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A FRACTIONAL ORDER HARDY INEQUALITY

BART LOMIEJ DYDA

Abstract. We investigate the following integral inequality:∫
D

|u(x)|p

dist(x,Dc)α
dx ≤ c

∫
D

∫
D

|u(x)− u(y)|p

|x− y|d+α
dx dy, u ∈ Cc(D),

where α, p > 0 and D ⊂ Rd is a Lipschitz domain or its complement or
a complement of a point.

1. Introduction and notation

Let D ⊂ Rd, d ≥ 1, be an open set and let δD(x) = inf{|x− y| : y ∈ Dc}.
Let 0 < α, p <∞. In this paper we study the following integral inequality of
Hardy type:

(1)
∫
D

|u(x)|p

δD(x)α
dx ≤ c

∫
D

∫
D

|u(x)− u(y)|p

|x− y|d+α
dx dy, for all u ∈ Cc(D),

where c = c(D,α, d, p), i.e., c < ∞ is a constant that depends only on D, α,
d and p.

There are connections between the right hand side of (1) and Sobolev spaces
Wλ,p(D) of order λ = α/p (see, e.g., [KJF], [Br]) and also fractional deriva-
tives ([OK]). These connections explain why we call (1) a Hardy inequality: it
estimates an integral of a function by an integral of its derivative. The reader
interested in classical Hardy inequalities is referred to [OK] and [KP], and to
[F], [FK], [FW], where such inequalities are obtained by variational methods.

The one–dimensional case of (1) was investigated in [J], [G], [KT]; [KP]
gives a survey of such one–dimensional results. Special multi–dimensional
versions of (1) may be found in [HKP] for D = R

d \ {0} and p > 1, and in
[CS] for a wider class of domains, but only for p = 2.
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Another motivation to study (1) comes from the theory of integro–diffe-
rential operators. Let α ∈ (0, 2) and define

∆α/2
D u(x) = A lim

ε→0+

∫
D∩{|y−x|>ε}

u(y)− u(x)
|x− y|d+α

dy, u ∈ C∞c (D), x ∈ D,

where A is a positive constant. It is elementary to verify that the limit exists
and that

−(∆α/2
D u, u) =

1
2
A
∫
D

∫
D

(u(x)− u(y))2

|x− y|d+α
dx dy = E(u, u).

E(u, u) is a special case of the integral on the right hand side of (1), with
p = 2 > α. It is important to notice that E is a Dirichlet form with core
C∞c (D); see, e.g., Example 1.2.1 in [FOT]. The corresponding Markov process
{Xt}t≥0 on D is called censored stable process [BBC]. This process has the
same intensity of jumps as the symmetric α–stable Lévy process in Rd [BG]
except that jumps outside D are prohibited. It is shown in [CK] that (1) in
the special case p = 2 ([CS]) yields important estimates for the Green function
of the censored stable process.

We note that (1) is related to the existence of positive superharmonic func-
tions for the censored process and the subcriticality of Schrödinger perturba-
tions of ∆α/2

D . Also, (1) gives an answer to the interesting question of whether
{Xt} approaches ∂D in finite time, which in turn is related to trace theorems
in Sobolev spaces [BBC]. A discussion of those applications will be given in
a forthcoming paper; see also [CS], [A], [TU].

The main goal of this paper is to prove the following theorem.

Theorem 1.1. Let α > 0 and p > 0. The Hardy inequality (1) holds true
in each of the following cases:

(T1) D is a bounded Lipschitz domain and α > 1;
(T2) D is a complement of a bounded Lipschitz domain, α 6= 1 and α 6= d;
(T3) D is a domain above the graph of a Lipschitz function Rd−1 → R and

α 6= 1;
(T4) D is a complement of a point and α 6= d.

The existing proofs of the special cases of (1) mentioned above reduce (1)
to the classical Hardy inequality by means of complex interpolation ([KT],
[CS]) or by other means ([G], [KP]). Our method of proof of (1) is completely
different. We use only elementary properties of the Lebesgue integral along
with simple geometrical properties of the domains in question. This allows
us to extend (1) to the present wide class of domains. Moreover, the method
seems to have potential for further generalisations.

