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ON HERZ’S PROJECTION THEOREM

ANTOINE DERIGHETTI

Abstract. LetG be a locally compact group andH a discrete amenable

subgroup. We prove the existence of a contractive projection Q of
CVp(G) onto CVp(H) such that suppQ(T ) ⊂ suppT .

1. Introduction

Let G be a locally compact group and 1 < p <∞. We denote by cvp(G) the
norm closure in CVp(G) of the set of all convolution operators with compact
support. In [4, Corollaire 2] C. Herz proved, for G amenable and H a closed
normal subgroup of G, the existence of a contractive projection of cvp(G) onto
cvp(H). In [1] we were able to deal with non-amenable groups G, but we had
to impose strong conditions on H, such as normality in G or compactness
of H or G ∈ [SIN ]H . The example {( 1 n

0 1 ) | n ∈ Z} in GL(2,R) was out of
reach!

The main result of this work is the following theorem: Suppose that G
is an arbitrary locally compact group and H a discrete amenable subgroup.
Then there is a contractive projection Q of CVp(G) onto CVp(H) such that
suppQ(T ) ⊂ suppT for every T ∈ CVp(G).

2. Preliminaries

The case H = G of the following result is due to V. Losert and H. Rindler
[6, Theorem 3].

Proposition 2.1. Let G be a locally compact group and H a closed sub-
group of G. Suppose that H is amenable. For every compact subset K of
H, for every open neighborhood U of e in G and for every ε > 0 there is
k ∈ C+

00(G) with N1(k) = 1, supp k ⊂ U and N1( s−1ks∆G(s) − k) < ε for
s ∈ K.
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Proof. Let U1 be a compact neighborhood of e in G contained in U . There
is f ∈ C+

00(H) with N1(f) = 1 and N1( s−1f − f) < ε for every s ∈ K. There
is an open neighborhood V of e such that hV h−1 ⊂ U1 for every h ∈ supp f .
Let g ∈ C+

00(G) with N1(g) = 1 and supp g ⊂ V . We define, for x ∈ G,
k(x) =

∫
H
f(h)g(h−1xh)dh. Then supp k ⊂ U1 and∫
G

k(x)dx =
∫
H

f(h)
(∫

G

g(h−1xh)∆G(h)dx
)
dh = 1.

For s ∈ K we have∫
G

|k(s−1xs)∆G(s)− k(x)|dx

≤
∫
G

(∫
H

|f(s−1h)− f(h)|g(h−1xh)∆G(h)dh
)
dx

=
∫
H

|f(s−1h)− f(h)|
(∫

G

g(h−1xh)∆G(h)dx
)
dh

= N1( s−1f − f). �

Lemma 2.2. Let G be a locally compact non-compact unimodular group,
H a closed amenable subgroup of G, K a compact subset of H, ε ∈ (0,∞),
δ ∈ (0,∞) and U a neighborhood of e in G. Then there is an mG-integrable
subset V of G and an mH-integrable subset N of H such that

(i) V = V −1,
(ii) V ⊂ U ,
(iii) mG(V ) > 0,
(iv) N ⊂ K,
(v) mH(N) < δ,
(vi) for every x ∈ K \N we have N1(1V − 1xV x−1) < ε mG(V ).

Proof. We suppose mH(K) > 0. Let

η =
δε

δε+ 3mH(K)
.

A slight modification of Proposition 2.1 implies the existence of f ∈ C+
00(G)

with f = f̌ , supp f ⊂ U , N1(f) = 1 and N1( x−1fx − f) < η for every x ∈ K.
We can find
(1) N ∈ N,
(2) mG-integrable subsets A1, . . . , AN of G,
(3) λ1, . . . , λN ∈ (0,∞),

such that AN ⊂ · · · ⊂ A1, mG(AN ) > 0, A−1
j = Aj for every 1 ≤ j ≤ N ,

N∑
j=1

λj
mG(Aj)

1Aj ≤ f
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and

N1

(
f −

N∑
j=1

λj
mG(Aj)

1Aj

)
< η.

Let

k =
N∑
j=1

λj
mG(Aj)

1Aj .

