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ABSOLUTE-VALUABLE BANACH SPACES

JULIO BECERRA GUERRERO, ANTONIO MORENO GALINDO, AND ÁNGEL

RODRÍGUEZ PALACIOS

Abstract. Absolute-valuable Banach spaces are introduced as those
Banach spaces which underlie complete absolute-valued algebras. Ex-

amples and counterexamples are given. It is proved that every Ba-
nach space can be isometrically enlarged to an absolute-valuable Ba-

nach space, which has the same density character as the given Banach
space, and whose dual space is also absolute-valuable. It is also shown
that every weakly countably determined Banach space different from R

can be renormed in such a way that neither it nor its dual are absolute-
valuable. Hereditarily indecomposable Banach spaces are examples of

Banach spaces which cannot be renormed as absolute-valuable Banach
spaces.

1. Introduction

Let K denote the field of real or complex numbers. By an absolute-valued
algebra over K we mean a non-zero algebra A over K endowed with a norm
‖ · ‖ satisfying ‖xy‖ = ‖x‖‖y‖ for all x, y in A. The reader is referred to
the survey paper [21] for a comprehensive view of the theory of absolute-
valued algebras. The aim of the present paper is to study those Banach
spaces which underlie complete absolute-valued algebras. Such Banach spaces
will be called “absolute-valuable”. Since finite-dimensional absolute-valuable
Banach spaces are well-understood from the classical work of A. Albert [1]
(see Proposition 2.1 below for details), we focus our attention on the infinite-
dimensional case.

We begin Section 2 by providing the reader with several natural examples
and counterexamples of absolute-valuable Banach spaces. Concerning exam-
ples, it is worth mentioning that, roughly speaking, many classical Banach
spaces, including all infinite-dimensional Hilbert spaces, are absolute-valuable
(see Theorem 2.3 and Corollary 2.5). By contrast, it has been difficult for us
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to find classical Banach spaces which are not absolute-valuable. Nevertheless,
the space c of all real or complex convergent sequences is an example of such a
Banach space (Proposition 2.8). As main result, we prove that every Banach
space can be isometrically embedded into a suitable absolute-valuable Banach
space, which has the same density character as the given Banach space, and
whose dual space is also absolute-valuable (Theorem 2.11).

Section 3 is devoted to the isomorphic aspects of absolute valuability. As
main result we prove that every weakly countably determined real Banach
space different from R can be equivalently renormed in such a way that neither
it nor its dual are absolute-valuable (Theorem 3.4). We note that a Banach
space is weakly countably determined whenever it is either reflexive, separable,
or of the form c0(Γ) for any set Γ. We also show that both the separable
reflexive Banach space of Gowers-Maurey [12] and the non-separable reflexive
one of Shelah-Steprans-Wark (see [23] and [25]) are not isomorphic to any
absolute-valuable Banach space (Propositions 3.7 and 3.8).

The concluding Section 4 deals with the relation between absolute valua-
bility and the Banach-Mazur rotation problem. We provide examples of non-
Hilbert absolute-valuable almost transitive separable Banach spaces (Propo-
sition 4.4) as well as non-Hilbert absolute-valuable transitive non-separable
Banach spaces (Corollary 4.5). However, the particular case of the rotation
problem whether every absolute-valuable transitive separable Banach space is
a Hilbert space remains open (Problem 4.1).

Most absolute-valuable Banach spaces X arising in this paper have the ad-
ditional property that X∗, L(X), and K(X) are absolute-valuable (see The-
orem 2.3, Proposition 2.4, Corollary 2.5, and Theorem 2.11) or, even more,
that L(X,Y ) and K(X,Y ) are absolute-valuable for every absolute-valuable
Banach space Y (Proposition 4.4). As usual, given Banach spaces X and Y
over K, we denote by L(X,Y ) the Banach space of all bounded linear opera-
tors from X to Y , and by K(X,Y ) the closed subspace of L(X,Y ) consisting
of all compact operators from X to Y . Moreover, we write X∗, L(X), and
K(X) instead of L(X,K), L(X,X), and K(X,X), respectively.

2. Isometric aspects of absolute valuability

By a product on a vector space X we mean a bilinear mapping from X×X
into X. A Banach space (X, ‖.‖) over K is said to be absolute-valuable if there
exists a product (x, y)→ xy on X satisfying

‖xy‖ = ‖x‖‖y‖

for all x, y in X. Finite-dimensional absolute-valuable Banach spaces are well-
understood thanks to the next result, which follows from the work of A. A.
Albert [1].
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Proposition 2.1. The real Hilbert spaces of dimension 1, 2, 4 or 8 are
the unique finite-dimensional absolute-valuable real Banach spaces. The com-
plex field C is the unique finite-dimensional absolute-valuable complex Banach
space.

Despite the above fact, most classical Banach spaces are absolute-valuable.
For instance, this is the case for the real or complex spaces c0 and `p with
1 ≤ p ≤ ∞. More generally, we have the result given by the next proposition.
Let Y be a Banach space over K, and let Γ be an infinite set. For 0 ≤ p <∞,
we denote by `p(Γ, Y ) the Banach space over K of all mappings f : Γ → Y
such that

‖f‖p :=
∑
γ∈Γ

‖f(γ)‖p <∞.

By `∞(Γ, Y ) we mean the Banach space over K of all bounded mappings from
Γ to Y , endowed with the sup norm, and c0(Γ, Y ) stands for the subspace of
`∞(Γ, Y ) consisting of those functions f : Γ→ Y such that limγ→∞ f(γ) = 0
(were limγ→∞ denotes the limit along the filter of all co-finite subsets of Γ).
When Y = K, we simply write `p(Γ), `∞(Γ), and c0(Γ), respectively.

