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EXPLICIT FORMULAS FOR DIRICHLET AND HECKE
L-FUNCTIONS

XIAN-JIN LI

Abstract. In 1997, the author proved that the Riemann hypothesis
holds if and only if λn =

∑
[1−(1−1/ρ)n] > 0 for all positive integers n,

where the sum is over all complex zeros of the Riemann zeta function. In
1999, E. Bombieri and J. Lagarias generalized this result and obtained
a remarkable general theorem about the location of zeros. They also
gave an arithmetic interpretation for the numbers λn. In this note, the
author extends Bombieri and Lagarias’ arithmetic formula to Dirichlet
L-functions and to L-series of elliptic curves over rational numbers.

1. Introduction

Let K be a finite field with q elements, and let E be an elliptic curve over
K. In the 1930s, H. Hasse proved the inequality

|#E(K)− q − 1| ≤ 2
√
q,

where #E(K) is the number of K-rational points on E; see [12].
Let a = 1 + q −#E(K) and

LE(s) = 1− az + qz2,

where z = q−s. By Hasse’s inequality we have

LE(s) = (1− αz)(1− βz)

with |α| = |β| = √q. Hence

− d

dz
logLE(s) =

∞∑
n=0

λE(n+ 1)zn,

where λE(n) = αn + βn. It is clear that

|λE(n)| ≤ 2
√
qn
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for n = 1, 2, . . .. This estimate implies that all zeros of LE(s) lie on the line
<s = 1/2.

Let
ξ(s) = s(s− 1)π−s/2Γ(s/2)ζ(s),

where ζ(s) is the Riemann zeta function, and let λζ(n), n = 1, 2, . . . , be a
sequence of numbers defined by

d

dz
ln ξ

(
1

1− z

)
=
∞∑
n=0

λζ(n+ 1)zn.

In 1997, the author obtained the following criterion for the Riemann hypoth-
esis.

Theorem 1 ([9]). All complex zeros of ζ(s) lie on the line <s = 1/2 if
and only if λζ(n) > 0 for n = 1, 2, . . . .

In 1952, A. Weil [13] proved a famous criterion for the validity of the
Riemann hypotheses for number fields. The following is Bombieri’s refinement
of Weil’s criterion.

Bombieri’s refinement ([2]). All complex zeros of ζ(s) lie on the line
<s = 1/2 if and only if ∑

ρ

f̂(ρ)̂̄f(1− ρ) ≥ 0

for every complex-valued f ∈ C∞0 (0,∞) which is not identically 0, where the
Mellin transform of f is given by

f̂(s) =
∫ ∞

0

f(x)xs−1dx.

Let f, g ∈ C∞0 (0,∞). The multiplicative convolution of f and g is given by

(f ∗ g)(x) =
∫ ∞

0

f(x/y)g(y)
dy

y
.

If f̃(x) = x−1f(x−1), the Mellin transform of f ∗ ˜̄f is f̂(s)̂̄f(1− s). Let gn(x)
be the inverse Mellin transform of 1− (1−1/s)n for n = 1, 2, . . . . E. Bombieri
and J. Lagarias observed in [3] that[

1−
(

1− 1
s

)n]
+
[
1−

(
1− 1

1− s

)n]
=
[
1−

(
1− 1

s

)n] [
1−

(
1− 1

1− s

)n]
,

and that
gn(x) + g̃n(x) = (gn ∗ g̃n)(x).
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Hence, the positivity in the author’s criterion has the same meaning as that
in Weil’s criterion.

In 1999, Bombieri and Lagarias obtained the following remarkable theorem.

Theorem 2 (Bombieri-Lagarias [3]). Let R be a set of complex numbers
ρ whose elements have positive integral multiplicities assigned to them, such
that 1 6∈ R and ∑

ρ

1 + |<ρ|
(1 + |ρ|)2

<∞.

Then the following conditions are equivalent:
(1) <ρ ≤ 1/2 for every ρ in R;

(2)
∑
ρ<
[
1−

(
1− 1

ρ

)−n]
≥ 0 for n = 1, 2, . . . .

An arithmetic interpretation for the numbers λζ(n) was given in [3].

Theorem 3 (Bombieri-Lagarias [3]). We have

λζ(n) =
n∑
j=1

(
n

j

)
(−1)j

j!
lim
N→∞

{
j

N∑
k=1

Λ(k)
k

(ln k)j−1 − (lnN)j
}

+ 1− n

2
(ln 4π + γ) +

n∑
j=2

(
n

j

)
(−1)j(1− 2−j)ζ(j)

for n = 1, 2, . . . , where γ = 0.5772 . . . is Euler’s constant and where Λ(k) =
ln p when k is a power of a prime p and Λ(k) = 0 otherwise.