Consider l = k/N1(k). For every x ∈ K we have

N1(l − x−1 lx) <
2N1(k − f) +N1(f − x−1fx)

1− η
<

3η
1− η

=
δε

mH(K)
.

For x ∈ G we have

N1(l − x−1 lx) =
N∑
j=1

λ
′

j

mG(Aj)
N1(1Aj − 1xAjx−1)

with λ
′

j = λj/N1(k) for 1 ≤ j ≤ N . We obtain∫
K

(
N∑
j=1

λ
′

j

mG(Aj)
N1(1Aj − 1hAjh−1)

)
dh < δε

and therefore
N∑
j=1

λ
′

j

mG(Aj)

∫
K

N1(1Aj − 1hAjh−1)dh < δε.

Consequently there is 1 ≤ j ≤ N such that∫
K

N1(1Aj − 1hAjh−1)
mG(Aj)

dh < δε.

Let A = Aj . We have A = A−1, A ⊂ U . Let finally

N =
{
h | h ∈ K, N1(1A − 1hAh−1)

mG(A)
≥ ε
}
.

Then N is a closed subset of H contained in K, and we have

εmH(N) ≤
∫
N

N1(1A − 1hAh−1)
mG(A)

dh ≤
∫
K

N1(1A − 1hAh−1)
mG(A)

dh.

This implies mH(N) < δ. For x ∈ K \N we get indeed

N1(1A − 1xAx−1)
mG(A)

< ε. �

Remark 2.3. There are similarities between this proof and the method
used by W. R. Emerson and F. P. Greenleaf to show that amenability implies
Følner’s condition (see [2, p. 374] or [7, p. 63]).
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Proposition 2.4. Let G be a locally compact, non-compact, non-discrete
unimodular group, H a discrete amenable subgroup of G, F a finite subset
of H, ε ∈ (0,∞) and U a neighborhood of e in G. Then there is an open
neighborhood V of e in G such that V is relatively compact, V ⊂ U , V −1 = V
and N1(1V − 1xV x−1) < ε mG(V ) for every x ∈ F .

Proof. Let U1 be an open relatively compact neighborhood of e in G with
U−1

1 = U1 and U1 ⊂ U . According to the Lemma 2.2 there are sets A ⊂ U1

and N ⊂ F such that A is mG-integrable, A−1 = A, mG(A) > 0, mH(N) < 1,
and such that for every x ∈ F \N the inequality N1(1A−1xAx−1) < ε

2mG(A) is
satisfied. With mH denoting the counting measure of H, we have mH(N) = 0
and therefore N = ∅. Let B = A ∪ {e}. Since the group G is non-discrete,
we have mG({e}) = 0 and therefore mG(B) = mG(A). We also have B ⊂ U1

and B−1 = B. For x ∈ F we have
N1(1B − 1xBx−1)

mG(B)
≤ N1(1A − 1xAx−1)

mG(A)
.

There is an open set W of G such that B ⊂ W and mG(W ) − mG(B) <
ε
4mG(A). Consider now the set V = W ∩W−1 ∩ U1. For x ∈ F we can write

N1(1V − 1xV x−1)
mG(V ))

≤ 2
N1(1V − 1B)
mG(B))

+
N1(1B − 1xBx−1)

mG(B))
.

We have

N1(1V − 1B) = mG(V )−mG(B) <
ε

4
mG(A).

Hence we obtain, for every x ∈ F ,

N1(1V − 1xV x−1)
mG(V )

< ε. �

Proposition 2.5. Let G be a non-discrete, non-compact locally compact
unimodular group, H a discrete amenable subgroup, U a neighborhood of e in
G, K a compact subset of G and ε ∈ (0,∞). Then there is an open relatively
compact neighborhood V of e in G, with V −1 = V , V ⊂ U and∫

K

|1HV (x)− 1V H(x)|dx < ε mG(V ).