Proposition 2.2. Let Γ be an infinite set, let Y be an absolute-valuable
Banach space, and let X stand for either c0(Γ, Y ) or `p(Γ, Y ) (1 ≤ p ≤ ∞).
Then X is absolute-valuable.

Proof. Choose a product (y, z)→ yz on Y converting Y into an absolute-
valued algebra, and an injective mapping φ : Γ×Γ→ Γ. Given two functions
u and v from Γ to Y , we can consider the mapping u � v : Γ→ Y defined by

(u � v)(γ) :=
{
u(i)v(j) if γ = φ(i, j) for some (i, j) ∈ Γ× Γ
0 if γ /∈ φ(Γ× Γ) .

Then it is straightforward that u � v belongs to X whenever u and v are in
X, and that X becomes an absolute-valued algebra under the product �. �

Other examples of absolute-valuable Banach spaces are given in the next
theorem.

Theorem 2.3. Let 1 ≤ p ≤ ∞, let Γ1 be an infinite set, and let X1

stand for `p(Γ1). Then X∗1 is absolute-valuable. Moreover, if Γ2 is another
infinite set, and if X2 stands for `p(Γ2), then L(X1, X2), and K(X1, X2) are
absolute-valuable.

Proof. Let n = 1, 2. Fix a bijective mapping φn : Γn × Γn → Γn. Then
the mapping Ψn : Xn → `p(Γn × Γn), defined by Ψn(x) := x ◦ φn for ev-
ery x in Xn, is a surjective linear isometry. On the other hand, given h in
`p(Γn × Γn), we can consider the element Φn(h) of `p(Γn, Xn) defined by
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[Φn(h)(i)](j) := h(i, j) for all i, j in Γn, so that the mapping Φn : h→ Φn(h)
becomes a linear isometry from `p(Γn×Γn) onto `p(Γn, Xn). Moreover, given
T ∈ L(X,Y ) (where X and Y stand for arbitrary Banach spaces), we can
consider the bounded linear operator T [n] from `p(Γn, X) to `p(Γn, Y ) de-
fined by [T [n](g)](i) := T (g(i)) for every g ∈ `p(Γn, X) and every i ∈ Γn (so
that we have ‖T [n]‖ ≤ ‖T‖). Finally, we consider the surjective linear isome-
try r : `p(Γ1, X2) → `p(Γ2, X1) defined by [(r(f))(i)](j) = [f(j)](i) for every
f ∈ `p(Γ1, X2) and every (i, j) ∈ Γ2 × Γ1.

Now, given F,G ∈ L(X1, X2), we put

F �G := Ψ−1
2 ◦ Φ−1

2 ◦ F [2] ◦ r ◦G[1] ◦ Φ1 ◦Ψ1 ∈ L(X1, X2) ,

so that we have ‖F � G‖ ≤ ‖F‖‖G‖. To see the converse inequality, recall
from the proof of Proposition 2.2 that Xn becomes an absolute-valued algebra
under the product �n defined by (x �n y)(φn(i, j)) := x(i)y(j) for all x, y in
Xn and all i, j in Γn. We claim that, for x, y in X1 and F,G in L(X1, X2),
the equality

(F �G)(x �1 y) = F (x) �2 G(y)

holds. Indeed, for i, j in Γ2, we have

[(F �G)(x �1 y)]φ2(i, j)=[Ψ−1
2 ◦ Φ−1

2 ◦ F [2] ◦ r ◦G[1] ◦ Φ1 ◦Ψ1(x �1 y)]φ2(i, j)

= [Φ−1
2 ◦ F [2] ◦ r ◦G[1] ◦ Φ1 ◦Ψ1(x �1 y)](i, j)

= [[F [2] ◦ r ◦G[1] ◦ Φ1 ◦Ψ1(x �1 y)](j)](i)

= [F [(r ◦G[1] ◦ Φ1 ◦Ψ1(x �1 y))(j)]](i).

But, for k in Γ1, we have

[(r ◦G[1] ◦ Φ1 ◦Ψ1(x �1 y))(j)](k) = [(G[1] ◦ Φ1 ◦Ψ1(x �1 y))(k)](j)

= [G[Φ1 ◦Ψ1(x �1 y)(k)]](j).

Also, for t in Γ1, we have

[Φ1 ◦Ψ1(x �1 y)(k)](t) = [Ψ1(x �1 y)](k, t)

= (x �1 y)(φ1(k, t)

= x(k)y(t) = [x(k)y](t),

and therefore

[(r ◦G[1] ◦ Φ1 ◦Ψ1(x �1 y))(j)](k) = [G[x(k)y]](j)

= x(k)[G(y)](j)

= [G(y)(j)x](k).
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It follows that
[(F �G)(x �1 y)]φ2(i, j) = [F [G(y)(j)x]](i)

= G(y)(j)F (x)(i)

= [F (x) �2 G(y)]φ2(i, j) ,

which proves the claim. Now, for F,G in L(X1, X2) and x, y in the closed
unit ball of X1, we have

‖F (x)‖‖G(y)‖ = ‖F (x) �2 G(y)‖ = ‖(F �G)(x �1 y)‖ ≤ ‖F �G‖ ,
and hence ‖F‖‖G‖ ≤ ‖F �G‖. It follows that (L(X1, X2),�) is an absolute-
valued algebra, and therefore L(X1, X2) is absolutely valuable.

