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INFINITE PRODUCTS OF INFINITE MEASURES

PETER A. LOEB AND DAVID A. ROSS

Abstract. Let (Xi,Bi,mi) (i ∈ N) be a sequence of regular Borel

measure spaces. There is a Borel measure µ on
∏
i∈NXi such that if

Ki ⊆ Xi is compact for all i ∈ N and
∏
i∈Nmi(Ki) converges, then

µ(
∏
i∈NKi) =

∏
i∈Nmi(Ki).

1. Introduction

Let (Xi,Bi,mi) (i ∈ N) be a sequence of regular Borel measure spaces,
where each Xi is a Hausdorff topological space. We prove the following:

Theorem 1.1. There is a Borel measure µ on
∏
iXi (with respect to

the product topology) such that if Ki ⊆ Xi is compact for all i ∈ N and∏
i∈Nmi(Ki) converges, then µ(

∏
iKi) =

∏
i∈Nmi(Ki).

We note that a special case of this result (for the case where Xi = R

and mi is Lebesgue measure) was proved only fairly recently ([2]). Moreover,
the techniques used in [2] to prove this special case depend heavily on the
metric structure of R. The proof we use for this more general result is very
different, but not more difficult, and is an adaptation of a construction from
nonstandard analysis.

2. Lemmas

We begin with some useful lemmas. The first lists some properties of
infinite products that are used in the proof of Theorem 1.1.

We say that a product
∏
i∈N ai converges to r ∈ R (in which case we write∏

i∈N ai = r) if limN→∞
∏
i≤N ai = r. (We remark that the definition of

‘convergence’ is often restricted to preclude the case r = 0; we make no such
restriction here.)

Lemma 2.1. Suppose
∏
i∈N ai = r and

∏
i∈N bi = s. Then:

Received February 9, 2004; received in final form April 5, 2005.
2000 Mathematics Subject Classification. Primary 28A12. Secondary 28E05, 28A35.
Peter Loeb was supported by NSF grant DMS 96-22454.

c©2005 University of Illinois

153



154 PETER A. LOEB AND DAVID A. ROSS

(1) If r 6= 0 then limN→∞
∏
i≥N ai = 1.

(2)
∏
i∈N aibi = rs.

(3) If s 6= 0 then
∏
i∈N (ai/bi) = r/s.

(4) If 0 ≤ ci ≤ ai for all i ∈ N then
∏
i∈N ci converges (possibly to 0).

(5) If 0 ≤ ai ≤ bi for all i ∈ N and r 6= 0 then limN→∞
∑
i≥N (1 −

ai/bi) = 0.

Proof. Statements (1)-(3) are easy consequences of the definition of conver-
gence. Statement (4) follows from (2) and the observation that

∏
i∈N (ci/ai)

must converge. For statement (5), write ci = ai/bi, and let di = 1 − ci; note
di ≥ 0. By multiplying out the terms we get

∑
i≤N di ≤

∏
i≤N (1 + di). Since

0 ≤ 1 + x ≤ (1 − x)−1 for 0 ≤ x < 1,
∏
i≤N (1 + di) ≤

∏
i≤N (1 − di)−1. By

(3) it follows that
∏
i(1 − di)−1 = s/r < ∞. Therefore,

∑
i≤N di is bounded

above as N →∞, and the result follows. �

The next two lemmas are general measure-theoretic results. Recall that
a measurable space is a pair (X,B) where B is a σ-algebra on X. If µ is a
measure on (X,B) and Z ∈ B, then let µ|Z be the new measure on (X,B)
defined by µ|Z(E) = µ(E ∩ Z).

Lemma 2.2 (Pasting Lemma). Let (X,B) be a measurable space, Z a
subset of B which is closed under finite unions, and suppose {µZ}Z∈Z are
finite measures on (X,B) satisfying: if Z1 ⊆ Z2 then µZ1 = (µZ2)|Z1 . Then
µ = supZ∈Z µZ defines a (possibly infinite) measure on (X,B).

Proof. The only nontrivial verification is countable additivity. Let {An}n∈N
be a sequence of disjoint elements of B and put A =

⋃
nAn. For any Z ∈ Z ,

µZ(A) =
∑
n∈N µZ(An) ≤

∑
n∈N µ(An); it follows that µ(A) ≤

∑
n∈N µ(An).

In particular, if µ(A) =∞, then
∑
n∈N µ(An) =∞. Suppose conversely that

µ(A) = r < ∞, and (for a contradiction) that
∑
n∈N µ(An) > r + ε for some

ε > 0. Let N ∈ N be large enough that
∑
n≤N µ(An) > r+ε. Since Z is closed

under finite unions, there is a Z ∈ Z such that
∑
n≤N µZ(An) > r+ ε. Then

µ(A) ≥ µZ(A) =
∑
n∈N µZ(An) ≥

∑
n≤N µZ(An) > r+ε, a contradiction. �

Suppose (X,B) is a measurable space, that M is a family of finite measures
on (X,B), and that Y is a topological space. Call a function f : X → Y M-
measurable if for every µ ∈ M the function f is measurable with respect to
the completion of µ.