Proof. We suppose that e ∈ K. There is a compact neighborhood U0 of
e in G with U−1

0 = U0, U0 ⊂ U and (U0)2 ∩ H = {e}. Let F0 = (KU0 ∪
U0K)∩H. Then F0 is a finite non-empty set. By Lemma 2.2 there is an open
neighborhood V of e in G such that V = V −1, V ⊂ U0 and

N1(1V − 1xV x−1) <
ε mG(V )
mH(F0)
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for every x ∈ F0. Consider

I =
{
h ∈ H | V h ∩K 6= ∅ or hV ∩K 6= ∅

}
.

Then I ⊂ F0, K ∩ V H =
⊔
h∈I K ∩ (V h) and K ∩ HK =

⊔
h∈I K ∩ (hV ).

Consequently

1K |1V H − 1HV | ≤
∑
h∈I

1K |1V h − 1hV |

and therefore∫
G

1K(x)|1V H(x)− 1HV (x)|dx ≤
∫
G

(∑
h∈I

1K(x)|1V h(x)− 1hV (x)|

)
dx

=
∑
h∈I

∫
G

1K(x)|1V h(x)− 1hV (x)|dx ≤
∑
h∈I

∫
G

|1V h(x)− 1hV (x)|dx

=
∑
h∈I

N1(1V − 1hV h−1) <
|I|εmG(V )
mH(F0)

. �

Corollary 2.6. Let G be a non-discrete, non-compact locally compact
unimodular group, H a discrete amenable subgroup, U a neighborhood of e
in G, K a compact subset of G and ε ∈ (0,∞). Then there is a relatively
compact open neighborhood V of e in G, with V −1 = V , V ⊂ U and∫

K

|1HV (x)− 1V H(x)|dx < ε mG/H(ω(V )),

where ω is the canonical map of G onto G/H, mH the counting measure of
H, mG a left invariant measure on G and mG/H the corresponding measure
on G/H.

Proof. Let K0 be a compact neighborhood of e in G and f0 ∈ C+
00(G) with

f0(x) = 1 on K0. By Proposition 2.5 there is an open neighborhood V of e in
G with V −1 = V , V ⊂ K0 ∩ U and∫

K

|1HV (x)− 1V H(x)|dx < ε mG(V )
sup{(THf0)(ẋ) | ẋ ∈ G/H}

.

The inequality 1V ≤ 1V Hf0 implies

mG(V ) ≤
∫
G/H

1ω(V )(ẋ)

(∫
H

f0(xh)dh

)
dẋ

≤ mG/H(ω(V )) sup{(THf0)(ẋ) | ẋ ∈ G/H}. �

Lemma 2.7. Let G be a locally compact group and H a closed subgroup
of G and suppose that ∆G(h) = ∆H(h) for h ∈ H. Let 1 < p < ∞, ϕ ∈
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C00(H,C), k ∈ C00(G,C) and U be a relatively compact open neighborhood of
e in G. Then the following inequality holds:

Np((ϕ ∗H k)1UH) ≤ mG/H(ω(U))1/pNp(ϕ) ‖TH(|k|)‖1/p∞ ‖TH(|ǩ|)‖1/p
′

∞ .

Proof. (1) N1((ϕ ∗H k)1UH) ≤ mG/H(ω(U)) N1(ϕ) ‖(TH(|k|)‖∞.
We have

N1((ϕ ∗H k)1UH) =
∫
G/H

1ω(U)(ẋ)

(∫
H

|(ϕ ∗H k)(xh)|dh

)
dẋ

≤
∫
G/H

1ω(U)(ẋ)N1(ϕ) ‖TH(|k|)‖∞dẋ.

(2) ‖(ϕ ∗H k)1UH‖∞ ≤ ‖ϕ‖∞ ‖TH(|ǩ|)‖∞.
For every x ∈ G, we have

|1UH(x)(ϕ ∗H k)(x)| ≤
∣∣∣∣ ∫
H

ϕ(h)k(h−1x)dh
∣∣∣∣

≤ ‖ϕ‖∞
∫
H

|ǩ(x−1h)|dh ≤ ‖ϕ‖∞ ‖TH(|ǩ|)‖∞.