Since X2 has the approximation property, to prove that K(X1, X2) is ab-
solutely valuable it is enough to show that, if F and G are rank-one operators
from X1 to X2, then so is the operator F � G. Let the elements F and G
of L(X1, X2) have one-dimensional range (say F = f � x : z → f(z)x and
G = g�y, for some x, y ∈ X2\{0} and f, g ∈ X∗1\{0}). A straightforward but
tedious calculation (like the one in the proof of the claim above) shows that
the equality F �G = (f]g) � (x �2 y) holds, where f]g is the element of X∗1
defined by f]g := f ◦ g[1] ◦ Φ1 ◦ Ψ1. Therefore F � G has one-dimensional
range.

To conclude the proof, let us show that X∗1 becomes an absolute-valued
algebra under the product ] defined in the above paragraph. But, if f, g are
in X∗1 , it is enough to choose a norm-one element x in X2, to have

‖f‖‖g‖ = ‖f � x‖‖g � x‖ = ‖(f � x)� (g � x)‖
= ‖(f]g)� (x �2 x)‖ = ‖f]g‖‖x �2 x‖ = ‖f]g‖ . �

Repeating almost verbatim the proof of Theorem 2.3, we obtain:

Proposition 2.4. Let Γ1 and Γ2 be infinite sets. Then L(c0(Γ1), c0(Γ2))
and K(c0(Γ1), c0(Γ2)) are absolute-valuable.

For later reference, we emphasize the following consequence of Theorem
2.3.

Corollary 2.5. Every infinite-dimensional Hilbert space over K is abso-
lute-valuable. Moreover, if H and K are infinite-dimensional Hilbert spaces
over K, then L(H,K) and K(H,K) are absolute-valuable.

According to Proposition 2.1, a finite-dimensional Banach space is abso-
lute-valuable if and only if so is its dual. Moreover, by the same proposi-
tion, K is the unique finite-dimensional absolute-valuable Banach space X
over K such that L(X) is absolute-valuable. In view of Theorem 2.3, in the
infinite-dimensional case things are not so clear, so that the following question
becomes natural.
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Question 2.6. For an infinite-dimensional Banach space X consider the
following conditions:

(1) X is absolute-valuable.
(2) X∗ is absolute-valuable.
(3) L(X) is absolute-valuable.
(4) K(X) is absolute-valuable.

Is there some dependence between these four conditions?

For the moment, we only know that Condition 2 in Question 2.6 does
not imply Condition 1. This will follow from Proposition 2.8 below. This
proposition will also provide us with the first “natural” examples of infinite-
dimensional non-absolute-valuable Banach spaces. Given an infinite set Γ, we
denote by c(Γ) the subspace of `∞(Γ) consisting of those functions f : Γ→ K

such that limγ→∞ f(γ) does exist. Given a Hausdorff compact topological
space E, we denote by CK(E) the Banach space over K of all K-valued con-
tinuous functions on E.

Lemma 2.7. Let Γ be an infinite set, and let f1, f2 be in c(Γ) such that
there exist linear isometries T1, T2 : c(Γ) → c(Γ) satisfying T1(f1) = T2(f2).
Then limγ→∞ |f1(γ)| = limγ→∞ |f2(γ)|.

Proof. After considering the one-point compactification Γ ∪ {∞} of the
discrete space Γ, we identify c(Γ) with CK(Γ ∪ {∞}) by putting f(∞) :=
limγ→∞ f(γ) for every f ∈ c(Γ). According to [15], for each linear isometry
T : c(Γ) → c(Γ) there exist a closed subset ET of Γ ∪ {∞}, a surjective
continuous mapping φT : ET → Γ ∪ {∞}, and an αT ∈ CK(Γ ∪ {∞}) with
|αT (t)| = 1 for every t ∈ ET satisfying

T (f)(t) = f(φT (t))αT (t)

for all t ∈ ET and f ∈ CK(Γ∪ {∞}). This implies that ∞ belongs to ET and
that φT (∞) =∞. Now, for the elements f1, f2 ∈ c(Γ) in the statement of the
lemma we have

f1(∞)αT1(∞) = f1(φT1(∞))αT1(∞) = T1(f1)(∞)

= T2(f2)(∞) = f2(φT2(∞))αT2(∞) = f2(∞)αT2(∞),

and hence |f1(∞)| = |f2(∞)|. �

Proposition 2.8. Let Γ be an infinite set. Then c(Γ) is not absolute-
valuable.

Proof. Assume that c(Γ) is an absolute-valued algebra under some prod-
uct �. Let f1 denote the constant function equal to 1 on Γ, let f2 be the
characteristic function on Γ of a previously chosen singleton, and let T1 and
T2 stand for the linear isometries from c(Γ) to itself defined by T1(f) := f2 �f
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and T2(f) := f � f1, respectively. Since T1(f1) = T2(f2), Lemma 2.7 applies
giving

1 = lim
γ→∞

|f1(γ)| = lim
γ→∞

|f2(γ)| = 0,

a contradiction. �

Despite Propositions 2.1 and 2.8, every Banach space becomes absolute-
valuable up to a suitable enlargement. This will be proved in Theorem 2.11
below. Following [9, 12.1], a tensor norm α on the class BAN of all Banach
spaces assigns to each pair (X,Y ) of Banach spaces a norm ‖·‖α = α(· ;X,Y )
on the algebraic tensor product X ⊗Y such that the following two conditions
are satisfied:

(1) For every pair (X,Y ) of Banach spaces, we have ‖ · ‖ε ≤ ‖ · ‖α ≤ ‖ · ‖π
on X ⊗ Y , where ε and π denote respectively the injective and the
projective tensor norm.

