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ON APPROXIMATION OF UNIMODULAR GROUPS BY
FINITE QUASIGROUPS

L. YU. GLEBSKY, E. I. GORDON, AND C. J. RUBIO

Abstract. Recall that a locally compact group G is called unimodular
if the left Haar measure on G is equal to the right one. It is shown

that G is unimodular iff it is approximable by finite quasigroups (Latin
squares).

1. Introduction

This paper is a continuation of [3]. We prove here Theorem 2 of that paper,
which is the following result. (See Definitions 2 and 3 in [3].)

Theorem. A locally compact group G is unimodular if and only if it is
approximable by finite quasigroups.

The right to left direction of this result was proved in [3, Corollary 1 of
Theorem 1]. Also proved in [3, Proposition 2] was the fact that any discrete
group is approximable by finite quasigroups. Here we prove only the remaining
part of this theorem, which is the following:

Theorem 1. Any non-discrete locally compact unimodular group G is
approximable by finite quasigroups.

The proof of Theorem 1 presented in this paper is based on two results,
formulated as Theorem 2 and Theorem 3. Theorem 2 is a result about the
topological and measure theoretic structure of locally compact groups. It is
new, to our knowledge, and seems interesting in its own right, independent
of its role in proving Theorem 1. The proof of Theorem 2 depends on a
Theorem of Rado [8] and on Lemma 3, whose lengthy proof is given in Section
3. Theorem 3 is a combinatorial existence result based on ideas of A.J.W.
Hilton and D. de Werra, [2], [7], [10]; it is proved in Section 4.
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2. Reduction of Theorem 1 to Theorems 2 and 3

Consider a locally compact group G and fix a left Haar measure ν on G. For
the moment we do not assume that G is unimodular (and, of course, a similar
treatment can be given based on a right Haar measure). If G is compact, we
normalize ν so that ν(G) = 1.

Let C be a compact subset ofG, let U be a relatively compact neighborhood
of the identity in G and let P = {P1, . . . , Pn} be a measurable partition of C.

The partition P is said to be equisize if ν(Pi) are all the same for i =
1, . . . , n (which obviously means that they all have the value ν(C)/n).

The partition P is said to be U -fine if for every i = 1, . . . , n there exists
g ∈ G such that Pi ⊆ gU .

Theorem 2. For any neighborhood of the identity U in G and any com-
pact subset B of G there exist U -fine equisize partition of some compact set
C, which satisfies B ⊆ C ⊆ G.

Proof. See Section 3.

Next we formulate Theorem 3, for which we need a brief discussion of
quasigroups.

Let ◦ : dom(◦)→ Q be a partial binary operation on a set Q, i.e., dom(◦) ⊆
Q×Q. We say that Q is a partial quasigroup if for any a, b ∈ Q each of the
equations a ◦ x = b and x ◦ a = b has at most one solution. Further, Q
is a quasigroup if the operation ◦ is totally defined on Q and if each of the
equations a ◦ x = b and x ◦ a = b has a unique solution. (See [3, Definition
2].)

Lemma 1. Any finite partial quasigroup Q can be completed to a finite
quasigroup, i.e., there exists a finite quasigroup (Q′, ◦′) such that Q ⊆ Q′ and
◦ ⊆ ◦′.

The proof of this lemma follows immediately from the fact that any Latin
subsquare can be completed to a Latin square [9]. We used this fact in [3] to
prove the approximability of discrete groups by finite quasigroups (Proposition
2 of [3]).

Let σ be an equivalence relation on a partial quasigroup Q, identified with
the partition {Q1, . . . , Qn} of Q by σ-equivalence classes.

Denote by Q/σ the subset of {1, . . . , n}3 such that 〈ijk〉 ∈ Q/σ iff there
exist q ∈ Qi and q′ ∈ Qj with q ◦ q′ ∈ Qk. Notice that if σ is a congruence
relation on Q (i.e., it preserves the operation ◦) and Q is a quasigroup, then
the above set is exactly the graph of an operation on {1, . . . , n} making it a
quasigroup.

In combinatorics this construction is called an amalgamation; see [7], [10].
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Theorem 3. Let a non-negative three-index matrix w = 〈wijk | 1 ≤
i, j, k ≤ n〉, sets S, S′, S′′ ⊂ {1, . . . , n}2 and a positive real l satisfy the follow-
ing conditions:

(1)
∑n
i=1 wijk,

∑n
j=1 wijk,

∑n
k=1 wijk ≤ l;

(2) ∀ 〈i, j〉 ∈ S
∑n
k=1 wijk = l, ∀ 〈i, k〉 ∈ S′

∑n
j=1 wijk = l and

∀ 〈j, k〉 ∈ S′′
∑n
i=1 wijk = l.