Let χ be a primitive Dirichlet character of modulus r > 1, and L(s, χ) the
Dirichlet L-function of character χ. If

ξ(s, χ) = (π/r)−
1
2 (s+a)Γ

(
s+ a

2

)
L(s, χ),

where

a =

{
0, if χ(−1) = 1,
1, if χ(−1) = −1,

then ξ(s, χ) is an entire function of order one and satisfies the functional
equation

ξ(s, χ) = εχξ(1− s, χ̄),
where εχ is a constant of absolute value one. By Theorem 2 of [1] we have

ξ(s, χ) = ξ(0, χ)
∏
ρ

(1− s/ρ),

where the product is over all the zeros of ξ(s, χ) in the order given by |=ρ| < T
for T →∞.
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For n = 1, 2, . . . let

λχ(n) =
∑
ρ

[1− (1− 1/ρ)n] ,

where the sum on ρ runs over all zeros of ξ(s, χ) in the order given by |=ρ| < T
for T →∞. First, we give an arithmetic interpretation for the numbers λχ(n).

Theorem 4. Let χ be a primitive Dirichlet character of modulus r > 1.
Then we have

λχ(n) = −
n∑
j=1

(
n

j

)
(−1)j−1

(j − 1)!

∞∑
k=1

Λ(k)
k

χ̄(k)(ln k)j−1 +
n

2

(
ln
r

π
− γ
)

+ τχ(n),

where

τχ(n) =

{∑n
j=2

(
n
j

)
(−1)j

(
1− 1

2j

)
ζ(j)− n

2

∑∞
l=1

1
l(2l−1) , if χ(−1) = 1,∑n

j=2

(
n
j

)
(−1)j2−jζ(j), if χ(−1) = −1.

Let E be an elliptic curve over Q with conductor N . For each prime p, we
denote by Ẽp the reduction of E at p. Let

ap =


p+ 1−#Ẽp(Fp), if E has good reduction at p,
1, if E has split multiplicative reduction at p,
−1, if E has non-split multiplicative reduction at p,
0, if E has additive reduction at p.

We define the L-series associated to E by the Euler product

LE(s) =
∏
p-N

(1− app−s + p1−2s)−1
∏
p|N

(1− app−s)−1

for <s > 3/2; see [12].
Let k and N be positive integers, and let χ be a multiplicative character of

modulus N with χ(1) = 1 and χ(−1) = (−1)k. Let Γ be the Hecke congruence
subgroup Γ0(N) of level N . We denote by S0(Γ, k, χ) the space of all cusp
forms of weight k and character χ for Γ. That is, f belongs to S0(Γ, k, χ) if
and only if f is holomorphic in the upper half-plane H, satisfies

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for all
(
a b
c d

)
∈ Γ, satisfies the usual regularity conditions at the cusps of Γ,

and vanishes at each cusp of Γ.
The Hecke operators Tn are defined by

(Tnf)(z) =
1
n

∑
ad=n

χ(a)ak
∑

0≤b<d

f

(
az + b

d

)
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for any function f on H. A function f in S0(Γ, k, χ) is called a Hecke eigenform
if

Tnf = λ(n)f
for all positive integers n with (n,N) = 1. The Fricke involution W is defined
by

(Wf)(z) = N−k/2z−kF (−1/Nz),
and the complex conjugation operator K is defined by

(Kf)(z) = f̄(−z̄).
Set W̄ = KW . Then f is a newform if it is an eigenfunction of W̄ and of all
the Hecke operators Tn.

Let f be a newform in S0(Γ, k, χ) normalized so that its Fourier coefficient
is 1. Then it has the Fourier expansion

f(z) =
∞∑
n=1

λ(n)e2πinz

with the Fourier coefficients equal to the eigenvalues of Hecke operators. Since
f is an eigenfunction of the involution W̄ , we can assume that

W̄f = ηf

for a constant η. Let

Lf (s) =
∞∑
n=1

λ(n)
ns

for <s > (k + 1)/2. This L-series has Euler product

Lf (s) =
∏
p

(1− λ(p)p−s + χ(p)pk−1−2s)−1

and satisfies the functional identity(√
N

2π

)s
Γ(s)Lf (s) = ikη̄

(√
N

2π

)k−s
Γ(k − s)L̄f (k − s̄).

When χ is primitive, we have η = τ(χ̄)λ(N)N−k/2 with τ(χ) being the Gauss
sum for χ. For the theory of Hecke L-functions see [8].