By means of a counterexample we prove that (1) is false if, e.g.,
(F1) D is a bounded Lipschitz domain and α ≤ 1, α < p, or
(F2) D is a complement of a compact set and d = α < p.
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The counterexamples are given in Section 2. In Section 3 we develop the
technique needed to prove Theorem 1.1. The proof is given in Section 4, where
we also discuss some possible extensions.

For sets A, B ⊂ Rd we write dist(A,B) = inf{|a − b| : a ∈ A, b ∈ B}. |A|
denotes the Lebesgue measure of A and we write cardA for the number of its
points. We always assume Borel measurability of the considered sets. When
D is fixed, we often write δx = δD(x) to abbreviate the notation. Constants
are positive real numbers.

We note that if we replace D in (1) by hD = {hx : x ∈ D} and u by
ũ = uh, where uh(x) = hα−du(x/h) and h > 0, then the values of both sides
of (1) remain unchanged.

2. Counterexamples

Let 0 < α ≤ 1, α < p. Assume that D is bounded and satisfies the following
condition:

(2) There are ε ≥ 0 and c < ∞ such that for every n ∈ N there
exists a set En ⊂ ∂D such that cardEn ≤ cnd−α−ε and ∂D ⊂⋃
z∈En B(z, 1/(2n)).

In the case when ε = 0 we will additionally assume that
∫
D

(1/δD(x)α)dx =∞.
We will show that under these assumptions (1) is false; note that this happens,
for example, if D is a bounded Lipschitz domain. Clearly, if D satisfies (2),
then ∂D has finite (d− α− ε)–dimensional Hausdorff measure. (The inverse
implication is not generally true.)

The idea of the following counterexample concerning (F1) comes from [B].
For each n large enough we pick a function un ∈ C∞c (Rd) satisfying the

following conditions:

(i) un = 1 on An = {x : δD(x) > 1/(2n)};
(ii) un = 0 outside A2n;
(iii) 0 ≤ un ≤ 1 and |∇un| ≤ cn everywhere.

Here and below in this section c denotes a positive constant, depending on D,
α and p, but not on n. We see that∫

D

∫
D

|un(x)− un(y)|p

|x− y|d+α
dx dy ≤

(∫
D

∫
D\An

+
∫
D\An

∫
D

)
dx dy

= 2
∫
D

∫
D\An

|un(x)− un(y)|p

|x− y|d+α
dx dy = 2In.
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We pick En as in (2). Note that D \ An ⊂
⋃
z∈En B(z, 1/n). We set Bz =

B(z, 1/n). We have

In ≤
∑
z∈En

∫
D

∫
Bz

|un(x)− un(y)|p

|x− y|d+α
dx dy

≤
∑
z∈En

∞∑
l=0

∫
B(z,(2l+2)/n)\B(z,2l/n)

∫
Bz

|un(x)− un(y)|p

|x− y|d+α
dx dy.

For l = 0 the above double integral is∫
B(z,2/n)

∫
Bz

|un(x)− un(y)|p

|x− y|d+α
dx dy ≤ cp

∫
B(z,2/n)

∫
Bz

np|x− y|p

|x− y|d+α
dx dy

≤ c′
∫
B(z,2/n)

∫
B(y,3/n)

np|x− y|p−d−αdx dy

= c′′nα−d,

and for l = 1, 2, . . . it is∫
B(z,(2l+2)/n)\B(z,2l/n)

∫
Bz

|un(x)− un(y)|p

|x− y|d+α
dx dy

≤ |B(z, (2l + 2)/n) \B(z, 2l/n)| · |Bz| ·
1

((2l − 1)/n)d+α

≤ cnα−d
(

1
l + 1

)α+1

.

Thus

(3) In ≤ cnα−d
∑
z∈En

∞∑
l=0

(
1

l + 1

)α+1

≤ c′n−ε.