Then there exists a finite partial quasigroup (Q, ◦) and a partition σ =
{Q1, . . . , Qn} of Q that satisfy the following conditions:

(1)
⋃
〈i,j〉∈S Qi ×Qj ⊆ dom(◦);

(2) the equation a ◦ x = b (x ◦ a = b) has a solution for any 〈a, b〉 ∈⋃
〈i,j〉∈S′ Qi ×Qj (for any 〈a, b〉 ∈

⋃
〈i,j〉∈S′′ Qi ×Qj);

(3) Q/σ ⊆ supp w, where supp w = {〈i, j, k〉 | wijk > 0}.

Proof. See Section 4.

Now we turn to the proof of Theorem 1, using Theorems 2 and 3.
Let G be a locally compact unimodular group, and let C be a compact

subset of G with a U -fine equisize partition P = {P1, . . . , Pn}. Consider the
three-index matrix w = 〈wijk | 1 ≤ i, j, k ≤ n〉, where

wijk =
∫ ∫
C×C

χi(xy−1)χj(y)χk(x)dν(x)dν(y).(1)

We use the notation χi for the characteristic function χPi . Let S = {〈i, j〉 | Pi ·
Pj ⊂ C}.

Lemma 2. The three-index matrix wijk has the following properties:
(1)

∑n
i=1 wijk,

∑n
j=1 wijk,

∑n
k=1 wijk ≤ ν(C)2/n2i;

(2) ∀ 〈i, j〉 ∈ S
∑n
k=1 wijk = ν(C)2/n2;

(3) ∀〈i, j〉 ∈ S ∃k wijk > 0 and ∀〈i, j, k〉wi,j,k > 0 =⇒
ν((Pi · Pj) ∩ Pk) > 0.

Proof. Note that, since P is a partition of C, we have
∑n
i=1 χi(t) = χC(t).

Since the partition P is equisize, we have ∀i ≤ n ν(Pi) = ν(C)/n.
Now

n∑
i=1

wijk =
∫ ∫
C×C

χC(xy−1)χj(y)χk(x)dν(x)dν(y)

≤
∫ ∫
G×G

χj(x)χk(y)dν(x)dν(y) =
ν(C)2

n2
.

The second and the third inequalities in (1) can be proved similarly.
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To prove equality (2) note that since Pi ·Pj ⊆ C the equality χi(xy−1)χj(y)
= 1 implies χC(x) = 1. Thus,

n∑
k=1

wijk =
∫ ∫
C×C

χi(xy−1)χj(y)χC(x)dν(x)dν(y)

=
∫ ∫
G×G

χi(xy−1)χj(y)dν(x)dν(y) =
ν(C)2

n2
.

Here the last equality follows from the right invariance of ν. The first part
of statement (3) follows immediately from statement (2) and the second from
Fubini’s Theorem. �

Remark 1. Lemma 2 is the only place in the proof of Theorem 1 where
the unimodularity of G is used.

Remark 2. If G is a compact group and P is a U -fine equisize partition of
G, then the set S contains all pairs 〈i, j〉 and the three-index matrix w satisfies
the conditions of Theorem 3 with S = S′ = S′′ = {1, . . . , n}2 and l = 1/n2.
After multiplication of w by n2, we obtain the three-stochastic matrix w′. It is
known that a two-index bistochastic matrix p satisfies Birkhoff’s theorem (cf.,
for example, [9]), which states that p is a convex combination of permutation
matrices. Hence, for any bistochastic matrix p there exists a permutation π
such that supp π ⊆ supp p.

Obviously, an analog of a permutation for a three-index matrix is a three-
index matrix q = (qijk) such that each qijk is either 0 or 1 and supp q is the
graph of an operation of a quasigroup. Thus, if Birkhoff’s theorem could be
extended to three-index matrices, then the support of any three-index sto-
chastic matrix would contain the graph of the operation of some quasigroup.
However, it is well-known that Birkhoff’s theorem fails for three-index ma-
trices. Therefore, the above mentioned particular case of Theorem 3 can be
considered as a weaker version of Birkhoff’s theorem that holds for three-index
matrices. This particular case of Theorem 3 follows easily from the results of
A.J.W. Hilton [7].

To complete the proof of Theorem 1 we use the nonstandard characteriza-
tion of approximability (Theorem 5 of [3]).

Recall that ns( ∗G) is the set of all nearstandard elements of ∗G. It is enough
to prove the existence of a hyperfinite quasigroup (Q′, ◦) and an internal map
α : Q′ → ∗G that satisfy the following conditions:

(i) ∀g ∈ G ∃q ∈ Q′ (α(q) ≈ g);
(ii) ∀q1, q2 ∈ Q′ (α(q1), α(q2) ∈ ns( ∗G)→ α(q1 ◦ q2) ≈ α(q1) · α(q2)).