We denote by S2(N) the space of cusp forms of weight 2 with the principal
character for Γ0(N).

Shimura-Taniyama Conjecture ([4], [14]). There is a newform f ∈
S2(N) such that Lf (s) = LE(s).

The Shimura-Taniyama conjecture has now been proved ([4], [14]).
If

ξE(s) = cEN
s/2(2π)−sΓ

(
1
2

+ s

)
LE

(
1
2

+ s

)
,
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where cE is a constant chosen so that ξE(1) = 1, then ξE(s) is an entire
function and satisfies

ξE(s) = wξE(1− s),

where w = (−1)r with r being the vanishing order of ξE(s) at s = 1/2.
Let

λE(n) =
∑
ρ

[
1−

(
1− 1

ρ

)n]
for n = 1, 2, . . . , where the sum is over all the zeros of ξE(s) in the order
given by |=ρ| < T for T →∞. Since ξE(s) is an entire function of order one,
the conditions of Bombieri-Lagarias’ theorem are satisfied, and hence all the
zeros of ξE(s) lie on the line <s = 1/2 if and only if

λE(n) > 0

for n = 1, 2, . . . .
For each prime number p, we let αp and βp be the roots of T 2 − apT + p.

Let b(pk) = akp if p|N and b(pk) = αkp + βkp if (p,N) = 1. Next, we give an
arithmetic interpretation for the numbers λE(n).

Theorem 5. We have

λE(n) = n

(
ln
√
N

2π
− γ

)
−

n∑
j=1

(
n

j

)
(−1)j−1

(j − 1)!

∞∑
k=1

Λ(k)
k3/2

b(k)(ln k)j−1

+ n

(
−2

3
+
∞∑
l=1

3
l(2l + 3)

)
+

n∑
j=2

(
n

j

)
(−1)j

∞∑
l=1

1
(l + 1/2)j

.

The author wishes to thank Brian Conrey for his help during the prepa-
ration of the manuscript, and William Duke for his valuable suggestions. He
also wants to thank the referee for carefully reading the manuscript and for
his/her valuable suggestions.

2. Proof of Theorem 4

Weil’s explicit formula for L(s, χ) ([1], [13]). Let F (x) be a function
defined on R such that

2F (x) = F (x+ 0) + F (x− 0)

for all x ∈ R, such that F (x) exp((b + 1/2)|x|) is of bounded variation on R
for a constant b > 0, and such that

F (x) + F (−x) = 2F (0) +O(|x|`)



EXPLICIT FORMULAS FOR DIRICHLET AND HECKE L-FUNCTIONS 497

as x→ 0 for a constant ` > 0. Then∑
ρ

Φ(ρ) = F (0)
(

ln
r

π
− γ
)
−
∞∑
n=1

Λ(n)√
n

(χ(n)F (lnn) + χ̄(n)F (− lnn))

+
∫ ∞
−∞

(
F (x)e(3/2−a)|x| − F (0)

) dx

1− e2|x| ,

where the sum on ρ runs over all zeros of ξ(s, χ) in the order given by |=ρ| < T
for T →∞, and

(2.1) Φ(s) =
∫ ∞
−∞

F (x)e(s−1/2)xdx.

A multiset is a set whose elements have positive integral multiplicities as-
signed to them [3].

Lemma 2.1 ([3, (2,4)]). Formally, if

f(z) =
∏
ρ

(
1− z

ρ

)
and

λn =
∑
ρ

[1− (1− 1/ρ)n] ,

then we have
d

dz
ln f

(
1

1− z

)
=
∞∑
n=0

λ−n−1z
n.

Lemma 2.2 ([3, Corollary 1]). Let R be a multiset of complex numbers
such that

(1) 0, 1 6∈ R;
(2) if ρ ∈ R, then 1− ρ and ρ̄ are in R and have the same multiplicity as

ρ;
(3)

∑
ρ(1 + |<ρ|)/(1 + |ρ|)2 <∞.

Then <ρ = 1/2 for all ρ ∈ R if, and only if,

λn =
∑
ρ∈R

[1− (1− 1/ρ)n] ≥ 0

for n = 1, 2, 3, . . ..

Lemma 2.3 ([3, Lemma 2]). For n = 1, 2, . . ., let

Fn(x) =


ex/2

∑n
j=1

(
n
j

)
xj−1

(j−1)! , if −∞ < x < 0,

n/2, if x = 0,
0, if 0 < x.
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Then

Φn(s) = 1−
(

1− 1
s

)n
,

where Φn is related to Fn as in (2.1).