(3) It suffices to prove that for every step function f ∈ Lp
C
(H) with Np(f)

= 1 one has

Np((f ∗H k)1UH) ≤ (mG/H(ω(U)))1/p ‖TH(|k|)‖1/p∞ ‖TH(|ǩ|)‖1/p
′

∞ .

We will show that for every step function g ∈ Lp
′

C
(G) with Np′(g) = 1 one has∣∣∣∣ ∫

G

f ∗H k(x)1UH(x)g(x)dx
∣∣∣∣ ≤ (mG/H(ω(U)))1/p‖TH(|k|)‖1/p∞ ‖TH(|ǩ|)‖1/p

′

∞ .

There exist m ∈ N, a1, . . . , am ∈ C, and disjoint integrable subsets E1, . . . , Em
of H with f =

∑m
j=1 aj1Ej and a1 . . . am 6= 0. Let

B = {z ∈ C | 0 ≤ Re z ≤ 1}.

For every z ∈ B, let f(z) denote the step function
∑m
j=1 |aj |(1−z)peiϑj1Ej ,

where aj = |aj |eiϑj with 0 ≤ ϑj < 2π for 1 ≤ j ≤ m. Similarly, for the step
function g =

∑n
l=1 bl1Fl with disjoint integrable subsets F1, . . . , Fn of G and

b1 . . . bn 6= 0, define g(z) =
∑n
l=1 |bl|(1−z)p

′

eiϕl1Fl .
For any step function ϕ ∈ Lp

C
(H) and z ∈ B set

Tzϕ =
1UH(ϕ∗Hk)

(mG/H(ω(U)))1−z .

For z ∈ B let

F (z) =
∫
G

(Tzf(z))(x)g(z)(x)dx.
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Then F is continuous on B, analytic on the interior of B and bounded on B.
In fact, we have on B

|F (z)| ≤ 1
min{mG/H(ω(G/H)), 1}

m∑
j=1

n∑
l=1

max{|aj |p, 1}max{|bl|p
′
, 1}

·
∣∣∣∣ ∫
G

1Ej ∗H k(x)1UH(x)1Fl(x)dx
∣∣∣∣.

For y ∈ R we have |F (iy)| ≤ N1(f(iy)) ‖g(iy)‖∞ with

N1(f(iy)) =
∫
G

1UH(x)|(f(iy) ∗H k)(x))|∣∣mG/H(ω(H))1−iy∣∣ dx ≤
N1(f(iy))‖TH(|k|)‖∞

mG/H(ω(U))

according to (1). But N1(f(iy)) = Np(f)p = 1 and |g(iy)|∞ = 1, and conse-
quently |F (iy)| ≤ ‖TH(|k|)‖∞.

For y ∈ R we also have

|F (1 + iy)| ≤ ‖T(1+iy)‖∞ N1(g(1+iy))

with ‖T(1+iy)‖∞ = ‖1UH(f(1+iy) ∗H k)‖∞. Using (2) we get

‖T(1+iy)‖∞ ≤ ‖f(1+iy)‖∞‖TH(|ǩ|)‖∞.

The relations ‖f(1+iy)‖∞ = 1 and N1(g(1+iy)) = Np′(g)p
′

then imply |F (1 +
iy)| ≤ ‖TH(|ǩ|)‖∞.

By the Phragmén-Lindelöf maximum principle, for every t ∈ (0, 1) we
have |F (t)| ≤ ‖TH(|k|)‖1−t∞ ‖TH(|ǩ|)‖t∞. We conclude from f(1−1/p) = f ,
g(1−1/p) = g and

F

(
1− 1

p

)
=

∫
G

1UH(x)(f ∗H k)(x)g(x)dx
(mG/H(ω(U)))1/p

. �

3. A projection theorem for cvp

We use the notations and results of [1].