(2) If X, Y , Z, and T are Banach spaces, and if F : X → Z and
G : Y → T are bounded linear operators, then the linear operator
F ⊗G from (X ⊗ Y, ‖ · ‖α) to (Z ⊗ T, ‖ · ‖α), determined by

(F ⊗G)(x⊗ y) := F (x)⊗G(y)(2.1)

for every (x, y) ∈ X × Y , is continuous with norm ≤ ‖F‖‖G‖.
Given a tensor norm α on BAN, and Banach spaces X and Y , we denote
by X⊗̃αY the completion of the algebraic tensor product X ⊗ Y under the
norm ‖·‖α. Given Banach spaces X and Y over K, we denote by F(X,Y ) the
space of all finite-rank operators from X to Y , and by F(X,Y ) the closure of
F(X,Y ) in L(X,Y ). The convention F(X) := F(X,X) will be subsumed.

Lemma 2.9. Let X and Y be Banach spaces over K. Assume that there
exists a tensor norm α on BAN such that X⊗̃αX is linearly isometric to
a quotient of X and Y ⊗̃αY is linearly isometric to a subspace of Y . Then
L(X,Y ) and F(X,Y ) are absolute-valuable.

Proof. Let Φ be a linear isometry from Y ⊗̃αY to Y , and let Ψ be a con-
tinuous linear surjection from X to X⊗̃αX such that the induced bijection
X/ ker(Ψ) → X⊗̃αX is an isometry. Note that, as a consequence of Condi-
tion 1 for tensor norms, for u, v both in either X or Y we have

‖u⊗ v‖α = ‖u‖‖v‖ .(2.2)

Then, by (2.2) and Condition 2 for tensor norms, given F and G in L(X,Y ),
there exists a unique element F ⊗̃G in L(X⊗̃αX,Y ⊗̃αY ) which extends F⊗G :
X ⊗X → Y ⊗ Y , and we have ‖F ⊗̃G‖ = ‖F‖‖G‖. It follows that, putting

F �G := Φ ◦ (F ⊗̃G) ◦Ψ ∈ L(X,Y ) ,(2.3)

(L(X,Y ),�) becomes an absolute-valued algebra.
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Let F and G be finite-rank operators from X to Y . Then, by (2.1),
F (X)⊗G(X) is a finite-dimensional subspace of Y ⊗̃αY containing the range
of F ⊗̃G. Therefore, by (2.3), also F �G has finite-dimensional range. In this
way F(X,Y ) (and hence F(X,Y )) becomes a subalgebra of (L(X,Y ),�). �

Corollary 2.10. For a Banach space Y over K and a tensor norm α on
BAN, consider the following conditions:

(1) Y ⊗̃αY is linearly isometric to a subspace of Y .
(2) Y ⊗̃αY is linearly isometric to a quotient of Y .

Then we have:
(i) If the Banach space Y satisfies Condition (1) for some tensor norm

α, then Y is absolute-valuable.
(ii) If the Banach space Y satisfies Condition (2) for some tensor norm

α, then Y ∗ is absolute-valuable.
(iii) If the Banach space Y satisfies both Conditions (1) and (2) for the

same tensor norm α, then L(Y ) and F(Y ) are absolute-valuable.

Proof. Since Y = L(K, Y ), and Y ∗ = L(Y,K), and K⊗̃αK is linearly iso-
metric to K, the result follows from Lemma 2.9. �

Given a Banach space X, we denote by dens(X) the density character of X.

Theorem 2.11. Every Banach space X over K can be isometrically re-
garded as a subspace of a Banach space Y over K with dens(Y ) = dens(X)
and such that Y , Y ∗, L(Y ), and K(Y ) are absolute-valuable.

Proof. Let X be a Banach space over K, and let F denote the Hausdorff
compact space consisting of the closed unit ball of X∗ and the weak∗ topology.
Then we can consider X isometrically as a subspace of CK(F ). For any
Hausdorff compact space G, let ∗ denote the identity mapping on CK(G) or
the natural involution on CK(G) depending on whether K = R or K = C.
Let Z stand for the unital closed ∗-invariant subalgebra of CK(F ) generated
by X. Then we have dens(Z) = dens(X) and Z = CK(E) for some Hausdorff
compact space E. Put Y := CK(EN). Then Z is linearly isometric to a
subspace of Y . Indeed, fixing n ∈ N and denoting by πn the n-coordinate
projection from EN onto E, the mapping f 7→ f ◦πn is a linear isometry from
Z into Y . It follows that X is linearly isometric to a subspace of Y . Moreover
the equality dens(Y ) = dens(Z) holds. Indeed, if D is a dense subset of Z
whose cardinal equals dens(Z), then, by the Stone-Weierstrass theorem, the
unital ∗-invariant subalgebra of Y generated by the set {f◦πn : (f, n) ∈ D×N}
is dense in Y . On the other hand, by [9, Example 4.2.(3)], the complete
injective tensor product Y ⊗̃εY is linearly isometric to CK(EN × EN). Since
EN×EN is homeomorphic to EN, the actual situation is that Y ⊗̃εY is linearly
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isometric to Y . Since ε is a tensor norm [9, 4.1], and Y has the approximation
property, the proof is concluded by applying Corollary 2.10. �

As a consequence of Theorem 2.11 above we see that absolute valuability
cannot imply any hereditary property of isometric or isomorphic type. This
situation is not new. Indeed, the same happens with transitivity [5, Corollary
2.21] (see Section 4 below for the definition), Mazur’s intersection property,
and Mazur’s w∗-intersection property of the dual [16]. In any case, we already
know that, both in the finite-dimensional and the infinite-dimensional cases,
absolute valuability is not isometrically innocuous (by Propositions 2.1 and
2.8), and we will see below that it is even not isomorphically innocuous (a
consequence of Proposition 3.7 or 3.8).