Proof of Theorem 4. For a sufficiently large positive number X that is not
an integer let

Fn,X(x) =


Fn(x), if − lnX < x <∞,
1
2Fn(− lnX), if x = − lnX,
0, if −∞ < x < − lnX.

Then Fn,X(x) satisfies all conditions of Weil’s explicit formula for L(s, χ). Let

Φn,X(s) =
∫ ∞
−∞

Fn,X(x)e(s−1/2)xdx.

By using the Weil explicit formula, we obtain that∑
ρ

Φn,X(ρ) = Fn,X(0)
(

ln
r

π
− γ
)

−
∞∑
k=1

Λ(k)√
k

(χ(k)Fn,X(ln k) + χ̄(k)Fn,X(− ln k))

+
∫ ∞
−∞

(
Fn,X(x)e(3/2−a)|x| − Fn,X(0)

) dx

1− e2|x| ,

where the sum on ρ runs over all zeros of ξ(s, χ) in the order given by |=ρ| < T
for T →∞. It follows that
(2.2)

lim
X→∞

∑
ρ

Φn,X(ρ)

=
n

2

(
ln
r

π
− γ
)
−

n∑
j=1

(
n

j

)
(−1)j−1

(j − 1)!

∞∑
k=1

Λ(k)
k

χ̄(k)(ln k)j−1

+

{∑n
j=2

(
n
j

)
(−1)j

(
1− 1

2j

)
ζ(j)− n

2

∑∞
l=1

1
l(2l−1) , if χ(−1) = 1,∑n

j=2

(
n
j

)
(−1)j2−jζ(j), if χ(−1) = −1.

Note that the infinite series in the second term on the right side of (2.2)
converges by the prime number theorem for arithmetic progressions; see §19-
20 of [5].
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We have

Φn(s)− Φn,X(s) = X−s
n∑
j=1

(
n

j

)
(−1)j−1

j−1∑
k=0

(lnX)j−k−1

(j − k − 1)!
s−k−1

(2.3)

=
X−s

s

n∑
j=1

(
n

j

)
(− lnX)j−1

(j − 1)!
+O

(
(lnX)n−2

|s|2
X−<s

)
.

Let ρ be any zero of ξ(s, χ) which is not the Siegel zero when χ is a real
nonprincipal character. By §14 of [5] we have

c

ln r(|ρ|+ 2)
≤ <ρ ≤ 1− c

ln r(|ρ|+ 2)

for a positive constant c. An argument similar to that made in the proof of
(3.9) of [3] shows that

(2.4)
∑
ρ

X−<ρ

|ρ|2
� e−c

′√lnX +
X−β

β2

for a positive constant c′, where the second term on the right side of the
inequality exists only when β is the Siegel zero of L(s, χ).

Let

ψ0(x, χ) =
∑
n≤x

χ(n)Λ(n)

when x is not a prime power. By §19–20 of [5] we have

−
∑
ρ

X ρ̄

ρ̄
= ψ0(X, χ̄) +

L′(0, χ̄)
L(0, χ̄)

− 1
2

ln
X + 1
X − 1

when χ(−1) = −1, and

−
∑
ρ

X ρ̄

ρ̄
= ψ0(X, χ̄) + b(χ̄) + ln

√
X2 − 1

when χ(−1) = 1, where b(χ) is the constant term in the expansion of L′/L
near s = 0,

L′(s, χ)
L(s, χ)

=
1
s

+ b(χ) + · · · ,

and

ψ0(X,χ) = −X
β

β
+O

(
Xe−c

′√lnX
)
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for a positive constant c′. Since∑
ρ

X−ρ

ρ
=
∑
ρ

X−(1−ρ̄)

1− ρ̄

= − 1
X

∑
ρ

X ρ̄

ρ̄
+O

(∑
ρ

X−(1−<ρ)

|ρ|2

)

= − 1
X

∑
ρ

X ρ̄

ρ̄
+O

(
e−c

′√lnX +
Xβ−1

β2

)
,

we have

(2.5)
∑
ρ

X−ρ

ρ
� Xβ−1 + e−c

′√lnX

for a positive constant c′, where the term Xβ−1 exists only when β is the
Siegel zero of L(s, χ). It follows from (2.3), (2.4) and (2.5) that

lim
X→∞

∑
ρ

Φn,X(ρ) =
∑
ρ

Φn(ρ).