Since G is a locally compact group, there exists an internal compact set C ⊇
ns( ∗G). By Theorem 2 and the transfer principle, we may assume that C has a
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hyperfinite U -fine equisize partition P = {P1, . . . , PN} for some infinitesimal
neighborhood U of the unity in ∗G. Let w = 〈wijk | 1 ≤ i, j, k,≤ N〉 be
the internal three-index matrix defined by formula (1) with this partition P.
Notice that if Pi contains at least one nearstandard point then Pi ⊆ ns( ∗G),
and if Pi, Pj ⊆ ns( ∗G) then Pi · Pj ⊆ ns( ∗G). So if S ⊆ {1, . . . , N}2 is the set
defined before Lemma 2, then

S ⊇ {〈i, j〉 | Pi, Pj ⊆ ns( ∗G)}.

Denote by Pns the (external) set of all X ∈ P such that X ⊆ ns( ∗G).
Let (Q, ◦) be a hyperfinite partial quasigroup and σ = {Q1, . . . , QN} a

partition of Q that satisfy the conditions of Theorem 3 for S′ = S′′ = ∅. Let
Q′ be a hyperfinite quasigroup that completes Q (see Lemma 1). Now consider
an arbitrary internal injection α : Q′ → ∗G such that α(Q′ \ Q) ⊆ ∗G \ C,
α(Qi) ⊆ Pi, i = 1, . . . , N .

If qi ∈ Qi and qj ∈ Qj and 〈i, j〉 ∈ S, then, by the definition of S, there
exists a k such that qi ◦ qj ∈ Qk. Thus wijk > 0 and

(Pi · Pj) ∩ Pk 6= ∅(2)

by Lemma 2.
It is easy to see that all elements of any X ∈ Pns are infinitesimally close

to each other since U is infinitesimal and P is U -fine. Thus, if X,Y ∈ Pns,
then all elements of X · Y are infinitesimally close to each other.

Let g ∈ G. Since P is a partition of ∗G ⊃ G there exists P ∈ Pns such that
g ∈ P . By the construction of α, there exist q ∈ Q such that α(q) ∈ P . So
α(q) ≈ g and (i) is proved.

Let α(qi) ∈ Pi ∈ Pns, α(qj) ∈ Pj ∈ Pns, α(qi ◦ qj) ∈ Pk. Then 〈i, j〉 ∈ S
and, by (2), there exists h ∈ (Pi · Pj) ∩ Pk. Then α(q1) · α(q2) ≈ h and
α(q1 ◦ q2) ≈ h. This completes the proof of Theorem 1 using Theorems 2 and
3. �

3. Proof of Theorem 2

To prove Theorem 2 we need the following results.

Theorem (Rado [8]). Let S be a measurable space with a finite non-
atomic measure µ, {S1, . . . , Sn} - a collection of subsets of S such that

⋃n
i=1 Si

= S, 〈ε1, . . . , εn〉 ∈ Rn, εi > 0,
∑n
i=1 εi = µ(S). Then the following two

statements are equivalent:

(1) there exists a partition {P1, . . . , Pn} of S such that µ(Pi) = εi, Pi ⊆
Si, i = 1, . . . , n;

(2) for any I ⊆ {1, . . . , n} we have µ
(⋃

i∈I Si
)
≥
∑
i∈I εi.
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Lemma 3. For any compact set B ⊆ G and for any neighborhood of the
unity U there exist a compact set C ⊇ B and a finite set F ⊂ C such that
C ⊂ FU and ∀I ⊆ F ν((IU) ∩ C) ≥ |I|

|F |ν(C)

Theorem 2 follows immediately from Rado’s Theorem and Lemma 3. In-
deed, let F satisfy Lemma 3, F = {h1, . . . , hn}. Consider the collection
{(h1U)∩C, . . . , (hnU)∩C} of subsets of G and put εi = n−1ν(C), i = 1, . . . , n.
Then condition (2) of Rado’s Theorem is equivalent to condition (2) of Lemma
3. Thus, there exists the partition P that satisfies the conditions of Rado’s
Theorem. Obviously this partition satisfies Theorem 2. �

The rest of this section is devoted to the proof of Lemma 3. First we prove
some lemmas.

Throughout this section U is a relatively compact and symmetric (U−1 =
U) neighborhood of the identity e ∈ G.

We say that a set S ⊆ G is U -disconnected if there exists a set A ⊆ S, A 6=
∅, A 6= S, such that AU ∩ S = A. Otherwise S is called U -connected.

Lemma 4. If a set K ⊆ G is such that Un ⊆ K ⊆ Un+1 for some n ≥ 0,
then K is U -connected.

