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SYMPLECTIC SURFACES AND GENERIC
j-HOLOMORPHIC STRUCTURES ON 4-MANIFOLDS

STANISLAV JABUKA

Abstract. It is a well known fact that every embedded symplectic sur-
face Σ in a symplectic four-manifold (X4, ω) can be made J-holomorphic

for some almost-complex structure J compatible with ω. In this paper
we investigate when such a structure J can be chosen generically in
the sense of Taubes. The main result is stated in Theorem 1.2. As
an application of this result we give examples of smooth and non-empty
Seiberg-Witten and Gromov-Witten moduli spaces whose associated in-

variants are zero.

1. Introduction

To set up the background for the main theorem below, let C ⊂ X be a
connected, symplectic surface embedded in the minimal symplectic 4-manifold
X with symplectic form ω. It is a well known fact that C can be made J-
holomorphic for some almost-complex structure J compatible with ω. This
paper investigates when J can be chosen from a generic set of almost-complex
structures. We start by recalling what generic means in our setting.

For a given E ∈ H2(X;Z), set

(1) d =
1
2

(E2 −K · E),

where K is the canonical class of X associated to ω. Define Ad(X) as the set
of pairs (J,Ω) with J an almost-complex structure compatible with ω and Ω
a set of d distinct points of X. Ad(X) has the structure of a smooth manifold
inherited from the Frechet manifold C∞(End(TX)× Symd(X)).

Each J-holomorphic curve C comes equipped with a linear operator

DC : C∞(NC)→ C∞(NC ⊗ T 0,1C)
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obtained from the linearization of the generalized Cauchy-Riemann operator
∂C . Here NC is the normal bundle of C in X. The operator DC is elliptic
and its (complex) index is given by d as defined in (1) with E = [C]. In the
case when C contains all points of Ω, let evΩ : C∞(NC) → ⊕p∈ΩNp be the
evaluation map associated to Ω. If d = 0, we say that DC is non-degenerate
if Coker(DC) = {0}. In the case d > 0, DC is called non-degenerate if

(2) DC ⊕ evΩ : C∞(NC)→ C∞(NC ⊗ T 0,1C)⊕p∈Ω Np

has trivial cokernel.

Definition 1.1. A pair (J,Ω) ∈ Am(X), m ≥ 0, is said to be generic
if the following five conditions are met for all E ∈ H2(X;Z) for which the
number d as defined by (1) is not greater than m (see [11] for more details,
especially on the definition of n-non-degeneracy which is immaterial for the
present discussion and thus omitted):

(1) For a fixed class E ∈ H2(X;Z), there are only finitely many embedded
J-holomorphic curves representing E and containing d points of Ω.

(2) For each J-holomorphic curve C, the operator DC is non-degenerate.
(3) There are no connected J-holomorphic curves representing the class

E ∈ H2(X;Z) and containing more than d points of Ω.
(4) There is an open neighborhood of (J,Ω) in Am(X) such that each

pair (J ′,Ω′) from that neighborhood satisfies conditions (1)–(3) above.
Furthermore, the number of J ′-holomorphic curves containing d points
of Ω′ is constant as (J ′,Ω′) varies through this neighborhood.

(5) If E2 = K ·E = 0 then each of the finitely many J-holomorphic curves
in E containing d points of Ω is n-non-degenerate for each positive
integer n.

The set of generic pairs (J,Ω), which we denote by J reg
d (X) (or simply by

J reg(X) when no confusion is possible), is a Baire subset of Ad(X).
We are now ready to state our main result:

Theorem 1.2. Let (X,ω) be a minimal symplectic 4-manifold and C a
connected, embedded symplectic surface in X of genus g ≥ 1 and with C2 ≥
g − 1. Then for any δ > 0 there exists a generic pair (Jδ,Ωδ) ∈ J reg(X) and
a connected Jδ-holomorphic curve Cδ inside the radius δ tubular neighborhood
of C, isotopic to C. Furthermore, Cδ contains all d points of Ωδ.