The left hand side of (1) is

(4)
∫
D

|un(x)|p

δD(x)α
dx→

∫
D

1
δD(x)α

dx as n→∞.

We see that (3) and (4) give a contradiction to (1). In particular, (1) is false
in the case (F1).

As far as (F2) is concerned, let D = R
d \ {0} and let d = α < p. For each

n we pick a function vn ∈ C∞c (D) satisfying the following conditions:

(i) vn(x) = 1 for 2/n < |x| < 1;
(ii) vn(x) = 0 for |x| < 1/n or |x| > 2;
(iii) 0 ≤ vn ≤ 1 and |∇vn| ≤ cn everywhere;
(iv) |∇vn(x)| ≤ c for |x| > 1.
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Similarly as before, we show that the left hand side of (1) with vn in place
of u is greater than c log n, while the right hand side is bounded. In order to
prove the latter, we write∫
D

∫
D

|vn(x)− vn(y)|p

|x− y|d+α
dx dy ≤ 2

(∫
B(2/n)

∫
B(3/n)

+
∫
B(2/n)

∫
A(3/n,∞)

)
dx dy

+ 2
(∫

A(2/n,2)

∫
A(1,3)

+
∫
A(2/n,2)

∫
A(3,∞)

)
dx dy

= 2(J1
n + J2

n) + 2(J3
n + J4

n),

where B(r) = B(0, r) and A(r1, r2) = B(r2)\B(r1). We replace |vn(x)−vn(y)|
by 1 in J2

n and J4
n, by cn|x − y| in J1

n and by c|x − y| in J3
n. An elementary

calculation now shows that J1
n, J2

n, J3
n and J4

n are bounded.
Now let D be a complement of a compact set K ⊂ B(0, R). We consider the

dilations (see the remark at the end of Section 1) ṽn = v2Rn
n of the functions

vn considered above. We have supp ṽn ⊂ B(0, 2R)C . The functions ṽn give a
counterexample to (1) in the case (F2) because on the support of ṽn we have
|x| ≤ 2δD(x).

3. Main estimates

Let D ⊂ Rd be an open set, D 6= ∅ and D 6= R
d. Let Ω ⊂ D. We fix a

function u ∈ Cc(D) and define

F = F (u,Ω;R, S) =
{
x ∈ Ω : |u(x)|p > 2p+1

Sδdx

∫
B(x,Rδx)∩Ω

|u(x)− u(y)|pdy
}
,

where R and S are some positive numbers. R stands for range, while S stands
for sensitivity ; we may, if necessary, enlarge R or make S smaller (in this sense
R is large and S is small). Ω is an auxiliary set which allows us to localise
our considerations; see the remark following Lemma 3.4 in this connection.
Points from F will be called flat, because, on average, u(y) is close to u(x)
on B(x,Rδx) ∩ Ω for x ∈ F . However, we note here that F ⊂ suppu; in
particular, dist(F,Dc) > 0.

The following property should be compared with our goal (1).

Property 1.∫
Ω\F

|u(x)|p

δαx
dx ≤ 2p+1Rd+α

S

∫
Ω\F

∫
Ω

|u(x)− u(y)|p

|x− y|d+α
dy dx.

Proof. For x ∈ Ω \ F we have∫
Ω

|u(x)− u(y)|p

|x− y|d+α
dy ≥

∫
B(x,Rδx)∩Ω

|u(x)− u(y)|p

(Rδx)d+α
dy

≥ S

2p+1Rd+α

|u(x)|p

δαx
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and the property follows. �

Property 2. Let x ∈ F and E ⊂ B(x,Rδx) ∩ Ω. Let E∗(x) = {y ∈ E :
(1/2)|u(y)| ≤ |u(x)| ≤ (3/2)|u(y)|}. If |E| ≥ Sδdx, then

|E∗(x)| ≥ |E| − 1
2
Sδdx ≥

1
2
|E|.