Proof. Assume that a U -disconnected set K ⊆ G satisfies the condition of
Lemma 4. Then there exists a set X ⊂ K such that ∅ 6= X, XU ∩ K =
X, Y = K \X 6= ∅. Thus, {X,Y } is a partition of K and XU ∩ Y = ∅. The
last equality implies that X ∩ Y U−1 = ∅ and since U is symmetric, we have
X ∩ Y U = ∅. Thus, Y U ∩K = Y . Consider the map Φ : 2K → 2K defined
by Φ(A) = AU ∩K. This map obviously has the following properties:

• if A ⊆ B, then Φ(A) ⊆ Φ(B);
• Φn+1({e}) = K;
• Φ(X) = X, Φ(Y ) = Y .

On the other hand, e ∈ X or e ∈ Y . This contradiction completes the
proof. �

We say that a compact set C is regular if it is equal to the closure of its
interior.

Lemma 5. Let C be a regular compact set and C0 its interior. If C0 is
U -connected, A ∩ C0 6= ∅, and C \A 6= ∅, then ν(A ∩ C) < ν(AU ∩ C).

Proof. Since A ⊆ AU , we have ν(A ∩ C) ≤ ν(AU ∩ C). It only remains
to prove that this inequality is strict. It is enough to prove that ν(A ∩C0) <
ν(AU ∩C0). This will be proved if we show that C0 ∩AU 6= C0 ∩A. Indeed,
in this case the set (C0 ∩AU) \ (C0 ∩A) is equal to (C0 ∩AU) \A 6= ∅. Since
this set is open, we have ν((C0 ∩AU) \ (C0 ∩A)) > 0.



APPROXIMATION OF TOPOLOGICAL GROUPS 23

Since U is an open set, we have AU = AU . Thus, the following inclusions
hold:

C0 ∩AU ⊇ C0 ∩ (A ∩ C0)U ⊇ C0 ∩A.

Suppose that the last inclusion is an equality. Then A∩C0 = C0, because C0

is U -connected. So, C0 ⊆ A, thus C0 ⊆ A, and, since C is regular, we have
C ⊆ A. This contradicts the condition C \A 6= ∅. �

Lemma 6. For every n ∈ N there exists a regular compact set K such
that Un ⊆ K ⊆ Un+1 and ν(∂K) = 0.

Proof. Let (K)0 denote the interior of a set K. Consider the family K of
all compact sets K such that Un ⊆ K ⊆ Un+1. Consider the partial order ≺
on K such that K1 ≺ K2 iff K1 ⊆ (K2)0. Let Ξ be a maximal chain in K with
respect to this partial order. If Ξ is uncountable, then Z contains at least one
compact set K with ν(∂K) = 0 since ν(Un+1) is finite. So, we assume that
Ξ is countable. There are three possibilities under this assumption:

(1) There exist X,Y ∈ Ξ such that X ≺ Y , but there does not exist Z ∈ Ξ
such that X ≺ Z ≺ Y . In this case, due to the regularity of G, there exist an
open set W and a compact set K such that X ⊆W ⊆ K ⊆ (Y )0. Due to the
maximality of Ξ, either K = X and thus X is a clopen set, or K = Y and Y
is a clopen set. Since the boundary of a clopen set is the empty set, we are
done in this case.

(2) The maximal chain Ξ contains the maximal element X ⊆ Un+1. Then
a similar argument shows that X is clopen.

(3) The order type of Ξ is either η or 1 + η, where η is the order type of Q.
Let us show that this case is impossible. We consider the case of η. In the
case of 1 + η the argument is similar.

Let Ξ = {Xα | α ∈ Q}, and Xα ≺ Xβ iff α < β. Fix an arbitrary irrational
number a and put Y =

⋃
α<aXα. Then it is easy to see that for all α < a one

has Xα ≺ Y and for α > a one has Y ≺ Xα. This contradicts the maximality
of Ξ.

We have proved that there exists a compact set K such that Un ⊆ K ⊆
Un+1 and ν(∂K) = 0. If K is not regular, we can consider K ′ = (K)0.
It is well known that K ′ is always regular. Obviously ∂K ′ ⊆ ∂K. Thus,
ν(∂K ′) = 0 and K ′ ⊆ Un+1. On the other hand, we have Un ⊆ K and thus
Un ⊆ (K)0 ⊆ K ′. �

Let

Γ(U) =
∞⋃
n=1

Un.

It is well known (cf., for example, [6]) that Γ(U) is a complete, and thus a
clopen subgroup of G.
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Lemma 7. For any symmetric relatively compact neighborhood V of the
unity and for any compact set B ⊆ G there exist a regular compact set C ′ and
a finite set {g1, . . . , gn} ⊂ G such that

• the interior (C ′)0 of C ′ is V -connected;
• ν(∂C ′) = 0;
• B ⊆

⋃n
i=1 giC

′;
• if i 6= j, then giC

′V ∩ gjC ′V = ∅.