Corollary 1.3. The above theorem remains true if C = tCi is a disjoint
union of connected symplectic manifolds provided the condition C2

i ≥ gi − 1
holds for each component Ci. That is, one can find a curve Cδ = tCδ,i, where
each Cδ,i is an isotopic translate of Ci inside a radius δ tubular neighborhood
of Ci.
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Remark 1.4. Whenever (J,Ω) is a generic pair in the sense of Definition
1.1, the Gromov-Witten moduli spaceMGr

X (E) is a smooth manifold of (real)
dimension 2d ≥ 0. This together with the adjunction formula for a connected
J-holomorphic curve C ∈ MGr

X (E) implies that E2 ≥ g − 1 (where g is the
genus of C). Conversely, given a connected symplectic curve C of genus g
satisfying C2 ≥ g−1, Theorem 1.2 shows that there are no other obstructions
for the existence of a generic pair (J,Ω) that makes C into a J-holomorphic
curve.

Remark 1.5. Suppose that (J,Ω) is a generic pair and let C be a con-
nected J-holomorphic curve of genus g and with [C] = E. The inequality
E2 ≥ g − 1 from the previous remark shows that J-holomorphic curves with
negative square can only occur when E2 = −1 and g = 0. This case however
is excluded if X is a minimal manifold (as is assumed in Theorem 1.2).

It is interesting to compare the result of Theorem 1.2 to the result proved in
[3]. Expressed in our notation, among other results, it is shown in [3] that for
C2 ≥ 2g−1 the operator DC is surjective for any choice of an almost-complex
structure J compatible with the symplectic form ω. The improvement of the
inequality in Theorem 1.2 comes at the twofold expense of first not being able
to choose the almost-complex structure arbitrarily but rather from a dense
(second-category) subset of almost-complex structures. Secondly, one may
have to slightly “wiggle” C to get the desired curve. We also remark that the
case of genus 0, which is excluded from Theorem 1.2, is completely covered
by the results of [3].

The proof of Theorem 1.2 rests on the observation that the property of a
J-holomorphic curve C to be generic with respect to a pair (J,Ω) ∈ Ad(X) is
local in nature, that is, it only depends on the restriction of (J,Ω) to a tubular
neighborhood N(C) of the curve C. By the symplectic neighborhood theorem
for four-manifolds (cf. [9]), N(C) is up to symplectomorphism determined by
its volume and the square C2 of the curve C. Thus one is led to search for
universal models of symplectic four-manifolds Yg,n with a Gromov-Witten ba-
sic class Eg,n ∈ H2(Yg,n;Z) with Eg,n · Eg,n = n and for which a connected
genus g J-holomorphic representative exists for all generic (J,Ω). These man-
ifolds together with their Gromov-Witten invariants are discussed in Section
3.2 after a brief survey of the Seiberg-Witten theory of four-manifolds with
b+ = 1, which is given in Section 3.1. No originality is claimed on any of the
facts stated in Section 3; they serve merely as a reminder and to set notation.
The proof of Theorem 1.2 is then completed in Section 4. Section 2 gives
applications of the main theorem.

2. Applications

As an application of Theorem 1.2, we give examples of symplectic mani-
folds with non-empty Seiberg-Witten and Gromov-Witten moduli spaces un-
der generic conditions, whose associated invariants are zero. Such examples
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can be found for the case where the dimension of the moduli space is zero as
well as for the case of positive dimension.