3. Isomorphic aspects of absolute valuability

Let X be a Banach space over K. We denote by BX and SX the unit closed
ball and the unit sphere, respectively, of X. For x in SX , we define the set
D(X,x) of states of X relative to x by

D(X,x) : = {f ∈ BX∗ : f(x) = 1}.

For convenience, we say that X is almost smooth if, for every x ∈ SX and all
φ, ψ ∈ D(X,x), we have ‖φ− ψ‖ < 2.

Lemma 3.1. Let Y and Z be non-zero almost smooth Banach spaces, and

put X := Y
`1
⊕Z. Then X is not absolute-valuable.

Proof. The key observation is that the elements of SY ∪SZ are characterized
in X as those elements x of SX such that there exist φ, ψ in D(X,x) satisfying

‖φ − ψ‖ = 2. To prove this, let us identify X∗ with Y ∗
`∞
⊕Z∗. For y in SY ,

we can choose f ∈ D(Y, y) and g ∈ SZ∗ , so that φ := (f, g) and ψ := (f,−g)
belong to D(X, y) and satisfy ‖φ− ψ‖ = 2. Conversely, if x = (y, z) is in SX
and satisfies y 6= 0 6= z, then we see that

D(X,x) =
{

(f, g) : (f, g) ∈ D
(
Y,

y

‖y‖

)
×D

(
Z,

z

‖z‖

)}
,

and hence, since Y and Z are almost smooth, for all φ, ψ ∈ D(X,x) we have
‖φ− ψ‖ < 2.

Let T : X → X be a linear isometry, and let y be in SY . By the above
paragraph and the Hahn-Banach theorem, there exist φ, ψ in D(X,T (y)) with
‖φ − ψ‖ = 2. Again by the above paragraph, this implies T (y) ∈ SY ∪ SZ .
Now assume that X is an absolute-valued algebra under some product �. Let
us fix y in SY . For x in SX , the mapping t → x � t from X to X is a linear
isometry, and hence we have x�y ∈ SY ∪SZ . SinceX�y is a subspace ofX, and
Y ∩Z = 0, it follows that either X �y ⊆ Y or X �y ⊆ Z. But both possibilities
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are contradictory because, if one of them happened (say X � y ⊆ Y ), then the
mapping x → x � y would be a linear isometry from the non almost smooth
Banach space X to the almost smooth Banach space Y . �

Again, for convenience, we introduce almost rotund Banach spaces as those
Banach spaces X such that there is no segment of length 2 contained in SX .

Lemma 3.2. Let Y and Z be non-zero almost rotund Banach spaces over

K, and put X := Y
`∞
⊕Z. Then X is not absolute-valuable.

Proof. First note that elements of SY ∪SZ lie in SX and are mid-points of
segments in BX of length 2. Indeed, if y is in SY , then, choosing z ∈ SZ , we
have y = 1

2 [(y, z)+(y,−z)] with (y, z), (y,−z) ∈ BX and ‖(y, z)−(y,−z)‖ = 2.
As a partial converse, we claim that, if x belongs to SX and is a mid point of
a segment in BX of length 2, then min{‖πY (x)‖, ‖πZ(x)‖} < 1, where πY and
πZ stand for the natural projections from X to Y and Z, respectively. Indeed,
if x = (y, z) is in SX (say for example y ∈ SY ) and if x = 1

2 [(y1, z1) + (y2, z2)]
with (y1, z1), (y2, z2) ∈ BX and ‖(y1, z1) − (y2, z2)‖ = 2, then, by the almost
rotundness of Y , we have ‖y1 − y2‖ < 2 and hence ‖ z1−z22 ‖ = 1, so that, by
the almost rotundness of Z, we have ‖z1 + z2‖ < 2 and therefore ‖z‖ < 1.

It follows from the above paragraph that, if T : X → X is a linear isometry
and if y is in SY , then each of the possibilities ‖πY T (y)‖=1 and ‖πZT (y)‖=1
excludes the other. Now assume that X is an absolute-valued algebra under
some product �. Let us fix y in SY . Since for x in SX the mapping t→ x � t
from X to X is a linear isometry, we deduce that SX = A ∪B, where

A : = {x ∈ SX : ‖πY (x � y)‖ = 1} and

B : = {x ∈ SX : ‖πZ(x � y)‖ = 1}

are disjoint closed subsets of SX . Since SX is connected, we have that either
A = SX or B = SX . But both possibilities are contradictory because, if one
of them happened (say A = SX), then the mapping x→ πY (x � y) would be
a linear isometry from the non almost rotund Banach space X to the almost
rotund Banach space Y . �

Remark 3.3. In the case K = R, particular cases of Lemmas 3.1 and
3.2 can be reformulated in more classical terms, giving rise to new “natural”
examples of non absolute-valuable Banach spaces. To this end, we recall that
a compact convex set is a convex compact subset of some Hausdorff locally
convex space, and that, given a compact convex set K, the real Banach space
of all real-valued affine continuous functions on K (with the sup norm) is
usually denoted by A(K). Let Y be a non-zero real Banach space, and let
KY stand for the compact convex set (BY ∗ , w∗). It is well-known and easy to

see that A(KY ) is linearly isometric to R
`1
⊕Y . Then, by Lemma 3.1, A(KY )
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fails to be absolute-valuable provided Y is almost smooth. Moreover, noticing
that almost rotundness of Y ∗ implies almost smoothness of Y , the same holds
provided Y ∗ is almost rotund, with the additional information that, in this
case A(KY )∗ fails also to be absolute-valuable (thanks to Lemma 3.2).