Proof. Consider the decomposition of G into the family of left cosets of
Γ(V ). Since the cosets are clopen sets, there exist only finitely many cosets
Γ1 = g1Γ(V ), . . . ,Γn = gnΓ(V ) such that Γi ∩ B 6= ∅, i = 1, . . . , n and
there exists an m ∈ N such that for all i ≤ n we have Γi ∩ B ⊆ giV

m.
By Lemma 6, there exists a regular compact set C ′ with ν(∂C ′) = 0 such
that V m ⊆ C ′ ⊆ V m+1. By Lemma 4, the set C ′ is V -connected. It is
easy to see that C ′ satisfies all other conditions of this lemma. For example,
giΓ(V ) · V = giΓ(V ) and, thus, the last condition holds. �

For A ⊆ ∗G denote by st(A) the set { ◦g ∈ G | g ∈ A}.

Lemma 8. Let C ⊆ G be a compact set, W ⊆ G an open relatively compact
set, U ⊆ G a relatively compact neighborhood of the unity, and I ⊆ ∗C an
internal set. Then:

(1) ∗(st(I)W ∩ C) ⊆ I ∗W ∗U ∩ ∗C;
(2) I ⊆ ∗(st(I)U ∩ C).

Proof. (1) We prove the stronger inclusion ∗(st(I)W ) ⊆ I ∗W ∗U . Since
st(I) is a closed set for any internal set I (this follows from the saturation
principle—see, for example, [1]), we have

st(I)W = st(I)W = st(I)W.(3)

Let x ∈ ∗(st(I)W ). Since st(I)W is a compact set (st(I) ⊆ C), there exists an
element b ∈ st(I)W such that x ≈ b. By (3), the element b can be represented
in the form b = ◦i · a for some i ∈ I and a ∈ W . By the nonstandard
characteristic of the closure of a standard set, there exists w ∈ ∗W such that
w ≈ a. Thus x ≈ iw. This implies that x ∈ iw ∗U ⊆ I ∗W ∗U .

We show that I ⊆ st(I) ∗U ⊆ ∗(st(I)U). Indeed, since C is a compact set
and I ⊆ ∗C, for any i ∈ I there exists ◦i ∈ st(I). Since i ≈ ◦i, we have
i ∈ ◦i · ∗U ⊆ st(I) ∗U . �

Recall that I ⊆ G is called a (left) O-grid of K if K ⊆ IO. A left O-grid I
of K called optimal iff it has the minimal cardinality among all left O-grids
of K

Lemma 9. Let V ⊆ G be a compact set with non-empty interior, O an
infinitesimal neighborhood of the unity in ∗G, K an internal compact set such
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that G ⊆ K ⊆ ∗G, and H ⊆ ∗G a hyperfinite set that is an optimal left O-grid
of K, ∆ = |H ∩ V |−1. Consider the functional ΛV (f) defined by the formula

ΛV (f) = ◦

(
∆
∑
h∈H

∗f(h)

)
.(4)

Then the following statements hold:
(1) ΛV (f) is a left invariant finite positive functional on C0(L) and, thus,

it defines the left Haar measure νV on L.
(2) If C ⊆ G is a compact set, then νV (C) ≥ ΛV (χC).
(3) If C ⊆ G is a compact set and νV (∂C) = 0, then νV (C) = ΛV (χC);

in particular, if νV (∂V ) = 0, then νV (V ) = 1.

Proof. Statement (1) is a slight modification of the nonstandard version of
Theorem 1 in [3]. See Lemma 1 and the proof of Theorem 3 in [3].

Statement (2) follows from the general theory of integration on locally
compact spaces. See, e.g., [5].

Statement (3) follows immediately from Proposition 1.2.18 of [4]. �

We now complete the proof of Lemma 3.
Fix a compact set B ⊆ G and a neighborhood U of the identity. Without

loss of generality we assume that the neighborhood U is relatively compact
and symmetric.

We show that there exist a compact set C ⊇ B and a hyperfinite set
F ⊂ ∗C such that ∗C ⊂ F ∗U and for any internal set I ⊆ F the inequality
∗ν(I ∗U ∩ ∗C) ≥ |I|

|F |ν(C) holds. Lemma 3 follows from this statement by the
transfer principle.

Let U = U1U2U3. Without loss of generality we assume that U2 is sym-
metric. Let C ′ and g1, . . . , gn satisfy the conditions of Lemma 7 for B and
V = U2. Put C = g1C

′ ∪ · · · ∪ gnC ′. Consider an internal compact set K
satisfying Γ(U2) ⊆ K ⊆ ∗Γ(U2).

There exists a hyperfinite set M such that
• {g1, . . . , gn} ⊆M ;
• G ⊆MK;
• for any m1 6= m2 ∈M one has m1K

∗U2 ∩m2K
∗U2 = ∅.