Example 1. Consider the elliptic surface E(n). It has a symplectic sec-
tion Sn with genus zero and square −n. Let Fi, i = 1, 2, . . . , be regular
fibers of the elliptic fibration. Then the symplectic surface Cn,m, obtained by
smoothing the surface Sn∪F1∪· · ·∪Fm, is a genus gn,m = m surface of square
2m−n. Choosing m ≥ n−1 ensures the condition C2

n,m ≥ gn,m−1. Theorem
1.2 provides a generic pair (J,Ω) ∈ J reg(E(n)) and a J-holomorphic curve
C ′n,m in the class [Cn,m]. In particular, the moduli space MGr

E(n)([Cn,m]) for
this generic pair (J,Ω) is nonempty, while GrE(n)([Cn,m]) = 0. The dimension
of the moduli space is

dimR MGr
E(n)([Cn,m]) = 2(m− n+ 1).

Example 2. Let Σ be a genus 2 Riemann surface and let X = Σ × T 2.
Choose the symplectic form ω on X to be the sum of volume forms ωΣ and ωT 2

on Σ and T 2 for which Vol(Σ) = 1 = Vol(T 2). Let C be the symplectic surface
obtained by smoothing Σ∪T 2. Then the genus of C is 3 and its square is 2; in
particular, dimMGr

X ([C]) = 0 and dimMSW
X (L) = 0 for L = 2P ·D ·([C])−K.

Pick an almost-complex structure J ∈ J reg(X) (Ω is just the empty set
here and we suppress it from the notation) and a J-holomorphic curve C ′

in the class [C]. It is not hard, but somewhat tedious, to show that all
J-holomorphic curves in [C] are connected curves of genus 3. To see this,
consider the two possible alternatives:

(1) There is a representative D′ of [C] of the form D′ = D′1 t · · · t D′n
with D′i · D′i = 1 for i = 1, 2 and D′i · D′i = 0 for i ≥ 3. This is an
immediate contradiction since classes of square 1 cannot exist on a
manifold with even canonical class.

(2) There is a representative D of [C] of the form D = D1t· · ·tDn with
D2

1 = 2 and D2
i = 0 for i ≥ 2. This implies that g(Di) = 0 for i ≥ 2

and 2 ≤ g(D1) ≤ 3. The latter claim follows readily from the fact that
the dimension dimMGr

X ([D1]) = 2(D2
1 − g(D1) + 1) is non-negative

and from the adjunction formula for D. The case g(D1) = 2 leads
(via the adjunction formula applied to [C]) to [C] · K = 0 , which
is a contradiction. Thus the only possibility is g(D1) = 3, implying
K ·D1 = 2.

Since ω ∈ H2(X;Z) and ω([C]) = 2, we see immediately that
n ≤ 2. Suppose thus that D = D1 tD2. Then from K ·D1 = 2 we
see that [D1] = [Σ] + a[T 2] + F , where F ∈ H2(X;Z) is generated by
classes obtained from cross-products of 1-cycles on Σ with 1-cycles on
T 2. This forces [D2] = (1− a)[T 2]− F . Notice that F ·Σ = F · T 2 =
ω ·F = 0. From D2

1 = 2 we infer that 2a+F 2 = 2 and from D2
2 = 0 we

get F 2 = 0. Thus a = 1 and so [D1] = [Σ] + [T 2] +F and [D2] = −F .
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This leads to a contradiction, since now ω(D2) = 0 and so D2 cannot
be a J-holomorphic curve.

Each point in MGr
X ([C]) gives rise to a Seiberg-Witten monopole in

MSW
X (L) with L = 2P ·D · ([Σ]) (see [12]). It was shown in [4] that each such

monopole is a smooth point in the moduli space for large enough values of r
in the Taubes perturbation form µ0 = F+

0 − irω/8. In other words, the pair of
metric and perturbation forms (g, µ0) (with g being the metric induced by ω
and J) is a generic pair for the Seiberg-Witten theory for the Spinc-structure
L and as such gives rise to a smooth moduli space. On the other hand,
SWX(L) = 0, as can be seen in a number of ways. (For example, introduce
the “twisted”symplectic form ω′ = 1 · 1ωΣ +ωT 2 . Then L ·ω′ > K ·ω′, which
according to [10] implies that L cannot be a basic class.)