This completes the proof of the theorem. �

3. Proof of Theorem 5

Explicit formula for LE(s) ([10]). Let F (x) be a function defined on
R such that

2F (x) = F (x+ 0) + F (x− 0)
for all x ∈ R, such that F (x) exp((ε + 1/2)|x|) is integrable and of bounded
variation on R for a constant ε > 0, and such that (F (x) − F (0))/x is of
bounded variation on R. Then∑

ρ

Φ(ρ) = 2F (0) ln
√
N

2π
−
∞∑
n=1

Λ(n)
n

b(n) [F (lnn) + F (− lnn)]

−
∫ ∞

0

(
F (x) + F (−x)

ex − 1
− 2F (0)

e−x

x

)
dx,

where the sum on ρ runs over all zeros of ξE(s) in the order given by |=ρ| < T
for T →∞, and

Φ(s) =
∫ ∞
−∞

F (x)e(s−1/2)xdx.

Lemma 3.1 ([6], [7], [11]). Let f be a newform of weight 2 for Γ0(N).
Then there an absolute effective constant c > 0 such that Lf (s) has no zeros
in the region {

s = σ + it : σ ≥ 1− c

ln(N + 1 + |t|)

}
.
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Proof of Theorem 5. Since ξE(s) is an entire function of order one satisfy-
ing ξE(1) = 1 and ξE(s) = wξE(1− s), we have

ξE(s) = w
∏
ρ

(1− s/ρ),

where the product is over all the zeros of ξE(s) in the order given by |=ρ| < T
for T →∞. If ϕE(z) = ξE(1/(1− z)), then

ϕ′E(z)
ϕE(z)

=
∞∑
n=0

λE(n+ 1)zn.

For a sufficiently large positive number X that is not an integer let

Fn,X(x) =


Fn(x), if − lnX < x <∞,
1
2Fn(− lnX), if x = − lnX,
0, if −∞ < x < − lnX,

where Fn(x) is given as in Lemma 2.3. Then Fn,X(x) satisfies all conditions
of the explicit formula for LE(s). Let

Φn,X(s) =
∫ ∞
−∞

Fn,X(x)e(s−1/2)xdx.

By using the explicit formula, we obtain that

∑
ρ

Φn,X(ρ) = 2Fn,X(0) ln
√
N

2π
−
∞∑
k=1

Λ(k)
k

b(k) [Fn,X(ln k) + Fn,X(− ln k)]

−
∫ ∞

0

(
Fn,X(x) + Fn,X(−x)

ex − 1
− 2Fn,X(0)

e−x

x

)
dx,

where the sum on ρ runs over all zeros of ξE(s) in the order given by |=ρ| < T
for T →∞. It follows that

lim
X→∞

∑
ρ

Φn,X(ρ)

= n

(
ln
√
N

2π
− γ

)
−

n∑
j=1

(
n

j

)
(−1)j−1

(j − 1)!

∞∑
k=1

Λ(k)
k3/2

b(k)(ln k)j−1

+ n

(
−2

3
+
∞∑
l=1

3
l(2l + 3)

)
+

n∑
j=2

(
n

j

)
(−1)j

∞∑
l=1

1
(l + 1/2)j

.
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We have
(3.1)

Φn(s)− Φn,X(s) = X−s
n∑
j=1

(
n

j

)
(−1)j−1

j−1∑
k=0

(lnX)j−k−1

(j − k − 1)!
s−k−1

=
X−s

s

n∑
j=1

(
n

j

)
(− lnX)j−1

(j − 1)!
+O

(
(lnX)n−2

|s|2
X−<s

)
.

Let ρ be any zero of ξE(s). By Lemma 3.1 and the Shimura-Taniyama con-
jecture we have

c

ln(N + 1 + |ρ|)
≤ <ρ ≤ 1− c

ln(N + 1 + |ρ|)

for a positive constant c. An argument similar to that made in the proof of
(3.9) of [3] shows that

(3.2)
∑
ρ

X−<ρ

|ρ|2
� e−c

′√lnX

for a positive constant c′.
Since ∑

ρ

X−ρ

ρ
=
∑
ρ

X−(1−ρ)

1− ρ

= − 1
X

∑
ρ

Xρ

ρ
+O

(∑
ρ

X−(1−<ρ)

|ρ|2

)

= − 1
X

∑
ρ

Xρ

ρ
+O

(
e−c

′√lnX
)
,

and since

lim
X→∞

(lnX)j−1

X

∑
ρ

Xρ

ρ
= 0

for j = 1, 2, . . . , n by Theorem 4.2 and Theorem 5.2 of [11], we have

(3.3) lim
X→∞

(lnX)j−1
∑
ρ

X−ρ

ρ
= 0

for j = 1, 2, . . . , n. It follows from (3.1), (3.2) and (3.3) that

lim
X→∞

∑
ρ

Φn,X(ρ) =
∑
ρ

Φn(ρ).

This completes the proof of the theorem. �
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