Indeed, let G ⊆ X ⊆ ∗G be an internal compact set and let D = {E ∈
∗G/ ∗Γ(U2) | E ∩ X 6= ∅} ( ∗G/ ∗Γ(U2) is the set of left classes of ∗Γ(U2)).
Then the set D is hyperfinite and for any g ∈ G one has ∗(gΓ(U2)) ∈ D.
Consider an internal set M ′ of representatives of the internal family D \
{g1
∗Γ(U2), . . . , gn ∗Γ(U2)} and put M = M ′ ∪ {g1, . . . , gn}. If m1 6= m2 ∈M ,

then m1
∗Γ(U2) ∗U2 ∩ m2

∗Γ(U2) ∗U2 = ∅, since Γ(U2)U2 = Γ(U2) and thus
m1K

∗U2 ∩m2K
∗U2 = ∅.

Let O ⊆ ∗G be an infinitesimal neighborhood of the identity and let the
hyperfinite set H be an optimal O-grid of K. Then obviously MH is an
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optimal O-grid of MK. Put F = MH∩C. By Lemma 9(1),(3), the functional

Λ(f) = ◦

(
1
|F |

∑
x∈MH

∗f(x)

)
restricted to C0(G) is an invariant functional, which induces the Haar measure
νC on G with νC(C) = 1. (It is easy to see that ν(∂C) = 0.) In what follows
we identify νC and ν.

Fix an arbitrary internal I ⊆ F . We have to prove that ∗ν((I · ∗U)∩ ∗C) ≥
|I|/|F |.

Let A = st(I) · U1. There are two possibilities.

(1) The set A∩C is the union of k ≤ n sets giC ′, say, A∩C =
⋃k
i=1 giC

′.
Then A · U2 ∩ C = A ∩ C. Indeed, we have

A ∩ C = A ∩ C ⊆ (A ∩ C) · U2 ∩ C ⊆

(
k⋃
i=1

giC
′U2

)
∩ C = A ∩ C.

The last equality holds since giC ′U2 ∩ gjC ′ = ∅ for i 6= j.
So we have ν((AU2) ∩ C) = k/n, since nν(C ′) = ν(C).
Let Fi = F ∩ gi ∗C ′. Then Fi = MH ∩ gi ∗C ′ = giH ∩ gi ∗C ′ = gi( ∗C ′ ∩H).

Therefore, all Fi have the same cardinality and so |Fi| = |F |/n. By Lemma 8,
we have I ⊆ ( ∗st(I) ∗U1) ∩ ∗C = ∗(A ∩ C), thus |I| ≤ k|F |/n.

Again, by Lemma 8, ∗((st(I) · U1 · U2) ∩ C) ⊆ (I ∗U) ∩ ∗C. Thus, we have
∗ν((I ∗U) ∩ ∗C) ≥ ∗ν( ∗((st(I) · U1 · U2) ∩ C))

= ν((st(I) · U1 · U2) ∩ C) =
k

n
≥ |I|
|F |

.

(2) For some i ≤ n the sets st(I)U1, giC ′ and U2 satisfy the conditions
of Lemma 5 for A,C and U , respectively. Using Lemma 5, Lemma 8 and
Lemma 9 (3), we obtain

∗ν((I · ∗U) ∩ C) ≥ ν((st(I) · U1 · U2) ∩ C) > ν((st(I) · U1) ∩ C)

≥ Λ(χ(st(I)·U1)∩C) = ◦
(
| ∗((st(I) · U1) ∩ C) ∩ F |

|F |

)
≥ ◦

(
|I|
|F |

)
≈ |I|
|F |

.

4. Proof of Theorem 3

Without loss of generality we may assume that in Theorem 3 w is a non-
negative integer matrix and l = k2, k ∈ N. Indeed, let w and l satisfy
the conditions of the theorem. Consider non-zero elements of w and l as
variables. Since the theories of ordered abelian groups R and Q are elementary
equivalent, this system of equalities and inequalities has a positive rational
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solution. Multiplying this solution by a proper integer, we construct an integer
matrix w′, supp(w′) = supp(w), satisfying the conditions of Theorem 3 with
l = k2.

Denote by T (m,n) the set of all nonnegative integer m× n matrices. The
following Proposition is a reformulation of De Werra’s theorem on balanced
edge-colorings of a finite bipartite multigraph.

Let Γ be a bipartite multigraph, E(Γ) the set of its edges, and V (Γ) the
set of its vertices. A k-edge-coloring of Γ is a map f : E(Γ) → {1, . . . , k}.
For s ≤ k, u, v ∈ V (Γ), denote by Es(u, v) the set of all edges of color s
connecting u and v, and by Es(v) the set of all edges of color s incident with
v. We say that the edge-coloring f is balanced if the following conditions hold
for any u, v ∈ V (Γ) and r, s ≤ k:

(1) ||Er(u, v)| − |Es(u, v)|| ≤ 1;
(2) ||Er(u)| − |Es(u)|| ≤ 1.