3. Preliminaries

3.1. Seiberg-Witten theory on manifolds with b+ = 1. Let X be
a 4-manifold with b+ = 1. For a given Spinc-structure W = W+ ⊕ W−,
with determinant L = det(W+) ∈ H2(X;Z), the Seiberg-Witten invariant
depends on a choice of a chamber inside the space Met×iΩ2,+. Here Met is
the space of Riemannian metrics on X. The two chambers are divided by a
(real) codimension 1 wall of pairs (g, µ), defined by the equation

iµ

2π
∧ ωg − L ∧ ωg = 0,

where ωg is a generator of the positive forward cone in H2(X;Z). In the case
where X is symplectic, we agree to always choose ωg to be the symplectic
form.

The Seiberg-Witten equations do not admit reducible solutions if (g, µ)
does not lie on the wall. We denote the two chambers by C−(L) and C+(L)
according to the sign of the expression

〈 iµ
2π
∧ ωg − L ∧ ωg, [X]〉.

We will denote the Seiberg-Witten invariant by SW±X (L) according to the
choice of chamber C±(L) from which the pair (g, µ) used in calculating the
invariant was taken. The number SW+

X (L)−SW−X (L) is called the wall cross-
ing number and it is well understood (see, for example, [6]). The special case
relevant to the present situation is stated in the following theorem (Corollary
1.4 in [6]):

Theorem 3.1. Let X be an S2-bundle over a Riemann surface Σ of genus
g. Let E ∈ H2(X;Z) with (2E+c1(X))2 ≥ 2eX+3σX . Then the wall crossing
number is

SW+
X (L)− SW−X (L) = ±

(
2E + c1(X)

2
[S2]

)g
,
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where [S2] is the fiber class.

3.2. The Gromov-Witten invariants of Y0 and Y1. This section de-
scribes the spaces Yg,n mentioned in the Introduction as well as their Gromov-
Witten basic classes Eg,n. As it turns out, it suffices to consider only two
symplectic manifolds Y0 and Y1 by letting Yg,2n = Y0 and Yg,2n−1 = Y1. The
main results of this section, Corollaries 3.3 and 3.4, are well known and their
proofs can be found in the literature (see, e.g., [2]). They are included here
for the continuity of the argument and for the benefit of the reader, but no
originality is claimed.

Let Σ be any Riemann surface of genus g ≥ 2. Define the Y0 and Y1 to be

Y0 = Σ× S2 and Y1 = Y0#F0=F1(S2×̃S2).

Here, S2×̃S2 denotes the twisted S2 bundle over S2. It is diffeomorphic to
CP

2#CP2. As Y1 is obtained by taking the fiber sum of two S2 fibrations, it
itself inherits the structure of an S2 fibration over S2.

To calculate the Gromov-Witten invariants of Yi, we invoke Taubes’ theo-
rem relating the Gromov-Witten invariants to the Seiberg-Witten invariants,
which often prove easier to calculate. The following theorem can be found in
[12].

Theorem 3.2. Let (X,ω) be a symplectic 4-manifold with b+ = 1. Let
µ0 = F+

A0
− irω/8 ∈ iΩ2,+ (where A0 is a certain connection on the canonical

line bundle) and let g be any generic metric compatible with the symplectic
form. Then, for any E ∈ H2(X;Z), the Seiberg-Witten invariant of X for
the Spinc-structure W+

E = E ⊕ (E ⊗K−1), calculated with the metric g and
the perturbation form µ0 with r � 1, is equal to the Gromov-Witten invariant
for the class E.

The Seiberg-Witten invariants for both Y0 and Y1 are calculated in much
the same way. We will only give the calculation for Y0 explicitly and indicate
the minute differences that occur for Y1.

The main input for calculating the Seiberg-Witten invariants of Y0 and Y1

are the wall crossing formula and the existence of metrics with positive scalar
curvature.