To emphasize particular outstanding cases of the facts just mentioned, re-
call that the Banach space Y is said to be smooth if, for every y in SY , D(Y, y)
is reduced to a singleton, and rotund if every element in SY is an extreme
point of BY . It follows from the above paragraph that, if Y is smooth, then
A(KY ) is not absolute-valuable, and if actually Y ∗ is rotund, then A(KY )∗

fails also to be absolute-valuable.

A Banach space X is called weakly countably determined if there exists
a countable collection {Kn}n∈N of w∗-compact subsets of X∗∗ such that for
every x in X and every u in X∗∗ \ X there is n0 such that x ∈ Kn0 and
u /∈ Kn0 . If X is either reflexive, separable, or of the form c0(Γ) for any set Γ,
then X is weakly countably determined. In fact, the class of weakly countably
determined Banach spaces is hereditary, and contains the non hereditary class
of weakly compactly generated Banach spaces (see [10, Example VI.2.2] for
details).

Theorem 3.4. Every weakly countably determined real Banach space, dif-
ferent from R, is isomorphic to a real Banach space X such that both X and
X∗ are not absolute-valuable.

Proof. Let Z be a weakly countably determined real Banach space different
from R. Take a closed maximal subspace P of Z. Since P is also a weakly
countably determined real Banach space, P is isomorphic to a Banach space
Y such that Y ∗ becomes rotund [10, Theorem VII.1.16]. Since such a space

Y is smooth, it follows from Lemma 3.1 that the Banach space X := R

`1
⊕Y

is not absolute-valuable. Moreover, clearly, X is isomorphic to Z. Since

X∗ = R

`∞
⊕Y ∗ and Y ∗ is rotund, it follows from Lemma 3.2 that X∗ is not

absolute-valuable. �

A consequence of Proposition 2.1 is that every finite-dimensional Banach
space over K, different from K, is isomorphic to a Banach space X such that
both X and X∗ are not absolute-valuable. We do not know if the same
remains true when finite dimensionality is altogether removed. In fact we are
at present unable to answer the following simpler question.

Question 3.5. Is every infinite-dimensional Banach space over K isomor-
phic to a non-absolute-valuable Banach space?

Remark 3.6. Theorem 3.4 gives a partial affirmative answer to Ques-
tion 3.5. However, one of the main tools in its proof has not been fully
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exploited. Indeed, Lemma 3.1 actually shows that a Banach space Z over K
is isomorphic to a non-absolute-valuable Banach space whenever Z is differ-
ent from K and has an almost smooth equivalent renorming. Thus one might
wonder whether every Banach space Z has such an equivalent renorming. As
a matter of fact, the answer to this last question is negative even for K = R.
A counterexample is given by the space Z := `∞(Γ) for any uncountable set
Γ, since every equivalent renorming of Z has an isometric copy of `∞ [20] (see
also [10, Theorem II.7.12]).

By Proposition 2.1, most finite-dimensional Banach spaces are not iso-
morphic to any absolute-valuable Banach space. The remaining part of this
section is devoted to prove the existence of infinite-dimensional Banach spaces
which are not isomorphic to any absolute-valuable Banach space. Such spaces
are precisely those constructed by Gowers-Maurey [12] and Shelah-Steprans-
Wark (see [23] and [25]) with the common property of having “few” operators.
We recall that a Banach space X is said to be hereditarily indecomposable if,
for every closed subspace Y of X, the unique complemented subspaces of Y
are the finite-dimensional ones and the closed finite-codimensional ones.

Proposition 3.7. There exists an infinite-dimensional separable reflexive
Banach space over K which is not isomorphic to any absolute-valuable Banach
space.

Proof. We will in fact prove that every infinite-dimensional hereditarily in-
decomposable Banach space over K fails to be absolute-valuable. The result
will follow from the existence of infinite-dimensional hereditarily indecompos-
able separable reflexive Banach spaces over K [12, Section 3], and the clear
fact that hereditary indecomposability is preserved under isomorphisms. Let
X be an infinite-dimensional hereditarily indecomposable Banach space over
K. By [12, Corollary 19 and Theorem 21], X is not isomorphic to any of its
proper subspaces. Assume that, for some product � on X, (X, �) becomes
an absolute-valued algebra. Then, for every nonzero element x in X, the
operators of left and right multiplication by x on the algebra (X, �) are iso-
morphisms onto their ranges, and hence they are bijective. Therefore (X, �)
is an absolute valued division algebra. By [26], X is finite dimensional, a
contradiction. �

In the above proof we have just applied the theorem of F. B. Wright [26]
that absolute-valued division algebras are finite-dimensional. It is worth men-
tioning that, today, such a theorem is an easy consequence of the celebrated
Urbanik-Wright theorem [24] that R, C, H, and O are the unique absolute-
valued real algebras with a unit (see [17, Proposition 1.2] for details).