Theorem (De Werra [10]). For any bipartite multigraph Γ and for any
natural k there exists a balanced k-edge-coloring of Γ.

Proposition 1. Let M ∈ T (n,m) and k ∈ N. Then M = M1 + M2 +
· · ·+Mk, where the matrices Mi ∈ T (n,m), i = 1, . . . , k, satisfy the following
conditions:

• Mi ∈ T (n,m),
• ∀i, j, p, r |Mi(p, r)−Mj(p, r)| ≤ 1,
• ∀i, j, p |

∑m
r=1Mi(p, r)−

∑m
r=1Mj(p, r)| ≤ 1,

• ∀i, j, p |
∑n
r=1Mi(r, p)−

∑n
r=1Mj(r, p)| ≤ 1.

Proof. Let Γ be the bipartite multigraph with the set of vertices {u1, . . . , un}
∪ {v1, . . . , vm} and M(i, j) edges connecting the vertices ui and vj , i =
1, . . . , n, j = 1, . . . ,m. By De Werra’s theorem, there exists a balanced k-
edge-coloring of Γ. For all s ≤ k let Ms(i, j) = Es(ui, vj) be the number of
edges connecting the vertices ui and vj of color s. �

Let M ∈ T (n,m), α ∈ N, I ⊆ {1, 2, . . . ,m} (I ⊆ {1, 2, . . . , n}). We say
thatM satisfies the (1, α, I)-property (resp. (2, α, I)-property) if

∑n
i=1M(i, j)

≤ α for all j ≤ m, and
∑n
i=1M(i, j) = α for j ∈ I (resp.

∑m
j=1M(i, j) ≤ α

for all i ≤ n, and
∑m
j=1M(i, j) = α for i ∈ I).

Proposition 1 implies:

Corollary 1. Let M ∈ T (n,m) satisfy both the (1, αk, I)-property and
the (2, βk, I ′)-property, where I ⊆ {1, 2, . . . ,m} and I ′ ⊆ {1, 2, . . . , n}, α, β, k
∈ N. Then M = M1 +M2 + · · ·+Mk, where each Mi ∈ T (n,m) satisfies both
the (1, α, I)-property and the (2, β, I ′)-property.

We introduce the following notations.



28 L. YU. GLEBSKY, E. I. GORDON, AND C. J. RUBIO

Denote by (n) the set {1, 2, . . . , n}. Let M : (n1) × · · · × (nk) → R be a
k-index matrix and σ = {P1, . . . , Pr} be an (ordered) partition of (ni). We
define the quotient matrix

M◦iσ : (n1)× · · · × (ni−1)× (r)× (ni+1)× · · · × (nk)→ R,

by the formula

M◦iσ(x1, . . . , xi, . . . , xk) =
∑
y∈Pxi

M(x1, · · · , y, · · ·xk).

Let L be a three-index n1 × n2 × n3-matrix, I ⊆ (n2) × (n3), α ∈ N. We
say that L satisfies the (1, α, I)-property if

∑n
i=1 L(i, j, k) ≤ α for all 〈j, k〉

and
∑n
i=1 L(i, j, k) = α for 〈j, k〉 ∈ I. Similarly we define the (2, α, I)- and

(3, α, I)-properties of a three-index matrix.
Let T (n1, n2, n3) denote the set of all non-negative integer n1 × n2 × n3-

matrices.

Proof of Theorem 3. Let w ∈ T (n, n, n), S, S′, S′′ ⊆ {1, 2, . . . , n}2 and l =
k2, k ∈ N, satisfy the conditions of Theorem 3. Then conditions (1) and (2)
of Theorem 3 are equivalent to the condition that w satisfies the (3, k2, S)-,
(2, k2, S′)-, and (1, k2, S′′)-properties. Take m = kn and a partition σ =
{Q1, Q2, · · · , Qn} of (m) such that |Qi| = k. Without loss of generality we
assume that Qi = {(i− 1)k+ 1, (i− 1)k+ 2, . . . , ik}. We will below construct
w1 ∈ T (n, n,m), w2 ∈ T (n,m,m) and w3 ∈ T (m,m,m) such that:

• w = w1◦3σ, w1 = w2◦2σ, w2 = w3◦1σ.
• w1 satisfies the (1, k,

⋃
〈i,j〉∈S′′{i} ×Qj)-, (2, k,

⋃
〈i,j〉∈S′{i} ×Qj)-

and (3, k2, S)-properties.
• w2 satisfies the (1, 1,

⋃
〈i,j〉∈S′′ Qi ×Qj)-, (2, k,

⋃
〈i,j〉∈S′{i} ×Qj)-

and (3, k,
⋃
〈i,j〉∈S{i} ×Qj)-properties.