Let gΣ and gS2 be metrics on Σ and S2 with constant scalar curvature
and with volumes equal to 4π(g− 1) and 4π, respectively. It follows from the
Gauss-Bonnet theorem that the scalar curvatures sΣ and sS2 of these metrics
are

sΣ = −1 and sS2 = 1.
Denote by ωΣ and ωS2 the volume forms induced by gΣ and gS2 and define
the symplectic form ωλ,ε on Y0 to be

(3) ωλ,ε = λ · ωΣ + ε · ωS2 .



SYMPLECTIC SURFACES AND GENERIC j-HOLOMORPHIC STRUCTURES 681

The positive parameters λ, ε > 0 will be chosen later; ε should be thought of
as being small. The product metric

gλ,ε = λ gΣ ⊕ ε gS2

on Y0 is compatible with ωλ,ε and its scalar curvature sλ,ε is

sλ,ε = − 1
λ

+
1
ε
.

Our first condition on the parameters λ and ε will be that ε < λ, ensuring
that sλ,ε > 0. (The choice of the second condition is deferred to Section 4.)

With ωλ,ε chosen as in (3), the canonical class K0 of Y0 is easily calculated
from the adjunction formula and from the fact that both Σ×{pt} and {pt}×S2

are symplectic submanifolds of Y0. One finds that

K0 = (2g − 2)S − 2 Σ ∈ H2(Y0;Z),

where S = P ·D · ([S2]) and Σ = P ·D · ([Σ]).
We will label Spinc-structures of Y0 by elements E ∈ H2(Y0;Z) by letting

WE be the Spinc-structure with W+
E = E⊕(E⊗K−1). Thus the determinant

line bundle L = det(W+
E ) is equal to 2E − K. We label the corresponding

Seiberg-Witten moduli spaces byM±Y0
(L), the sign again depending upon the

chamber C±(L) determined by the metric and perturbation.
For a, b ∈ Z, let E = aΣ + b S and consider the Spinc-structure WE . The

dimension of the Seiberg-Witten moduli space is given by

dimRM±(E) =
1
4
(
L2 −K2

0

)
= 2b (a+ 1)− a (2g − 2).

In order for the Spinc-structure WE to have nonzero Seiberg-Witten invariant,
the dimension of the moduli space needs to be non-negative. In the case
when a = 1 (the case of interest to us) the above formula together with the
observation that E2 = 2b leads to the following necessary condition for the
nonvanishing of the invariant:

E2 ≥ g − 1.

Consider now E = Σ + b S with E2 = 2b ≥ g − 1 and let L = 2E −K. It
is easy to see that

(4) 〈L ∧ ω, [Y0]〉 = 32πλ(g − 1) + 16πε(b− g + 1).

Two pairs of a metrics and perturbation forms will play a role in the subse-
quent discussion:

(1) (g, µ) = (gλ,ε, 0): By our choice λ > ε and by the restriction 2b ≥ g−1,
the right-hand side of (4) is positive:

32πλ(g − 1) + 16πε(b− g + 1) ≥ 16π(g − 1)(2λ− 1
2
ε) > 0.

This means that the pair (gλ,ε, 0) lies in the chamber C−(L).
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(2) (g, µ) = (g0, µ0): Here g0 is any generic metric (but still compatible
with ωλ,ε) and µ0 is Taubes’ perturbation form

µ0 = F+
A0
− irω

8
.

It is easily checked that for large enough r, the pair (g0, µ0) lies in
C+(L) (for any Spinc-structure).

By the positivity of sλ,ε we have that SW−Y0
(L) = 0, which together with

Theorems 3.1 and 3.2 immediately gives the following corollary.

Corollary 3.3. For g ≥ 1, let Eg,2n = Σ + nS2 ∈ H2(Y0;Z) with
E2
g,2n ≥ g − 1. Then

GrY0(Eg,2n) = ± 2g.