Proposition 3.1. Let G be a non-discrete, non-compact locally compact
unimodular group, H a discrete amenable subgroup, U a neighborhood of e
in G, ε ∈ (0,∞), m ∈ N, p ∈ (1,∞), and let m sequences (r(j)

n )∞n=1, j =
1, . . . ,m, of Lp

C
(H) and m sequences (s(j)

n )∞n=1, j = 1, . . . ,m, of Lp
′

C
(H) be

given. Suppose that
∑∞
n=1Np(r

(j)
n )Np′(s

(j)
n ) <∞ for every 1 ≤ j ≤ m. Then

there exist k, l ∈ C+
00(G) such that supp k ⊂ U , supp l ⊂ U , ‖Λk,l‖ ≤ 1 and

for every 1 ≤ j ≤ m
∞∑
n=1

∣∣∣∣〈Λk,l(i(S))[r(j)
n ], [s(j)

n ]〉
Lp
C
(H),Lp

′
C

(H)
− 〈S[r(j)

n ], [s(j)
n ]〉

Lp
C
(H),Lp

′
C

(H)

∣∣∣∣
≤ ε|||S|||p
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for every S ∈ CVp(H) 1.

Proof. We suppose that ε < 1. For every 1 ≤ j ≤ m there are sequences
(ϕ(j)
n )∞n=1, (ψ

(j)
n )∞n=1 of C00(H,C) such that

Np(r(j)
n − ϕ(j)

n ) <
ε

3 · 2n+1
(
1 +Np′

(
s

(j)
n

))
and

Np′(s(j)
n − ψ(j)

n ) <
ε

3 · 2n+1
(
1 +Np

(
r

(j)
n

))
for every n ∈ N.

For every 1 ≤ j ≤ m and n ∈ N we have

Np
(
ϕ(j)
n

)
Np′
(
ψ(j)
n

)
<

1
9 · 22n+2

+
2

3 · 2n+1
+Np

(
r(j)
n

)
Np′
(
s(j)
n

)
and therefore

∑∞
n=1Np(ϕ

(j)
n )Np′(ψ

(j)
n ) < ∞. Consequently there is N ∈ N

such that
∞∑

n=1+N

Np(ϕ(j)
n )Np′(ψ(j)

n ) <
ε

25

for every 1 ≤ j ≤ m.
Let U0 be a compact neighborhood of e in G with U−1

0 = U0 and U0 ⊂
U . According to Lemma 1 of [1] there is k′ ∈ C+

00(G) with supp k′ ⊂ U0,
(supp k′) ∩H = {e},

∑
h∈H k

′(h) = 1, and
∑
h∈H k

′(xh) ≤ 1 for all x ∈ G.
For every n ∈ N and 1 ≤ j ≤ m we have ϕ(j)

n = ResH(ϕ(j)
n ∗H k′) and

ψ
(j)
n = ResH(ψ(j)

n ∗H k′).
Let

0 < ε1 < min

{
ε

3 · 2n+2
(
1 +Np

(
ϕ

(j)
n

)
+Np

(
ψ

(j)
n

))
∣∣∣∣∣ 1 ≤ n ≤ N, 1 ≤ j ≤ m

}
.

There is a relatively compact open neighborhood U1 of e in G such that for
1 ≤ n ≤ N, 1 ≤ j ≤ m and x ∈ U1 we have

Np
(
(ϕ(j)
n ∗H k′)x,H − (ϕ(j)

n ∗H k′)H
)
< ε1

and

Np′
(
(ψ(j)
n ∗H k′)x,H − (ψ(j)

n ∗H k′)H
)
< ε1.

This implies

Np
(
(ϕ(j)
n ∗H k′)x,H − ϕ(j)

n

)
< ε1

and

Np′
(
(ψ(j)
n ∗H k′)x,H − ψ(j)

n

)
< ε1.

1For f ∈ FG, where F is a set, [f ] denotes the set all g ∈ FG with g = f a.e.
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Let A be an open neighborhood of e in G with A ⊂ U1. Using a Bruhat
function forH,G (as in [1, p. 1430]), we obtain for every 1 ≤ n ≤ N, 1 ≤ j ≤ m
and S ∈ CVp(H) the following inequality:∣∣∣∣∣ 〈i(S)[1AH(ϕ(j)

n ∗H k′)], [1AH(ψ(j)
n ∗H k′)]〉

Lp
C
(G),Lp

′
C

(G)

mG/H(ω(A))

− 〈S[ϕ(j)
n ], [ψ(j)

n ]〉
Lp
C
(H),Lp

′
C

(H)

∣∣∣∣∣
≤ |||S|||pε1

(
1 +Np(ϕ(j)

n ) +Np′(ψ(j)
n )
)
.