Proof. This follows immediately from the definition of the set F . �

Property 3. Let E1 ⊂ Ω. Let E2 be a set such that E2 ⊂ B(x,Rδx)∩Ω
and |E2| ≥ Sδdx for all x ∈ E1. Then∫

E1∩F

|u(x)|p

δαx
dx ≤ 2

(
3
2

)p |E1|
|E2|

(
sup{δx : x ∈ E2}
inf{δx : x ∈ E1}

)α ∫
E2

|u(y)|p

δαy
dy.

Proof. Assume E1 ∩ F 6= ∅. We fix η > 1 and we pick x0 ∈ E1 ∩ F such
that supE1∩F |u| ≤ η|u(x0)|. We have |u(x0)| ≤ (3/2)|u(y)| for y ∈ E∗2 (x0).
Hence∫

E1∩F

|u(x)|p

δαx
dx ≤ |E1 ∩ F | ·

(
sup
E1∩F

|u|
)p
· 1

inf{δαx : x ∈ E1 ∩ F}

≤ |E1 ∩ F |
|E∗2 (x0)|

·
(

sup{δy : y ∈ E∗2 (x0)}
inf{δx : x ∈ E1}

)α(3
2
η

)p ∫
E∗2 (x0)

|u(y)|p

δαy
dy.

By Property 2, |E∗2 (x0)| ≥ (1/2)|E2|, and so we get∫
E1∩F

|u(x)|p

δαx
dx ≤ 2

|E1|
|E2|

(
sup{δx : x ∈ E2}
inf{δx : x ∈ E1}

)α(3
2
η

)p ∫
E2

|u(y)|p

δαy
dy.

The proof is completed by letting η → 1. �

Property 3 enables us to “sweep out” the part of the integral on the left
hand side of (1) which is over F to the complement of F , where in turn we
can use Property 1.

We will eventually come to the point where the geometry of the domain
D plays an essential role; the following lemma will be used in Section 4 to
prove a Hardy inequality for domains which are complements of bounded sets.
The main idea in proving the lemma is to use an appropriate “stopping time”
argument.

Lemma 3.1. Suppose 0 < α < d and r > 0. There exists a constant
c = c(α, d, p) such that for all functions u ∈ Cc(Rd) we have∫

B(0,r)c

|u(x)|p

|x|α
dx ≤ c

∫
B(0,r)c

∫
B(0,r)c

|u(x)− u(y)|p

|x− y|d+α
dy dx.
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Proof. We let D = R
d \ {0}. We may assume that u ∈ Cc(D), because

neither side of the above inequality depends on the values of u on B(0, r).
We define Ω = B(0, r)c and F = F (u,Ω;R, S), where R = 2m+1 + 1, S =
2(m−1)d · |B(0, 2)\B(0, 1)|, and m is a natural number to be determined later.
We define An = B(0, 2n+1r) \B(0, 2nr) for n = 0, 1, . . . .

We fix j ∈ {0, 1, . . . }. Note that E1 = Aj and E2 = Aj+m satisfy the
assumptions in Property 3. Thus we get∫

Aj∩F

|u(x)|p

|x|α
dx ≤ 2

(
3
2

)p 2jd

2(j+m)d

(
2j+m+1

2j

)α ∫
Aj+m

|u(y)|p

|y|α
dy(5)

= γ

∫
Aj+m

|u(y)|p

|y|α
dy,

where γ = 2m(α−d)21+α(3/2)p < 1 for sufficiently large m (this condition
defines m). We write∫

Aj+m

|u(y)|p

|y|α
dy =

(∫
Aj+m\F

+
∫
Aj+m∩F

)
|u(y)|p

|y|α
dy

and we repeat (5) with j+m in place of j, then with j+2m in place of j, and
so on. We eventually stop iterating (5) when the considered set Aj+km ∩ F
becomes empty. We obtain∫

Ω∩F

|u(x)|p

|x|α
dx ≤

( ∞∑
n=1

γn

)
·
∞∑
j=0

∫
Aj+m\F

|u(y)|p

|y|α
dy.

