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ON APPROXIMATION OF TOPOLOGICAL GROUPS BY
FINITE QUASIGROUPS AND FINITE SEMIGROUPS

L. YU. GLEBSKY AND E. I. GORDON

Abstract. It is known that any locally compact group that is approx-
imable by finite groups must be unimodular. However, this condition is

not sufficient. For example, simple Lie groups are not approximable by
finite ones. In this paper we consider the approximation of locally com-
pact groups by more general finite algebraic systems. We prove that
a locally compact group is approximable by finite semigroups iff it is
approximable by finite groups. Thus, there exist some locally compact

groups and even some compact groups that are not approximable by fi-
nite semigroups. We prove also that whenever a locally compact group
is approximable by finite quasigroups (latin squares) it is unimodular.

The converse theorem is also true: any unimodular group is approx-
imable by finite quasigroups and even by finite loops. In this paper

we prove this theorem only for discrete groups. For the case of non-

discrete groups the proof is rather long and complicated and is given in
a separate paper.

1. Introduction

In this paper we discuss the notion of approximation of a topological group
by finite groups that was introduced by the second author [8]. The case of
locally compact abelian (LCA) groups was investigated in detail in [8]. The
case of discrete groups and the case of nilpotent locally compact groups were
treated in [21].

The approximations constructed in these papers have interesting applica-
tions in various areas of mathematics. In [3] new finite-dimensional approxi-
mations of pseudodifferential operators in Hilbert spaces of functions on LCA
groups were constructed using approximations of these groups by finite ones.
Approximations of discrete groups have some interesting applications in the
ergodic theory of group actions [21], [1], and in symbolic dynamics [10].
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The approximability of any LCA group by finite abelian groups is proved
in [8] and the approximability of a large class of nilpotent Lie groups by finite
nilpotent groups is proved in [21]. The class of discrete approximable groups
is a proper extension of the class of locally residually finite groups. There do
exist some non-approximable groups: the Baumslag-Solitar groups, finitely
presented infinite simple groups, and some others [21]. It was proved in [9]
that all approximable locally compact groups are unimodular (i.e., the left
and right Haar measures coincide). However, unimodularity is not a sufficient
condition for approximability—we mentioned already that there exist non-
approximable discrete groups. It was proved in [1] that the simple Lie groups
are not approximable by finite groups as topological groups. However, since
these groups are locally residually finite, they are approximable as discrete
groups.

As was mentioned above, some important groups, e.g., the group SO(3), are
not approximable by finite groups. Therefore, it is interesting to investigate
more general classes of finite algebras with a binary operation such that some
locally compact groups that are non-approximable by finite groups can be
approximated by finite algebras from these classes.

The most important and most thoroughly investigated extensions of the
class of finite groups are the classes of finite semigroups (see, for example,
[20]) and the class of finite quasigroups, which are the same as latin squares
(see, for example, [15] and [19]). The goal of this paper is to investigate
the approximation of locally compact groups by finite quasigroups and finite
semigroups.

We prove (Theorem 4) that if a locally compact group is approximable by
finite semigroups then it is approximable by finite groups. This theorem has
an interesting corollary concerning computer arithmetic (finite algebras that
approximate the field R). In [9] it was shown that the impossibility to ap-
proximate non-unimodular groups by finite groups implies the impossibility
to construct a computer arithmetic that is a finite field1. In a similar way, the
results in this paper imply that it is impossible to construct a computer arith-
metic that is a finite associative ring. Computer arithmetic will be discussed
in detail in another paper.

In contrast with the case of semigroups, the class of groups approximable by
finite quasigroups is essentially larger than the class of groups approximable
by finite groups. Indeed the following theorem (Theorem 2) holds: a locally
compact group G is approximable by finite quasigroups iff it is unimodular.
In this paper we prove the unimodularity of locally compact groups that are
approximable by finite quasigroups, and we prove the converse statement for
discrete groups. The proof of approximability of non-discrete unimodular

1Recall that numerical systems implemented in working computers are based on a float-
ing point representation of reals. Due to rounding these systems are neither associative nor

distributive.
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groups by finite quasigroups is rather long and complicated. It involves some
non-trivial combinatorics of latin squares and some special properties of the
Haar measure. This proof is presented in a companion paper [7].

Theorem 2 seems to be the first known characterization of unimodularity
in terms of algebra and topology. The most general sufficient condition for
unimodularity that was known up to now is due to Braconnier [4] (see also
[12]). It states that if the left uniformity on a locally compact group G is
equivalent to the right uniformity, then G is unimodular. A large class of uni-
modular groups, including all discrete groups and all compact groups, satisfy
this condition. Nevertheless, there exist some unimodular groups, e.g., the
group SL(2,R), that do not satisfy it2.

