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CURVATURE BOUNDS VIA RICCI SMOOTHING

VITALI KAPOVITCH

Abstract. We give a proof of the fact that the upper and the lower

sectional curvature bounds of a complete manifold vary at a bounded
rate under the Ricci flow.

Let (Mn, g) be a complete Riemannian manifold with | sec(M)| ≤ 1. Con-
sider the Ricci flow of g given by

(1)
∂

∂t
g = −2 Ric(g).

It is known (see [Ham82], [Shi89]) that (1) has a solution on [0, T ] for some
T > 0. It is also known (see [BMOR84], [Shi89]) that the solution smoothes
out the metric. Namely, gt satisfies

(2) e−c(n)tg ≤ gt ≤ ec(n)tg, |∇ −∇t| ≤ c(n)t, |∇mRijkl(t)| ≤ c(n,m, t)
Moreover, by [Shi89], the sectional curvature of g(t) satisfies

(3) |Kgt | ≤ C(n, T ).

This result proved to be a very useful technical tool in many situations and in
particular in the theory of convergence with two-sided curvature bounds (see
[CFG92], [Ron96], [PT99], etc). However, it turns out that in applications
to convergence with two-sided curvature bounds, in addition to the above
properties, it is often convenient to know that supKgt and inf Kgt also vary
at the bounded rate and, in particular, that the upper and the lower curvature
bounds for gt are almost the same as those for g for sufficiently small t. For
example, it is very useful to know that if g0 has pinched positive [Ron96] or
negative ([Kan89], [BK]) curvature, then gt has almost the same pinching.

This fact has apparently been known to some experts and it was used with-
out a proof by various people (see, e.g., [Kan89]). A careful proof was given in
[Ron96] in the case of a compact manifold M . To the best of our knowledge,
no proof exists in the literature in the case of a noncompact manifold M . The
purpose of this note is to rectify this situation. To this end we prove:
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Proposition. In the above situation one has

inf Kg − C(n, T )t ≤ Kgt ≤ supKg + C(n, T )t.

Proof. Throughout the proof we will denote by C various constants de-
pending only on n, T . The proof in [Ron96] relies on the maximum principle
applied to the evolution equation for the curvature tensor Rm, which can be
computed to have the form [Shi89]

(4)
∂

∂t
Rijkl = ∆Rijkl + P (Rm),

where P (Rm) is a quadratic polynomial in Rm. However, in the noncompact
case the maximum principle can not be applied directly. We will use a local
version of the maximum principle often employed in [Shi89]. Let χ : R → R

be a smooth function satisfying

(1) χ ≥ 0 and is nonincreasing,

(2) χ(x) =


1 for x ≤ 1,
nonincreasing for 1 ≤ x ≤ 2,
0 for x ≥ 2,

(3) |χ′′(x)| ≤ 8,
(4) |(χ′(x))2/χ(x)| ≤ 16.

Fix z ∈M and let dz(x, t) = dgt(x, z) be the distance with respect to gt. Put
ξz(x, t) = χ(dz(x, t)) . Using the properties of χ we obtain

(i) 0 ≤ ξz ≤ 1,
(ii) |∇ξz| ≤ C,
(iii) ∆ξz ≥ C in the barrier sense,
(iv) |∇ξz|2/|ξz| ≤ C,
(v) |∂ξz(x, t)/∂t| ≤ C..

To see (iii), we compute

∆ξz = χ′′(dz)|∇dz|2 + χ′(dz)∆dz ≥ C

because χ′ ≤ 0 and ∆dz ≤ C for dz ≥ 1 by the Laplace comparison for spaces
with sec ≥ −1. Finally, (v) holds by the evolution equation of the metric (1)
and the estimate (3).

Assume for now that supKgt ≥ 0 for all t ∈ [0, T ]. Let Ā(t) = supKgt

and Āz(t) = max(x,σ){Kgt(x, σ)ξz(x, t)}, where x ∈ M , σ is a 2-plane at x.
Clearly Ā(t) = supz Āz(t).