Lemma 2.3 (Forgetful Measurability). Suppose:
(1) (X1,B1) and (X2,B2) are measurable spaces;
(2) (X,B) is X1 ×X2 with the product sigma algebra;
(3) {a} ∈ B2 for some a ∈ X2;
(4) M1 is a family of finite measures on (X1,B1);
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(5) M = {µ× δa : µ ∈M1} (where δa is a point mass at a);
(6) g : X1 → Y for some topological space Y ; and
(7) f(x1, x2) = g(x1) is M-measurable.

Then g is M1-measurable.

Proof. Let µ ∈ M1 and u ⊆ Y be open; we need to show that g−1(u) is
completion-measurable for (X1,B1, µ). We have L = X1×{a}, and ν = µ×δa.
Observe that if E ∈ B then E ∩ L = E1 × {a} for some E1 ∈ B1. (This is
clearly true when E is a measurable rectangle, and the property is preserved
under complements and countable unions, so it holds for all of B.) It follows
that the completion of ν is the product of the completion of µ with δa. By
hypothesis f−1(u), and therefore L∩f−1(u) = g−1(u)×{a}, is ν-measurable,
so g−1(u) is µ-measurable. �

3. Proof of Theorem 1.1

Put X =
∏
i∈NXi, and let B be the Borel σ-algebra on X with respect to

the product topology.
Call a product

∏
i∈NEi a K-tube if each Ei is a compact subset of Xi and∏

i∈Nmi(Ei) = r for some r ∈ (0,∞). If instead each Ei is an open subset
of Xi then call

∏
i∈NEi a U-tube. Note that while a K-tube is necessarily

compact, a U-tube will not in general be open.
The problem is to find a measure on (X,B) that assigns the ‘correct’ mea-

sure to K-tubes.
Let Z consist of all (nonempty) finite unions of K-tubes.
For the remainder of the paper it will be convenient to work in the frame-

work of nonstandard analysis; we adopt the notation of [1].
We note for later reference that if {ai}i ⊆ R and r ∈ R, then

∏
i∈N ai = r if

and only if
∏
i≤H ai ≈ r for any infinite H ∈∗ N. (This is just the nonstandard

criterion for limits, applied to the definition of
∏
i∈N ai = r.)

Fix once and for all some H ∈∗ N \ N. If E =
∏
i∈NEi write #E =

∗∏
i≤H Ei; extend this in the obvious way to finite unions of such sets. Define

a partial function st# : #X → X by st#(〈xi〉i≤H) = 〈◦xi〉i∈N.
The following is a truncated version of Tychonoff’s Theorem:

Proposition 3.1. If Z ∈ Z then #Z ⊆ st−1
# (Z).

Proof. It suffices to assume that Z =
∏
i∈NKi, Ki compact. If 〈xi〉i≤H ∈

#
∏
i∈NKi, then xi ∈∗Ki for all standard i; since Ki is compact, ◦xi exists in

Ki, so st#(〈xi〉i) ∈
∏
i∈NKi. �

Lemma 3.1. If Z ∈ Z , then st# is universally Loeb measurable from #Z
to Z (and hence to X).
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Proof. This follows immediately from forgetful measurability, compactness
of Z, and the fact ([1, page 100]) that the standard part map on ∗Y is uni-
versally Loeb measurable for any compact Hausdorff space Y . �

Let λ be the product measure
∏
i≤H

∗mi on #X, and for Z ∈ Z let λZ =
λ|#Z . Note that λZ is finite. For each Z ∈ Z apply the Loeb measure
construction (see [1, page 95]) to the internal ∗Borel measure λZ to get a
standard, complete measure λZL. By Lemma 3.1, st# is λZL-measurable
from #Z to X; let µZ be the Borel image measure on X of λZL under st#.
(Note in particular that µZ = µZ |Z .)

The measures µZ (Z ∈ Z ) evidently satisfy the hypothesis of the Pasting
Lemma, so µ = supZ∈Z µZ defines a Borel measure on X. The next two
lemmas show that µ gives the right measure to K-tubes.

Lemma 3.2. Suppose E =
∏
iEi and F =

∏
i Fi are K-tubes, that U =∏

i Ui is a U-tube, and E ⊆ U . Then λFL(st−1
# (E) ∩ (#F \#U)) = 0.