Hence by Property 1 we have∫
Ω

|u(x)|p

|x|α
dx =

(∫
Ω\F

+
∫

Ω∩F

)
|u(x)|p

|x|α
dx ≤

( ∞∑
n=0

γn

)∫
Ω\F

|u(y)|p

|y|α
dy

≤ 1
1− γ

2p+1Rd+α

S

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|d+α
dy dx. �

For example, if α = 1 and p = d = 2, then we may take m = 4 in the proof
of Lemma 3.1 and we get c = 2 · 333/(21π) < 1090.

We now consider Lipschitz domains. For x = (x1, . . . , xd) ∈ Rd we write
x = (x̃, xd), where x̃ = (x1, . . . , xd−1). We make the convention that x̃ = 0
for x ∈ R and, correspondingly, R0 = {0}. The reader may easily check that
our considerations below apply also in the case when d = 1. We assume that
D is a Lipschitz domain with localisation radius r0 and Lipschitz constant λ;
i.e., D is an open set and for each z ∈ ∂D there are an isometry Tz of Rd and
a Lipschitz function ϕz : Rd−1 → R with Lipschitz constant not greater than
λ such that

Tz(D) ∩B(Tz(z), r0) = {x : xd > ϕz(x̃)} ∩B(Tz(z), r0).
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Let z ∈ ∂D. To simplify the notation we assume in what follows that Tz is
an identity mapping. Otherwise we can apply the considerations below to the
Lipschitz domain Tz(D) and the point Tz(z), and then come back to D and
z using T−1

z . For x ∈ Rd we put

Vz(x) = |xd − ϕz(x̃)|.

Vz(x) is the “vertical” distance from x to the graph of ϕz. For a set E ⊂ Rd−1

and ρ > 0 we define

Qz(E, ρ) = {x ∈ D : x̃ ∈ E, 0 < Vz(x) ≤ ρ}.

We call Qz(E, ρ) a “box” with base E and height ρ. In the case when E =
Kρ = {x ∈ Rd−1 : |xi − zi| ≤ ρ/2 for i = 1, 2, . . . , d− 1} we simply write
Qz(ρ) instead of Qz(E, ρ) and we call Qz(ρ) a Lipschitz box; see Figure 1
below. Now we fix

ρ <
r0

2

(
d− 1

4
+
(
λ

2

√
d− 1 + 1

)2
)−1/2

.

It may be checked that for such ρ we have Qz(ρ) ⊂ D ∩B(z, r0/2). It is also
easy to see that

(6)
Vz(x)√
1 + λ2

≤ δx ≤ Vz(x) for x ∈ Qz(ρ) ⊂ D ∩B(z, r0/2).

For j = 0, 1, . . . we consider the usual dyadic decompositions of the base
E = Kρ of Qz(ρ) into the union of (d − 1)–dimensional cubes Eij indexed
by i = 1, 2, . . . , 2j(d−1). The cubes Eij have disjoint interiors and sides of
length 2−jρ. Such a decomposition gives rise to sets Qij = Qz(Eij , ρ), i =
1, 2, . . . , 2j(d−1), of the same height ρ.

We define

(7) An = Qz(Kρ, ρ/2n) \Qz(Kρ, ρ/2n+1), for n = 0, 1, . . . .

The sets An are mutually disjoint and
⋃∞
n=0An = Qz(ρ). Thus we have a de-

composition of Qz(ρ) into a union of sets Aj∩Qij whose pairwise intersections
are of Lebesgue measure zero. Furthermore, we have

(8)
ρ

2j
1

2
√

1 + λ2
≤ δx ≤

ρ

2j
, for x ∈ Aj ∩Qij ;

(9) |Aj ∩Qij | =
1
2

( ρ
2j
)d

;

and for x ∈ Ak ∩Qij , y ∈ Aj ∩Qij , where k ≥ j,

(10) |x− y| ≤ ρ

2j

√
d− 1 + (λ

√
d− 1 + 1)2.

In the next result we consider Q = Qz(ρ) defined above.
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Figure 1. Lipschitz box Qz(ρ), d = 2.