While the discussion preceding Corollary 3.3 was for the case g ≥ 2, it is
not hard to see that it remains valid in the case g = 1. The changes that need
to be made to the analysis preceding the corollary are the following: Choose
the product metric on Σ = T 2 so that its scalar curvature is zero. Choose ωλ,ε
and gλ,ε as before and observe that sλ,ε = 1/ε, which is positive for ε > 0.
The rest of the discussion goes over verbatim and so establishes the validity
of Corollary 3.3 in the case g = 1 as well.

We finish this section by showing that an analogous result holds for Y1. In
Y1, let Σ′ = Σ#S ⊆ Y0#F0=F1(S2×̃S2) with S = CP

1 ⊆ CP2#CP2 ∼= S2×̃S2.
Let F denote a fiber of the fibration Y1 → S2. The canonical class K1 of Y1

is

K1 = (2g − 1)F − 2 Σ
′
0, F = P ·D · ([F ]), Σ

′
= P ·D · ([Σ′]).

As in the case of Y0, consider E = aΣ
′
0 + bF ∈ H2(Y1;Z). The dimension for

the Seiberg-Witten moduli space for the Spinc-structure WE is

dimMSW
Y1

(L) = 2b(a+ 1)− 2a(g − 2).

In the case when a = 1, the necessary condition for the nonvanishing of
SW±Y1

(L) (with L = 2E −K1) becomes

E2 = 2b+ 1 ≥ g − 1.

It is a known fact (cf. [5]) that ruled surfaces admit metrics of positive scalar
curvature. The rest of the discussion for Y1 proceeds now in much the same
way as that given for Y0 and one arrives at the following analogue of Corollary
3.3:

Corollary 3.4. Let Eg,2n+1 = E = Σ0 + nF ∈ H2(Y1;Z) with E2 ≥
g − 1. Then

GrY1(E) = ± 2g.
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4. Proof of Theorem 1.2

We now proceed to the proof of Theorem 1.2. Let C be an embedded,
connected, symplectic submanifold of (X4, ω) of genus g ≥ 1 and with square
[C]2 = n ≥ g−1. Assume in addition that n = 2k is even; the case where n is
odd is treated in much the same way by replacing Y0 below by Y1. Let N(C)
be a tubular neighborhood of C in X and let Vol(C) be the volume of C.

On the other hand, let D be any of the (at least) 2g J ′-holomorphic curves
in Y0 in the class [Σ] + k[S2] for the choice of a generic pair (J ′,Ω′) on Y0.
This last statement uses Corollary 3.3 (or Corollary 3.4 in the case of n =
2k − 1). Adjust the choices of λ and ε so that Vol(D) = Vol(C) (in addition
to λ > ε > 0). Let N(D) be a tubular neighborhood of D in Y0 containing
no other J ′-holomorphic curves besides D.

By the symplectic neighborhood theorem for 4-manifolds (cf. [9], Ex-
ercise 3.30), the tubular neighborhood of a connected, embedded symplec-
tic surface is up to symplectomorphism determined by the square and vol-
ume of the surface. We would like to say that the pairs (N(C), ω|N(C))
and (N(D), ωλ,ε|N(D)) are symplectomorphic via a symplectomorphism ϕ :
N(C) → N(D) taking C to D. There is one potential problem with this
approach, namely a priori all of the at least 2g J ′-holomorphic curves in the
class [Σ]+k[S2] in Y0 may be disconnected. Fortunately, the opposite extreme
is true as the next lemma shows.

Lemma 4.1. Let (J ′,Ω′) be a generic pair on Yi and let D be an embedded
J ′-holomorphic curve in Yi containing Ω′. Suppose that D represents the
homology class [Σ]+k[S2] in the case i = 0 and represents the class [Σ′]+k[F ]
in the case i = 1. Then D is connected.

