− 4dp + d2 − 4d ≤ 0.

If d ≥ 21, there are no values of p satisfying this inequality. Therefore d ≤ 20.
If d − p is odd, then YH is linked to a line by a complete intersection

((d− p + 1)/2, 2) and we obtain

pa(YH) =
d2 − 2dp + p2 − 4d + 4p + 3

4
.

Since

YHD =
d− p + 1

2
≤ YHP = d− p− r,

we have r ≤ (d− p− 1)/2. Hence we can write

π − 1 ≥ d2 − 2dp + p2 − 4d + 4p + 3
4

+
p2 − 3p + 2

2
+

d− p + 1
2

− 2.

If we compare this with π−1 ≤ d2/8 and argue as before, we obtain d ≤ 20. �

Theorems 1.1 and 1.2 now follow from 3.5–3.11. �

Remark 3.12. Actually, we believe that there are very few smooth sur-
faces on such hypersurfaces. For example, consider the following situation:

Assume that the blowing-up of Π, Σ̃ → Σ, yields a desingularization of Σ,
so we have a double covering T → Π and S̃ mapping to S. Since T and S̃ are
two divisors on the smooth threefold Σ̃, if they intersect, they intersect along
a curve. We conclude that S ∩Π = P and that all the points of YH ∩Π lie on
P .
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Now assume that for general H, QH is a smooth quadric. Observe that
the QH are parametrized by a smooth rational curve (' P1). Let P denote
the curve parametrizing the rulings of the quadrics QH . We get a degree two
covering f : P → P1 which is ramified at the points corresponding to singular
QH . Assume P is irreducible. With this assumption the curve YH ⊂ QH has
bidegree (a, a) (otherwise following the a ruling would yield a section of the
covering, which is impossible since g(P) > 0 because f is ramified in more
than two points).

Now consider the exact sequence of residuation with respect to Π:

0 → IYH
(−1) → IC → IP,Π → 0.

Since YH is a.C.M., it follows that C = YH ∪ P is also a.C.M. (H1
∗ (IC) = 0

from the exact sequence above). Hence S is a.C.M. and

h0(IS(3)) ≥ h0(IC(3)) 6= 0.

This implies d(S) ≤ 3s. (Notice that we did not assume q(S) = 0.) Observe
that the assumption that S is smooth is necessary in order to apply Lemma
2.1 and to conclude that C = YH ∪ P with YH ⊂ QH .

Remark 3.13. There exist integral hypersurfaces in P4 such that the de-
gree of the smooth surfaces contained in them is bounded. Indeed, it is enough
to take a non linearly normal hypersurface in P4, recalling that the only non
linearly normal smooth surface in P4 is the Veronese surface. The simplest
example is the Segre cubic hypersurface. The previous results seem to indicate
that this behaviour can happen also on some linearly normal hypersurfaces.
From a “codimension two” point of view this is in contrast with the following
proposition.

Proposition 3.14. Let S ⊂ P3 be an integral surface. Then S contains
smooth curves of arbitrarily high degree.

Proof. If S has singular locus of dimension ≤ 0, this follows from Bertini.
If Sing(S) has dimension 1, we consider the normalization p : S̃ → S of S.
Then dim(Sing(S̃)) ≤ 0. Let C be the non-normal locus in S, D = p−1(C).
Let δ be a very ample linear system on S̃. The general X ∈ δ is smooth
and does not pass through any singular point of S̃. We want to show that for
X ∈ δ general, p| : X → S is an embedding. Since p is an isomorphism outside
D, we only have to consider the points in X ∩ D. Let x ∈ C. The curves
of δ passing through two points of p−1(x) form a subspace of codimension 2.
Letting x vary in C, we see that the curves of δ intersecting a fibre p−1(x)
in more than one point constitute a subspace of codimension ≥ 1. Hence, for
general X ∈ δ, p| : X → S is injective.

Since there are only finitely many points where dp has rank zero, we may
assume that for y ∈ D, dpy : TyS̃ → Tp(y)S has rank one. The curves of δ
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passing through y and having tangent direction Ker(dpy) at y form a subspace
of codimension 2 of δ. Letting y vary in D we get a subspace of codimension
1. So for general X ∈ δ, dp| is everywhere injective. �
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