Lemma 3.2. Let α > 1. There exists a constant c = c(λ, α, d, p) such that
for all functions u ∈ Cc(D) we have∫

Q

|u(x)|p

δαx
dx ≤ c

∫
Q

∫
Q

|u(x)− u(y)|p

|x− y|d+α
dy dx.

Proof. We fix m ∈ N and a function u ∈ Cc(D). We pick Ω = Q and
let F = F (u,Q;R, S), where R = 2

√
1 + λ2(d − 1 + (λ

√
d− 1 + 1)2)1/2 and

S = 2−m−1.
Consider j ∈ {0, 1, . . . } and the sets Aj∩Qij defined above. The numbers R

and S were selected in order to ensure that E1 = Aj∩Qij and E2 = Aj+m∩Qij
satisfy the assumptions in Property 3; see (8), (9) and (10) in this connection.
Thus we have∫

(Aj∩Qij)∩F

|u(x)|p

δαx
dx ≤ 2

(
3
2

)p
2m(2

√
1 + λ22−m)α

∫
Aj+m∩Qij

|u(y)|p

δαy
dy

= γ

∫
Aj+m∩Qij

|u(y)|p

δαy
dy,
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where γ = 2m(1−α) · 21+α(
√

1 + λ2)α(3/2)p < 1 for sufficiently large m (this
condition defines m). After summing over i = 1, . . . , 2j(d−1) we obtain∫

Aj∩F

|u(x)|p

δαx
dx ≤ γ

∫
Aj+m

|u(y)|p

δαy
dy.

We now proceed in exactly the same manner as at the end of the proof
of Lemma 3.1 and get∫

Ω

|u(x)|p

δαx
dx ≤ 1

1− γ
2p+1Rd+α

S

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|d+α
dy dx. �

Lemma 3.3. Suppose α > d and r > 0. There exist a constant c =
c(α, d, p) and a natural number m = m(α, d, p) such that for all functions
u ∈ Cc(Rd) we have∫

Bc

|u(x)|p

|x|α
dx ≤ c

(∫
Bc

∫
Bc

|u(x)− u(y)|p

|x− y|d+α
dy dx+

∫
A

|u(x)|p

|x|α
dx

)
,

where B = B(0, 2mr), A = B(0, 2mr) \B(0, r).

Proof. As in the proof of Lemma 3.1, we let D = R
d \ {0}, u ∈ Cc(D),

Ω = B(0, r)c and F = F (u,Ω;R, S), where R = (2m + 2)/2m and S =
2−(m+1)d · |B(0, 2) \B(0, 1)| (where m will be defined later). We define An =
B(0, 2n+1r) \B(0, 2nr) for n = 0, 1, . . . .

We fix j ≥ m. Note that E1 = Aj and E2 = Aj−m satisfy the assumptions
in Property 3. Thus we get∫

Aj∩F

|u(x)|p

|x|α
dx ≤ 2

(
3
2

)p 2jd

2(j−m)d

(
2j−m+1

2j

)α ∫
Aj−m

|u(y)|p

|y|α
dy(11)

= γ

∫
Aj−m

|u(y)|p

|y|α
dy,

where γ = 2m(d−α)21+α(3/2)p < 1 for sufficiently large m (this condition
defines m). We write∫

Aj−m

|u(y)|p

|y|α
dy =

(∫
Aj−m\F

+
∫
Aj−m∩F

)
|u(y)|p

|y|α
dy

and we repeat (11) with j −m in place of j, then with j − 2m in place of j,
and so on; we stop when j − km ∈ {0, 1, . . . ,m− 1}. We obtain