Let K be a finite subset of H containing suppϕ(j)
n and suppψ(j)

n for 1 ≤ n ≤
N and 1≤ j ≤ m. Then supp(ϕ(j)

n ∗H k′) ⊂ KU0 and supp(ψ(j)
n ∗H k′) ⊂ KU0

for 1 ≤ n ≤ N and 1≤ j ≤ m.
Let

0 < ε2 < min

{(
ε1

2n+3
(
1 + ‖ϕ(j)

n ∗H k′‖∞
)(

1 +Np′
(
ψ

(j)
n

)))p,
(

ε1

2n+3
(
1 + ‖ψ(j)

n ∗H k′‖∞
)(

1 +Np
(
ϕ

(j)
n )
))p

′ ∣∣∣∣∣1 ≤ n ≤ N, 1 ≤ j ≤ m
}
.

Corollary 2.6 implies the existence of an open neighborhood U2 of e in G with
U−1

2 = U2, U2 ⊂ U1 and∫
KU0

|1HU2(x)− 1U2H(x)|dx < ε2 mG/H(ω(U2)).

(1) For 1 ≤ n ≤ N , 1 ≤ j ≤ m and S ∈ CVp(H) we have∣∣∣∣∣ 〈i(S)[1HU2(ϕ(j)
n ∗H k′)], [1HU2(ψ(j)

n ∗H k′)]〉
Lp
C
(G),Lp

′
C

(G)

mG/H((ω(U2))

−
〈i(S)[1U2H(ϕ(j)

n ∗H k′)], [1U2H(ψ(j)
n ∗H k′)]〉

Lp
C
(G),Lp

′
C

(G)

mG/H((ω(U2))

∣∣∣∣∣
≤ |||S|||pε1

2n+2
.

We first show that

Np(1HU2(ϕ(j)
n ∗H k′))

mG/H((ω(U2))1/p
≤ Np(ϕ(j)

n ).
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We have indeed∫
G

1HU2(x)|(ϕ(j)
n ∗H k′)(x)|pdx =

∫
G

1U2H(x)|((k′)̌ ∗H (ϕ(j)
n )̌)(x)|pdx

=
∫
G/H

1ω(U2)(ẋ)

(∫
H

|((k′)̌ ∗H (ϕ(j)
n )̌ )(xh)|pdh

)
dẋ,

and for every x ∈ G we have∫
H

|((k′)̌ ∗H (ϕ(j)
n )̌)(xh)|pdh ≤ Np(ϕ(j)

n )p.

We claim that

Np′((1HU2 − 1U2H)(ψ(j)
n ∗H k′))

mG/H((ω(U2))1/p′
<

ε1

2n+3
(
1 +Np

(
ϕ

(j)
n

)) .
Since supp(ψ(j)

n ∗H k′) ⊂ KU0 we have

Np′((1HU2 − 1U2H)(ψ(j)
n ∗H k′))p

′

=
∫
KU0

|1HU2(x)− 1U2H(x)|p
′
|(ψ(j)

n ∗H k′)(x)|p
′
dx

≤ ‖ψ(j)
n ∗H k′‖p

′

∞

∫
KU0

|1HU2(x)− 1U2H(x)|dx

≤ ‖ψ(j)
n ∗H k′‖p

′

∞ ε2 mG/H(ω(U2)).

Similarly,

Np((1HU2 − 1U2H)(ϕ(j)
n ∗H k′))

mG/H((ω(U2))1/p
<

ε1

2n+3
(
1 +Np′

(
ψ

(j)
n

)) .
Lemma 2.7 implies

Np′(1U2H(ψ(j)
n ∗H k′))

mG/H((ω(U2))1/p′
≤ Np′(ψ(j)

n )‖TH(k′)‖1/p
′

∞ ‖TH(ǩ′)‖1/p∞ .