Proposition 3.8. There exists a non-separable reflexive Banach space
over K which is not isomorphic to any absolute-valuable Banach space.
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Proof. The authors of [23] construct a non-separable Banach space Z over
K satisfying the following Property P:

P Every element F of L(Z) has the form S+ρIZ , where IZ denotes the
identity mapping on Z, ρ = ρ(F ) belongs to K, and S = S(F ) ∈ L(Z)
has separable range.

Very recently, H. M. Wark [25] refined the construction of [23] to show the
existence of a non-separable reflexive Banach space Z satisfying P. Now,
since Property P is preserved under isomorphisms, to prove the result it is
enough to show that every non-separable Banach space Z satisfying P fails
to be absolute-valuable. Let Z be such a Banach space. We note that, for
F in L(Z), the couple (ρ(F ), S(F )) given by P is uniquely determined, and
that the mappings ρ : F → ρ(F ) and S : F → S(F ) from L(Z) to K and
L(Z), respectively, are linear. Since ker(ρ) consists of those elements of L(Z)
which have separable range, we have ρ(F ) 6= 0 whenever the operator F on
Z is an isomorphism onto its range. Assume that Z is an absolute-valued
algebra under some product �. For z in Z, denote by Lz the operator of left
multiplication by z on the algebra (Z, �). Since Lz is an isomorphism onto
its range whenever z is nonzero, it follows that the linear mapping z → ρ(Lz)
from Z to K is injective. Therefore Z is one-dimensional, a contradiction. �

Remark 3.9. (a) By a normed algebra over K we mean a non-zero alge-
bra A over K endowed with a norm ‖·‖ satisfying ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y
in A. Following [18], a nearly absolute-valued algebra over K will be a normed
algebra A over K such that there exists δ > 0 satisfying ‖xy‖ ≥ δ‖x‖‖y‖
for all x, y in A. Of course, one can think about those Banach spaces un-
derlying complete nearly absolute-valued algebras. Such Banach spaces will
be called nearly absolute-valuable. It is easy to see that near absolute valu-
ability is preserved under isomorphisms. Consequently, isomorphic copies of
absolute-valuable Banach spaces are nearly absolute-valuable. If X is a finite-
dimensional nearly absolute-valuable Banach space over C (respectively, R),
then, by [18, Remark 2.8] (respectively, [11, Chapter 11]), X has dimension
equal to 1 (respectively, 1, 2, 4, or 8), and therefore, by Proposition 2.1, X
is isomorphic to an absolute-valuable Banach space. However, in the infinite-
dimensional setting, we do not know if every nearly absolute-valuable Banach
space is isomorphic to an absolute-valuable Banach space. We certainly know
that, in both the finite- and the infinite-dimensional case, nearly absolute-
valued algebras need not be algebra-isomorphic to absolute-valued algebras
(see [18, Introduction] and [18, Example 1.1], respectively). In any case, the
proof of Proposition 3.8 actually shows that the non-separable reflexive Ba-
nach space of Wark [25] cannot be isomorphic to any nearly absolute-valuable
Banach space.
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(b) Recently, S. A. Argyros, J. López-Abad, and S. Todorcevic [2] have con-
structed a non-separable reflexive hereditarily indecomposable Banach space.
This, together with the fact that every infinite-dimensional hereditarily inde-
composable Banach space is not absolute-valuable (see the proof of Proposi-
tion 3.7), provides us with a new proof of Proposition 3.8.

4. Transitivity of the norm and absolute valuability

Given a Banach space X, we denote by G the group of all surjective linear
isometries on X. We recall that a Banach space X is said to be transitive (re-
spectively, almost transitive) if, for every (equivalently, some) element u in SX
we have G(u) = SX (respectively, G(u) = SX , where means norm closure).
The reader is referred to the book of Rolewicz [22] and the survey papers of
Cabello [7] and Becerra-Rodŕıguez [5] for a comprehensive overview of known
results and fundamental questions in relation to the notions just introduced.
Hilbert spaces become the natural motivating examples of transitive Banach
spaces, but there are also examples of non-Hilbert almost transitive sepa-
rable Banach spaces, as well as of non-Hilbert transitive non-separable Ba-
nach spaces. However, the Banach-Mazur rotation problem [3], the question
whether every transitive separable Banach space is a Hilbert space, remains
unsolved to date. Since transitive finite-dimensional Banach spaces are in-
deed Hilbert spaces, the rotation problem is actually interesting only in the
infinite-dimensional setting. Then, since infinite-dimensional Hilbert spaces
are absolute-valuable (by Corollary 2.5), it is natural to raise the following
strong form of the Banach-Mazur rotation problem.

Problem 4.1. Let X be an absolute-valuable transitive separable Banach
space. Is X a Hilbert space?

Unfortunately, we are unable to provide the reader with an affirmative
answer to Problem 4.1, even under the reasonable additional assumption that
L(X) and K(X) are absolute-valuable (see again Corollary 2.5). On the other
hand, a negative answer to Problem 4.1 could not be reasonably expected,
since such a negative answer would also provide a negative answer to the
classical Banach-Mazur rotation problem. Thus we limit ourselves for the
moment to a discussion of the different requirements in Problem 4.1. Indeed,
we are going to show that an affirmative answer to Problem 4.1 cannot be
expected if either the transitivity of X is relaxed to almost transitivity or if
the separability of X is removed.