∫
Bc∩F

|u(x)|p

|x|α
dx ≤

( ∞∑
n=1

γn

)
·

 ∞∑
j=m

∫
Aj−m\F

|u(y)|p

|y|α
dy +

∫
A∩F

|u(y)|p

|y|α
dy

 .
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Hence by Property 1 we have∫
Bc

|u(x)|p

|x|α
dx =

(∫
Bc\F

+
∫
Bc∩F

)
|u(x)|p

|x|α
dx

≤

( ∞∑
n=0

γn

)∫
Bc\F

|u(y)|p

|y|α
dy +

( ∞∑
n=1

γn

)∫
A∩F

|u(y)|p

|y|α
dy

≤ 1
1− γ

2p+1Rd+α

S

∫
Bc

∫
Bc

|u(x)− u(y)|p

|x− y|d+α
dy dx

+
γ

1− γ

∫
A

|u(y)|p

|y|α
dy. �

As we see, the proof of Lemma 3.3 is a modification of that of Lemma 3.1,
but the “sweeping out” procedure can terminate at the support of u. The
following lemma may be proved by an analogous modification of the proof of
Lemma 3.2. The notation is as explained before Lemma 3.2. We also define
Qk =

⋃∞
n=k An for k = 1, 2, . . . ; see (7).

Lemma 3.4. Let α < 1. There exist m = m(λ, α, d, p) and c = c(λ, α, d, p)
such that for all functions u ∈ Cc(D) we have
(12)∫

Qm

|u(x)|p

δαx
dx ≤ c

(∫
Qm

∫
Qm

|u(x)− u(y)|p

|x− y|d+α
dy dx+

∫
Q\Qm

|u(x)|p

δαx
dx

)
.

Note that in Lemmas 3.2 and 3.4 we only need that D be locally Lipschitz,
namely, Qz(ρ) should be a Lipschitz box and (6) should hold for x ∈ Qz(ρ).
We also note that the critical values α = d and α = 1 were excluded from our
considerations in Lemmas 3.1 and 3.3 and Lemmas 3.2 and 3.4, respectively;
see also Section 2.

4. Final conclusions and further results

Proof of Theorem 1.1. Let u ∈ Cc(D). Assume (T4). If α < d, then we
pick (a small) r > 0 such that suppu ∩ B(0, r) = ∅ and we see that the
inequality in Lemma 3.1 is stronger than (1). Similarly, if α > d and r > 0
is such that suppu ∩ B(0, 2mr) = ∅, where m is the constant of Lemma 3.3,
then the inequality in Lemma 3.3 is stronger than (1).

Assume now (T3). Let z ∈ ∂D. We take ρ large enough, as we may, so
that suppu ⊂ Qz(ρ) in the case when α > 1, and suppu ⊂ Qm in the case
when α < 1, where m is the constant of Lemma 3.4. Then the inequalities in
Lemmas 3.2 and 3.4 are stronger than (1).

Assume (T1). We put D1 = {x ∈ D : δx ≥ ρ̃} and D2 = {x ∈ D : δx < ρ̃},
where ρ̃ is small enough. By Lemma 3.2 we get

(13)
∫
D2

|u(x)|p

δαx
dx ≤ Nc

∫
D2

∫
D2

|u(x)− u(y)|p

|x− y|d+α
dy dx,
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since D2 may be covered by sets of the form Qzk(ρ) such that every x ∈ D2

belongs to at most N = N(λ, d) sets of type Qzk(ρ). This is possible for
sufficiently small ρ̃ < ρ, and such a ρ̃ may be chosen to depend only on
λ, r0 and d. We take F = F (u,D;R, S), where R and S are any positive
numbers such that the assumptions in Property 3 are satisfied for E1 = D1

and E2 = D2 (e.g., R = diamD/ρ and S = |D2|/ρd). By Property 3 we have

(14)
∫
D1∩F

|u(x)|p

δαx
dx ≤ c

∫
D2

|u(x)|p

δαx
dx.

Furthermore, from Property 1 we get

(15)
∫
D1\F

|u(x)|p

δαx
dx ≤ c

∫
D1\F

∫
D

|u(x)− u(y)|p

|x− y|d+α
dy dx.