But ‖TH(k′)‖∞ ≤ 1 and ‖TH(ǩ′)‖∞ ≤ 1. This justifies Step (1).
(2) Let

k′′ =
(1HU2k

′)̌
mG/H((ω(U2))1/p

and

l′′ =
(1HU2k

′)̌
mG/H((ω(U2))1/p′

.

Then Np(TH(k′′)) ≤ 1, Np′(TH(l′′)) ≤ 1 and



ON HERZ’S PROJECTION THEOREM 473

∞∑
n=1

∣∣∣∣〈Λk′′,l′′(i(S))[ϕ(j)
n ], [ψ(j)

n ]〉
Lp
C
(H),Lp

′
C

(H)
− 〈S[ϕ(j)

n ], [ψ(j)
n ]〉

Lp
C
(H),Lp

′
C

(H)

∣∣∣∣
≤ 5 ε

25
|||S|||p

for every 1 ≤ j ≤ m, S ∈ CVp(H).

We have Np(TH(k′′))p =
∫
G/H

(TH(k′′))pdẋ, but

TH(k′′)(ω(x)) =
1ω(U2)(ẋ)

mG/H((ω(U2))1/p

∑
h∈H

k′(hx−1).

Hence Np(TH(k′′)) ≤ 1. Similarly we obtain Np′(TH(l′′)) ≤ 1.
For 1 ≤ n ≤ N we get, using (1),∣∣∣〈Λk′′,l′′(i(S))[ϕ(j)

n ], [ψ(j)
n ]〉

Lp
C
(H),Lp

′
C

(H)
− 〈S[ϕ(j)

n ], [ψ(j)
n ]〉

Lp
C
(H),Lp

′
C

(H)

∣∣∣
≤ ε1

2n+2
|||S|||p +

∣∣∣∣∣ 〈i(S)[1U2H(ϕ(j)
n ∗H k′)], [1U2H(ψ(j)

n ∗H k′)]〉
Lp
C
(G),Lp

′
C

(G)

mG/H((ω(U2))

− 〈S[ϕ(j)
n ], [ψ(j)

n ]〉
Lp
C
(H),Lp

′
C

(H)

∣∣∣∣∣
≤ 3ε

2n+5
|||S|||p.

The estimate
∞∑

n=1+N

∣∣∣∣〈Λk′′,l′′(i(S))[ϕ(j)
n ], [ψ(j)

n ]〉
Lp
C
(H),Lp

′
C

(H)
− 〈S[ϕ(j)

n ], [ψ(j)
n ]〉

Lp
C
(H),Lp

′
C

(H)

∣∣∣∣
≤ 2|||S|||p

∞∑
n=1+N

Np(ϕ(j)
n )Np′(ψ(j)

n ) ≤ 2ε
25
|||S|||p

gives (2).
(3) Let

0 < ε3 < min

{
ε

26
(
1 +

∑∞
n=1Np(ϕ

(j)
n )Np′

(
ψ

(j)
n

))
∣∣∣∣∣ 1 ≤ j ≤ m

}

and let f, g ∈ C+
00(G/H) with

Np

(
f −

1ω(U2)

mG/H((ω(U2))1/p

)
< ε3
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and

Np′

(
g −

1ω(U2)

mG/H((ω(U2))1/p′

)
< ε3.

Then, setting k′′′ = f ◦ ωǩ′, l′′′ = g ◦ ωǩ′, we have k′′′, l′′′ ∈ C+
00(G),

Np(TH(k′′′)) ≤ 1 + ε3, Np′(TH(l′′)) ≤ 1 + ε3 and

∞∑
n=1

∣∣∣∣〈Λk′′′,l′′′(i(S))[ϕ(j)
n ], [ψ(j)

n ]〉
Lp
C
(H),Lp

′
C

(H)
− 〈S[ϕ(j)

n ], [ψ(j)
n ]〉

Lp
C
(H),Lp

′
C

(H)

∣∣∣∣
≤ 7ε|||S|||p

25

for every 1 ≤ j ≤ m, S ∈ CVp(H).
We finally set k = k′′′/(1 + ε3) and l = l′′′/(1 + ε3). Then ‖Λk,l‖ ≤

Np(TH(k)) Np(TH(l)) ≤ 1, supp k ⊂ U , supp l ⊂ U and

∞∑
n=1

∣∣∣∣〈Λk,l(i(S))[ϕ(j)
n ], [ψ(j)

n ]〉
Lp
C
(H),Lp

′
C

(H)
− 〈S[ϕ(j)

n ], [ψ(j)
n ]〉

Lp
C
(H),Lp

′
C

(H)

∣∣∣∣
≤ ε|||S|||p

3
.