Proof. Assume to the contrary that we can write D as a disjoint union
D = D1tD2. We will show that one of the two components has fundamental
class zero.

Case i = 0: Let [D1] = a[Σ] + b[S2] and D2 = c[Σ] + d[S2]. Since a+ c = 1
we can assume that a ≥ 1. We will first show that in fact a = 1 and thus
c = 0.

It is a well known fact that for generic almost-complex structures, J-
holomorphic curves intersect non-negatively (see [7]). Observe also that the
manifolds Yi are minimal and so Remark 1.5 applies (which excludes the exis-
tence of J ′-holomorphic curves with negative square). We know by Corollary
3.3 that for N large enough the class [Σ] + N [S2] has J-holomorphic repre-
sentatives. Thus we get

[D2] · ([Σ] +N [S2]) ≥ 0 =⇒ cN + d ≥ 0(5)

=⇒ (1− a)N + d ≥ 0

=⇒ 1 +
d

N
≥ a ≥ 1

=⇒ a = 1 and c = 0.
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Since D1 and D2 are disjoint, we find that 0 = [D1] · [D2] = d, which shows
that [D2] = 0.

Case i = 1: Let [D1] = a[Σ′] + b[F ] and D2 = c[Σ′] + d[F ]. Since as before
we have a + c = 1, so we can again assume that a ≥ 1. By Corollary 3.4
we know that the class [Σ′] +N [F ] has J-holomorphic representatives for all
sufficiently large N. Then arguing as above we have

[D2] · ([Σ′] +N [F ]) ≥ 0 =⇒ c+ cN + d ≥ 0(6)

=⇒ (1− a)(N + 1) + d ≥ 0

=⇒ 1 +
d

N + 1
≥ a ≥ 1

=⇒ a = 1 and c = 0.

The fact 0 = [D1] · [D2] = d completes the proof. �

Use ϕ together with J ′ on N(D) to induce an almost-complex structure
(also denoted by J ′) on N(C). Extend J ′ to all of X in an arbitrary manner
and denote it by J ′′. Let Ω′′ denote the set ϕ−1(Ω′).

Observe that (J ′′,Ω′′) ∈ J reg
d (N(C)), but it could happen that (J ′′,Ω′′) /∈

J reg
d (X) as there may be other J ′′-holomorphic curves in X for which the

operator defined in (2) is not surjective. However, generic pairs (J,Ω) on X
are dense in Ad(X) and so we can find, in an arbitrarily small neighborhood
of (J ′′,Ω′′), a pair (J,Ω) that is generic. The following standard proposition
completes the proof of Theorem 1.2.

Proposition 4.2. Let ε > 0 be arbitrary. Then there exists δ > 0 such
that if

dist[(J,Ω), (J ′′,Ω′′)] < δ,

then there exists a J-holomorphic curve C ′ in an ε tubular neighborhood of
C.

Proof. This is a direct consequence of the fourth point in the definition of
genericity applied to the two pairs (J ′′,Ω′′)|N(C) and (J,Ω)|N(C). By con-
struction, (J ′′,Ω′′) ∈ J reg

d (N(C)), and clearly

dist[(J,Ω)|N(C), (J ′′,Ω′′)|N(C)] ≤ dist[(J,Ω), (J ′′,Ω′′)].

This completes the proof of the proposition as well as that of Theorem 1.2. �

Proof of Corollary 1.3. The proof of Corollary 1.3 proceeds in much the
same way. For each component Ci of C, one finds a generic pair (J ′i ,Ω

′
i)

on a tubular neighborhood N(Ci) of Ci. One extends the almost-complex
structures J ′i to an arbitrary almost-complex structure J ′′ on X and defines
Ω′′ = tΩ′′i , where the Ω′′i are defined in the same way as Ω′′ in the proof
of Theorem 1.2. The analogue of Proposition 4.2 completes the proof of
Corollary 1.3. �
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