We want to show that Ā′z(t) ≤ C independent of z, t. Fix t0 ∈ [0, T ] and
let φz(x, σ, t) = Kgt(x, σ)ξz(x, t). By a standard argument, it is enough to
check that ∂φz

∂t (x0, σ0, t0) ≤ C for any point of maximum of φz(·, t0).
Let U, V be a basis of σ0 orthonormal with respect to gt0 . Extend U, V to

constant vector fields in normal coordinates at x0 with respect to gt0 .
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Let

Φz(x, t) = Kgt(x,U, V )ξz(x) =
Rm(t)(U, V, U, V )
|U ∧ V |2gt

ξz(x).

It is easy to see (cf. [Ron96]) that

(5) |U ∧ V (x0)|gt ≤ C, |∇|U ∧ V (x0)|gt | ≤ C, |∇2|U ∧ V (x0)|gt | ≤ C.

By construction, Φz(x, t0) has a local maximum at x0 and we have

∂φz(x0, σ0, t0)
∂t

=
∂Φz(x0, t0)

∂t
.

Therefore ∇Φz(x0, t0) = 0 and ∆Φz(x0, t0) ≤ 0. We compute

∂Φz(x0, t0)
∂t

= ∆Φz(x0, t0)(6)

− Rm(x0, t0)(U, V, U, V )ξz(x0, t0)
∂

∂t

(
1

|U ∧ V |2

)
− 2∇Rm(x0, t0)(U, V, U, V )∇

(
ξz(x0, t0)
|U ∧ V |2

)
− Rm(x0, t0)(U, V, U, V )∆

(
ξz(x0, t0)
|U ∧ V |2

)
− P (Rm(x0, t0))ξz(x0, t0)

|U ∧ V |2
−Kgt(x,U, V )

∂ξz(x0, t0)
∂t

.

We claim that the right-hand side is bounded above by C. The only terms
that need explaining are the third and the fourth summands. Let

f(x) =
ξz(x, t0)
|U ∧ V |2

.

To see that the third term is bounded we observe that ∇Φz(x0, t0) = 0
yields

∇Rm(x0, t0)(U, V, U, V )f(x0) + Rm(x0, t0)(U, V, U, V )∇f(x0) = 0,

∇Rm(x0, t0)(U, V, U, V ) = −∇f(x0)
f(x0)

Rm(x0, t0)(U, V, U, V ),

and hence
|∇Rm(x0, t0)(U, V, U, V )∇f(x0)| ≤ C

by the property (iv) of ξz above. The fourth term is bounded because

∆f = ∆ξz(x0)
1

|U ∧ V |2
+ 2∇ξz(x0)∇

(
1

|U ∧ V |2

)
+ ξz(x0)∆

(
1

|U ∧ V |2

)
≥ C
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by (5) and the property (iii) of ξz. Thus by (6) we have

∂φz
∂t

(x0, σ0, t0) =
∂Φz(x0, t0)

∂t
≤ C.

Therefore Ā′z(t) ≤ C for all z ∈ M, t ∈ [0, T ] and hence Ā′(t) ≤ C for all
t ∈ [0, T ]. This concludes the proof in the case supKgt ≥ 0. The general
case can be easily reduced to this one by replacing the function Kgt0

(x, σ) by
Kgt0

(x, σ) + C. The argument for inf Kgt is the same except that there we
can actually always assume that inf Kgt ≤ 0 since otherwise the manifold M
is compact and our statement is known by [Ron96]. �

Remark 1. By changing the cutoff function ξz(·) to χ(d(·, z)/R) in the
proof of Proposition we see that the same proof actually shows that the
local maximum and minimum of the curvature vary linearly. Namely, under
condition of the Proposition, for any R > 0 there exists C = C(T,R) such
that for any z ∈M we have

inf
B(z,R)

Kg − C(n,R, T )t ≤ Kgt |B(z,R) ≤ sup
B(z,R)

Kg + C(n,R, T )t

However, as constructed, C(n,R, T )→∞ as R→ 0.

Remark 2. A slightly more careful examination of the proof of Proposi-
tion shows that the local rate of change of the curvature bounds is propor-
tional to the local absolute curvature bounds, i.e.,

Ā′z(t) ≤ C(n, T ) · sup
x∈B(z,2)

|Rm(x)|.

In particular, if (Mn, g) is asymptotically flat, then so is (Mn, gt) and it has
the same curvature decay rate as (Mn, g).
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