Proof. Note that

st−1
# (E) ∩ (#F \#U))

=
{
〈xi〉i≤H ∈#F : ∀i ∈ N ◦xi ∈ Ei ∩ Fi
and ∃ infinite i ≤ H xi ∈ (Fi \ Ui)

}
⊆
{
〈xi〉i≤H ∈#F : ∀i ∈ N xi ∈ Ui ∩ Fi
and ∃ infinite i ≤ H xi ∈ (Fi \ Ui)

}
.

We now consider two cases:

(1)
∏
i∈Nmi(Fi ∩ Ui) = 0. Let ε > 0; then for sufficiently large N0 ∈ N,∏

i≤N0
mi(Fi ∩ Ui) < ε, and, since F is a K-tube,

∏
i>N0

mi(Fi) < 1 + ε

(by Lemma 2.1). It follows from the latter inequality and the nonstandard
criterion for convergence that

∏
N0<i≤H mi(Fi) < 1 + ε. By the properties of

finite product measures, transferred to λ,

λ

∗∏
i≤N0

(Fi ∩ Ui)×
∏

N0<i≤H

Fi

 < ε(1 + ε).

It suffices to observe (by the note above) that

st−1
# (E) ∩ (#F \#U)) ⊆ ∗

∏
i≤N0

(Fi ∩ Ui)×
∏

N0<i≤H

Fi.

(2)
∏
i∈Nmi(Fi ∩ Ui) does not converge to 0. Then, by Lemma 2.1,∏

i∈Nmi(Fi∩Ui) converges to a positive value. Put r = λ(#F ) ≈
∏
i∈Nmi(Fi).
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If n ≤ H, then

λ

(Fn \ Un)×
∏

n 6=i≤H

Fi

 = mn(Fn \ Un)×
∏

n 6=i≤H

mi(Fi)

= r
mn(Fn \ Un)
mn(Fn)

= r

(
1− mn(Fn ∩ Un)

mn(Fn)

)
.

If N ∈ N, then

λFL

 ⋃
N≤n≤H

(Fn \ Un)×
∏

n 6=i≤H

Fi

 ≤ ◦∑
n∈N,n≥N

r

(
1− mn(Fn ∩ Un)

mn(Fn)

)
.

Since the right-hand summand tends to 0 as N →∞ (Lemma 2.1), and

st−1
# (E) ∩ (#F \#U) ⊆

⋃
N≤n≤H

(Fn \ Un)×
∏

n 6=i≤H

Fi

for any standard N ∈ N, the lemma follows. �

Lemma 3.3. If E =
∏
iEi is a K-tube then µ(E) =

∏
imi(Ei).

Proof. Put r =
∏
imi(Ei). It suffices to show that µZ(E) = r for all

Z ∈ Z containing E; so let Z = E ∪ F 1 ∪ · · · ∪ Fm, where each F i is a
K-tube. Fix ε > 0, and let 〈ri〉i∈N be any sequence from (1,∞) such that∏
i ri ≤ 1 + ε, for example, ri = (1 + ε)2−(i+1)

. Borel measures are outer
regular with respect to open sets, so for each i ∈ N there is an open Ui with
Ei ⊆ Ui and mi(Ui) < rimi(Ei). Put U =

∏
i Ui, and note (by Lemma 2.1)

that s =
∏
imi(Ui) exists and r ≤ s ≤ r + rε. Then:

r ≈ λZ(#E)

/ λZL(st−1
# (E))

≤ λZL

(
#U ∪

m⋃
i=1

st−1
# (E) ∩ (#F i \#U)

)

≤ s+
m∑
i=1

λZL

(
st−1

# (E) ∩ (#F i \#U)
)

= s+
m∑
i=1

λF iL

(
st−1

# (E) ∩ (#F i \#U)
)

≤ r + rε+
m∑
i=1

0.

The result follows since ε is arbitrary. �
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Remarks 3.1. Suppose each mi is Haar measure on a locally compact
additive group Xi. If x = 〈xi〉i ∈ X and K is a K-tube, then x + K is a
K-tube and λ(#(x + K)) = λ(#(K)); it follows that the measure µ we have
constructed is translation-invariant.

4. Discussion

Suppose that each mi has no point masses, and that infinitely many of
these measures are infinite. It is easy to verify the following properties of
the resulting measure on

∏
i∈NXi: (i) all open sets in the product topology

will have infinite measure; and (ii) all compact sets in the box topology will
be nullsets. It follows that many conventional tools for constructing Borel
measures will not apply to this situation.

This is true as well for traditional nonstandard measure arguments. The
usual way to create a standard measure µ from a Loeb measure ν is to obtain
µ as the image, under a measurable function (usually the standard part map),
of ν. It is not difficult to see that this technique will not work for Theorem 1.1.
Finding new ways to “push down” nonstandard measures to standard ones is
a major problem in nonstandard analysis; see [1]. Our technique of using a
nonstandard measure to ‘control’ the assembly of standard measures is new
with this paper.
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