• w3 satisfies the (1, 1,
⋃
〈i,j〉∈S′′ Qi ×Qj)-, (2, 1,

⋃
〈i,j〉∈S′ Qi ×Qj)-

and (3, 1,
⋃
〈i,j〉∈S Qi ×Qj)-properties.

Now it is easy to check that the three-index matrix w3 is a graph of a
partial quasigroup operation (Q, ◦), which satisfies Theorem 3.

Construction of w1. For every fixed c ∈ (n) the matrix w(·, ·, c) ∈ T (n, n)
satisfies the (1, k2, I1)- and (2, k2, I2)-properties, where I1 = {i : 〈i, c〉 ∈ S′′},
I2 = {i : 〈i, c〉 ∈ S′}. By Corollary 1, we have

w(·, ·, c) = Mj1 + · · ·+Mjk ,

where ji = (c − 1)k + i and each Mji ∈ T (n, n) satisfies the (1, k, I1)- and
(2, k, I2)-properties. Doing the same for all c, we obtain matrices M1, . . . ,Mm

∈ T (n, n). For every r ∈ (m) put w1(i, j, r) = Mr(i, j).
Construction of w2. For every fixed c the matrix w1(·, c, ·) ∈ T (n,m)

satisfies (1, k, I1)- and (2, k2, I2)-properties, where I1 =
⋃
〈c,j〉∈S′′ Qj , I2 =
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{i : 〈i, c〉 ∈ S}. By Corollary 1 we have

w1(·, c, ·) = Mj1 + · · ·+Mjk ,

where ji = (c − 1)k + i and each Mji ∈ T (n,m) satisfies the (1, 1, I1)- and
(2, k, I2)-properties. Doing the same for all c, we obtain matrices M1, . . . ,Mm

∈ T (n,m). For every r ∈ (m) put w2(i, r, j) = Mr(i, j).
The construction of w3 is similar. �

5. Approximation of unimodular groups by loops

In this section we sketch a proof of a slightly stronger result than Theorem
1, namely:

Theorem 4. Any locally compact unimodular group G is approximable by
finite loops.

Recall that an element e of a quasigroup (Q, ◦) is called an identity if
∀a ∈ Qa ◦ e = e ◦ a = a. A quasigroup with an identity is called a loop.

Recently, Miloš Ziman [11] proved that any discrete group is approximable
by loops (with some additional properties), so we only have to prove the
following result.

Proposition 2. Any non-discrete locally compact unimodular group is
approximable by finite loops.

To prove this proposition, we need the following variant of Lemma 2.

Lemma 10. In conditions of Lemma 2 the three-index matrix wijk has the
following properties:

(1)
∑n
i=1 wijk,

∑n
j=1 wijk,

∑n
k=1 wijk ≤ ν(C)2/n2;

(2) ∀ 〈i, j〉 ∈ S
∑n
k=1 wijk = ν(C)2/n2, ∀ 〈i, k〉 ∈ S′

∑n
j=1 wijk =

ν(C)2/n2 and ∀ 〈j, k〉 ∈ S′′
∑n
i=1 wijk = ν(C)2/n2;

(3) ∀〈i, j, k〉 wijk > 0 =⇒ ν( (Pi · Pj) ∩ Pk) > 0,
where S = {〈i, j〉 | PiPj ⊆ C}, S′ = {〈i, k〉 | P−1

i · Pk ⊆ C}, and S′′ =
{〈j, k〉 | Pk · P−1

j ⊆ C}.

The proof is the same as that of Lemma 2 (see Section 2).
Using Lemma 10 and Theorem 3 one immediately obtains that the quasi-

group Q′ and the map α : Q′ → ∗G constructed in the proof of Proposition
1 for the general case (see the very end of Section 2) satisfy the following
condition.

(I) If α(x), α(z) ∈ ns( ∗G) and (x ·y = z or y ·x = z), then α(y) ∈ ns( ∗G).
Now we introduce a new loop operation ∗ on Q′ such that (Q′, ∗) approxi-

mates G with the same α. The construction is as follows:
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• Take q0 ∈ Q′, such that α(q0) ≈ e (e ∈ G is the unity).
• Construct a permutation a : Q′ → Q′ such that q0 ◦ a(x) = x. By

property (I), α(a(x)) ∈ ns( ∗G) if and only if α(x) ∈ ns( ∗G). So, if
x ∈ ns( ∗G), then α(a(x)) ≈ α(x).
• Construct a permutation b : Q′ → Q′ such that b(x) ◦ a(q0) = x. By

the same argument, α(b(x)) ≈ α(x) for x ∈ ns( ∗G). It easy to check
that b(q0) = q0.
• Define the operation x ∗ y = b(x) ◦ a(y). It is easy to see that (Q′, ∗)

is a loop with unity q0 and ((Q′, ∗), α) is a hyperfinite approximation
of G.

This proves Proposition 2. �
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