Now (13), (14) and (15) give (1).
We finally consider (T2) and assume that D is a complement of a bounded

Lipschitz domain and α > 1, α 6= d. Let M be such that D ⊂ B(0,M) and
let m be a natural number; in a similar manner as before we prove that

(16)
∫
D2m+1M

|u(x)|p

δαx
dx ≤ c

∫
D2m+1M

∫
D2m+1M

|u(x)− u(y)|p

|x− y|d+α
dy dx,

where D2m+1M = D ∩B(0, 2m+1M). Now (1) follows easily from Lemma 3.1
if α < d and from Lemma 3.3 applied to r = 2M if α > d (note that |x| ≤ 2δx
if x ∈ B(0, 2M)c).

The proof of (1) when D is a complement of a bounded Lipschitz domain
and α < 1 is similar and will be omitted. �

Note that if (1) holds with c = ci for disjoint open sets Di, then (1) holds
also for

⋃
iDi with c = supi ci, because the left hand side of (1) is a σ-additive

function of the domain and the right hand side is superadditive. Now let
α > 1. By Theorem 1.1 the inequality (1) holds for D1 = (0, 1) ⊂ R with
constant c1 = c1(α) and for D2 = (0,∞) with constant c2 = c2(α). Using
dilations (see the remark at the end of Section 1), translations and a reflection
x 7→ −x we see that (1) holds for every interval with the same constant c1
and for every half-line with the same constant c2. Thus we get (1) for every
open set D ⊂ R and α > 1.

Let us mention that if α < 1 and D is a bounded Lipschitz domain, then

(17)
∫
D

|u(x)|p

δD(x)α
dx ≤ c

(∫
D

∫
D

|u(x)− u(y)|p

|x− y|d+α
dx dy +

∫
D

|u(x)|pdx
)

for all u ∈ Cc(D). This is proved by omitting the factor δ−αx in the second
integral of right hand side of (12). The details are similar to the proof of part
(T1) of Theorem 1.1 and will be omitted. As communicated to the author by
Z.-Q. Chen, (17) may be found in [CS]. By the counterexamples in Section 2
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the additional term on the right hand side of (17) is necessary and (1) is not
true in this case, even for C∞ domains.

Remark. The reader may have noticed that the right hand side of (1) is
infinite for nonzero u ∈ C1

c (D) if α ≥ p. However, when u /∈ C1
c (D), the right

hand side of (1) may be finite. Consider, for example, the function u on the line
that is equal to the Cantor function on [0, 1], symmetric with respect to x = 1,
and vanishes outside of [0, 2]. Taking D = (−1, 3), 0 < α < 1−log 2/ log 3, and
an arbitrary p > 0, one easily checks that the right hand side of (1) is finite,
which corresponds to the fact that a.e. u is locally constant. For this reason
we do not exclude the case α ≥ p from our considerations, even though the
application mentioned in the Introduction pertain to C∞c (D). This discussion
is related to the problem whether for an arbitrary measurable function u the
finiteness of the right hand side of (1) implies that u is essentially constant
on D. For example, if p = α = 1, then this implication is true; see [Br], [H].
Similar results may be found in [P]. Finally let us note that the function u
considered above gives a negative answer to Problem 2 in [Br].
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[KJF] A. Kufner, O. John, and S. Fuč́ık, Function spaces, Noordhoff International Pub-

lishing, Leyden, 1977. MR 58 #2189
[KP] A. Kufner and L.-E. Persson, Integral inequalities with weights, Academia, Prague,

2000.
[KT] A. Kufner and H. Triebel, Generalizations of Hardy’s inequality, Confer. Sem. Mat.

Univ. Bari 156 (1978), 1–21. MR 81a:26014

[OK] B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Math-
ematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR

92b:26028
[P] K. Pietruska-Pa luba, Some function spaces related to the Brownian motion on

simple nested fractals, Stochastics Stochastics Rep. 67 (1999), 267–285. MR

2000h:60078
[TU] M. Takeda and T. Uemura, Subcriticality and gaugeability for symmetric α-stable

processes, preprint, 2002.

Institute of Mathematics, Wroc law University of Technology, Wrbrzeże Wys-
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