Consequently,
∞∑
n=1

∣∣∣∣〈Λk,l(i(S))[r(j)
n ], [s(j)

n ]〉
Lp
C
(H),Lp

′
C

(H)
− 〈S[r(j)

n ], [s(j)
n ]〉

Lp
C
(H),Lp

′
C

(H)

∣∣∣∣
≤ ε|||S|||p. �

We can now state our main result.

Theorem 3.2. Let G be a locally compact group and H a discrete amenable
subgroup. Then there is a linear contraction Q from L(Lp

C
(G)) into L(Lp

C
(H))

such that

(1) Q(T ) ∈ CVp(H) for every T ∈ CVp(G),
(2) suppQ(T ) ⊂ suppT for every T ∈ CVp(G),
(3) Q(i(S)) = S for every S ∈ CVp(H).

Proof. Theorem 3 of [1] permits us to assume that G is non-compact, non-
discrete and unimodular. The preceding proposition then allows us to repeat
step by step the proof of Theorem 3 of [1]. �

Corollary 3.3. Let G be a locally compact group and H a discrete
amenable subgroup. Then there is a contractive projection of cvp(G) onto
cvp(H).
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Proof. Let Q be the map of Theorem 3.2. Claim (2) of this result implies
that Q(T ) ∈ cvp(H) for T ∈ cvp(G). Let S ∈ cvp(H). Then i(S) ∈ cvp(G)
and consequently Q(i(S)) = S. �

Corollary 3.4. Let G be a locally compact group and H a discrete
amenable subgroup. Then, via i, the Banach algebra cvp(H) is isometrically
isomorphic to {T | T ∈ cvp(G), suppT ⊂ H}.

Proof. We have i(cvp(H)) ⊂ cvp(G). Let T ∈ cvp(G) with suppT ⊂ H.
There is S ∈ CVp(H) with i(S) = T . Let Q be the projection of Theorem
3.2. We then have Q(T ) ∈ cvp(H) and therefore S ∈ cvp(H). �

Remarks 3.5. (1) ForG abelian, the Banach algebra cv2(G) is canonically
isomorphic to Cbu(Ĝ). In this case, for an arbitrary closed subgroup of G and
p = 2, Corollary 3.4 is due to H. Reiter [8, Theorem 2].

(2) If G is an amenable group and H an arbitrary closed subgroup, Corol-
lary 3.4 also holds. Indeed, let T ∈ cvp(G) with suppT ⊂ H. By the Cohen-
Hewitt factorization theorem, there exist u ∈ Ap(G), R ∈ CVp(G) and a
sequence (un)∞n=1 of Ap(G) such that T = uR and limn→∞ |||R − unT |||p =
0. There is also S ∈ CVp(H) with i(S) = T . For m,n ∈ N we have
|||umT − unT |||p = |||ResH(umS)− ResH(unS)|||p. There exists S′ ∈ CVp(H)
with limn→∞ |||ResH(unS)−S′|||p = 0. We then have T = uR = i(ResH uS′),
but ResH uS′ ∈ cvp(H).

(3) In the case when p = 2 and H is a discrete amenable subgroup of G.2

Corollary 3.4 is precisely part (ii) of Lemma 3.2 of [5].
(4) In Corollaries 3.3 and 3.4 it is possible to replace cvp by the norm

closure in L(Lp) of the finitely supported convolution operators. This Banach
algebra was considered by E. Granirer [3].
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Current address: Section de Mathématiques, EPFL, 1015 Lausanne, Switzerland
E-mail address: antoine.derighetti@epfl.ch