Lemma 4.2. Let X and Y be Banach spaces over K. Assume that the com-
plete projective tensor product X⊗̃πX is linearly isometric to a quotient of X,
and that Y is absolute-valuable. Then L(X,Y ) and F(X,Y ) are absolute-
valuable.
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Proof. By the assumed absolute valuability of Y and [9, 3.2.(1)], there
exists a norm-one continuous linear mapping Φ : Y ⊗̃πY → Y satisfying
‖Φ(y1 ⊗ y2)‖ = ‖y1‖‖y2‖ for all y1, y2 in Y . On the other hand, the assump-
tion on X provides us with a continuous linear surjection Ψ : X → X⊗̃πX
such that the induced bijection X/ ker(Ψ) → X⊗̃πX is an isometry. Let F
and G be in L(X,Y ). By [9, 3.2.(4)], there exists a unique element F ⊗̃G
in L(X⊗̃πX,Y ⊗̃πY ) which extends F ⊗ G : X ⊗X → Y ⊗ Y , and we have
‖F ⊗̃G‖ ≤ ‖F‖‖G‖. Then, writing F � G := Φ ◦ (F ⊗̃G) ◦ Ψ ∈ L(X,Y ), the
inequality ‖F � G‖ ≤ ‖F‖‖G‖ is clear. To see the converse inequality, note
that, by the properties of Ψ, the equality ‖F �G‖ = ‖Φ ◦ (F ⊗̃G)‖ holds, and
that, by the properties of Φ and [9, 3.2.(3)], for x1, x2 in BX we have

‖F (x1)‖‖G(x2)‖ = ‖Φ(F (x1)⊗G(x2))‖
= ‖(Φ ◦ (F ⊗̃G))(x1 ⊗ x2)‖ ≤ ‖Φ ◦ (F ⊗̃G)‖ .

Now (L(X,Y ),�) becomes an absolute-valued algebra. Arguing as in the
concluding paragraph of the proof of Lemma 2.9, we see that F(X,Y ) (and
hence F(X,Y )) becomes a subalgebra of (L(X,Y ),�). �

In relation to the above lemma, the following question arises naturally.

Question 4.3. Let X be a Banach space such that L(X,Y ) and F(X,Y )
are absolute-valuable, for every absolute-valuable Banach space Y . Is X⊗̃πX
linearly isometric to a quotient of X?

Proposition 4.4. There exists a non-Hilbert absolute-valuable almost
transitive separable Banach space X such that, for every absolute-valuable
Banach space Y , L(X,Y ) and K(X,Y ) are absolute-valuable.

Proof. Take X equal to the non-Hilbert separable Banach space L1([0, 1]).
By [22, Theorem 9.6.4], X is almost transitive. On the other hand, by [6,
Example 42.14] and [19, Theorem 2.3], X⊗̃πX is linearly isometric to X.
This last property implies that X is absolute-valuable (by Corollary 2.10) as
well as the remaining part of the result (by Lemma 4.2 and the fact that X∗

has the approximation property [9, 5.2 and 5.3]). �

To derive from Proposition 4.4 that Problem 4.1 cannot be answered in
the affirmative if the separability is removed, let us recall some notions and
results from the theory of (Banach) ultraproducts [14]. Let U be an ultrafilter
on a nonempty set I, and {Xi}i∈I a family of Banach spaces. We can consider
the Banach space ⊕`∞i∈IXi, together with its closed subspace

NU := {{xi}i∈I ∈ ⊕`∞i∈IXi : lim
U
‖xi‖ = 0}.

The quotient space (⊕`∞i∈IXi)/NU is called the ultraproduct of the family
{Xi}i∈I relative to the ultrafilter U , and is denoted by (Xi)U . Let (xi) stand
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for the element of (Xi)U containing a given family {xi} ∈ ⊕`∞i∈IXi. It is easy
to check that ‖(xi)‖ = limU ‖xi‖. From this equality follows the folklore fact
that (Xi)U is absolute-valuable if, for every i ∈ I, Xi is absolute-valuable (see
for instance [17, Section 3]). On the other hand, it is also folklore that, if I
is countable, if U is nontrivial, and if Xi is almost transitive for every i ∈ I,
then (Xi)U is transitive (see either [8, Lemma 1.4], [13, Remark p. 479], or [5,
Proposition 2.18]). When Xi = X for every i ∈ I and some prefixed Banach
space X, the ultraproduct (Xi)U is called the ultrapower of X relative to U ,
and is denoted by XU . In this case XU contains “naturally” an isometric copy
of X.

Now, taking a nontrivial ultrafilter U on the set of all natural numbers, and
considering the ultrapower XU , where X stands for the Banach space given
by Proposition 4.4, we obtain the next corollary.

Corollary 4.5. There exists a non-Hilbert absolute-valuable transitive
(non-separable) Banach space.

Remark 4.6. In view of Proposition 2.1, for finite-dimensional Banach
spaces, absolute valuability is a condition much stronger than transitivity. In
the infinite-dimensional setting things change drastically. Indeed, if H is an
infinite-dimensional separable Hilbert space, then L(H) is absolute-valuable
(by Corollary 2.5) but, by [4, Theorem 4.5], it is not transitive (nor even
convex-transitive). We recall that a Banach space X is said to be convex-
transitive if, for every element u in SX , the convex hull of G(u) is dense in
BX . On the other hand, to see that an affirmative answer to Problem 4.1 is
actually easier than an affirmative answer to the classical rotation problem,
we would have to be sure that infinite-dimensional transitive Banach spaces
need not be absolute-valuable, a fact that (although clearly plausible) is not
clear for us for the moment.
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J. Mart́ınez, R. Payá, and G. Wood for fruitful remarks.

References

[1] A. A. Albert, Absolute valued real algebras, Ann. of Math. (2) 48 (1947), 495–501.

MR 0020550 (8,561d)
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