To prove the unimodularity of a group G that is approximable by finite
quasigroups we construct an invariant mean on G as a limit of invariant
means on finite quasigroups approximating G. This construction is similar
to the construction of a left invariant mean on a locally compact group in-
troduced by von Neumann in Chapter VI of [14], in which the finite equidis-
tributed subsets of G were used. The existence of finite equidistributed sub-
sets is proved in [14] with the help of a combinatorial result, Hall’s Marriage
Lemma (cf., for example, [19]). As we mentioned above, the proof of the
existence of finite quasigroups approximating unimodular groups uses more
difficult combinatorics. In our context, Hall’s Lemma is only enough to prove
the approximability of an arbitrary locally compact group G by finite left
(right) quasigroups (see Definition 2 and Theorem 3). This is very close to
the above mentioned application of Hall’s Lemma to von Neumann’s proof of
the existence of a Haar measure. Though left quasigroups seem to be not as
interesting and important finite algebras as quasigroups, we quote Theorem
3 here in order to complete the picture of connections between the properties
of finite algebras approximating G and invariant means on G.

The classical proofs of the existence of a Haar measures on locally compact
groups (see, for example, the above mentioned proof in [14] or the proof
from [11]) can be essentially simplified by using the language of nonstandard
analysis (see, for example, [17] and [18]). This language is also very useful for
the problems considered in this paper. All main results here are formulated in
classical language, but we use nonstandard analysis in the proofs. The main
notions of nonstandard analysis can be found in [2] and [13]. We recommend
also the preprint [6], where a short review of nonstandard analysis is given
aimed at understanding the proofs of this paper.

The results of this paper and the paper [7] were presented in the seminar
“Nonstandard analysis” at the University of Illinois. The authors are grateful
to C.W. Henson, P. Loeb, and the referee for many helpful remarks.

2It is easy to see that if a group G satisfies this condition, then any subgroup of G also
satisfies it. So the groups that satisfy this conditions are hereditarily unimodular. This is

not the case for SL(2,R).
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2. Formulation of the main results

Let G be a locally compact group. We denote by · the multiplication in G
and use the usual notations

XY = {x · y | x ∈ X, y ∈ Y },
X−1 = {x−1 | x ∈ X},
gX = {g · x | x ∈ X}

for X,Y ⊂ G, g ∈ G.

Definition 1. Let C ⊂ G be a compact set, U a relatively compact
neighborhood of the unity in G, and (H,�) a finite algebra with a binary
operation.

(1) We say that a set M ⊂ G is a U -grid of C if C ⊂MU .
(2) A map j : H → G is called a (C,U)-homomorphism if

∀x, y ∈ H ((j(x), j(y), j(x) · j(y) ∈ C)⇒ (j(x� y) ∈ j(x)j(y)U)) .

(3) We say that the pair 〈H, j〉 is a (C,U)-approximation of G if j(H) is
a U -grid of C and j : H → G is a (C,U)-homomorphism.

(4) Let K be a class of finite algebras. We say that G is approximable by
the systems from the class K if for any compact set C ⊂ G and for
any neighborhood U of the unity there exists a (C,U)-approximation
〈H, j〉 of G such that H ∈ K and j is an injection.

Remark 1. Since in item (2) the elements j(x � y) and j(x) · j(y) are
U -close in the left uniformity on G, it may seem that the definition of approx-
imability of G by systems of K depends on which of the two uniformities we
consider. However this is not so. Indeed it is clear from the definition that
we deal only with the restrictions of the uniformities to compact sets. But
it is well known that the restrictions of the left uniformity and of the right
uniformity to any compact set are equivalent.

Remark 2. It is easy to see that a similar definition can be formulated
for any topological algebra and it is not necessary to assume that the approx-
imating algebras are finite. For example, approximations of discrete groups
by amenable ones were introduced in [1]. Approximations of more general
algebras will be considered in another paper.

It is easy to see that the following proposition holds.

Proposition 1. A discrete group G is approximable by algebras from a
class K iff for any finite subset S ⊂ G there exist an algebra H ∈ K and an
injection j : S → H such that

∀s1, s2 ∈ S
(
s1 · s2 ∈ S ⇒ j(s1 · s2) = j(s1)� j(s2)

)
.
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Definition 2.

(1) We say that an algebra (A, ◦) is a quasigroup if for all a, b ∈ A each
of the equations a ◦ x = b and x ◦ a = b has a unique solution x.

If this statement holds only for all equations of the form a ◦ x = b
(x◦a = b), then we say that an algebra (A, ◦) is a left quasigroup (right
quasigroup). Some times we will use the abbreviation “l-quasigroup
(r-quasigroup)” for “left (right) quasigroup”.

(2) We say that an algebra (A, ◦) is a semigroup if the operation ◦ satisfies
the law of associativity.

There is a huge literature concerning quasigroups, cf., for example, [15].
The operation table of a finite quasigroup is a latin square, i.e., an n×n-table
of n elements {a1, . . . , an} such that all elements in each row and in each
column are distinct. An n × n-table with this property that contains more
than n elements is called a latin subsquare. It is known [19] that any n × n
latin subsquare with k distinct elements can be completed to an r × r latin
square, where r = max{2n, k}. This fact together with Proposition 1 implies
immediately the following proposition.

Proposition 2. Any discrete group is approximable by finite quasigroups.

Now we are going to define a (left) invariant mean on a locally compact
group G using (left) quasigroups that approximate G.

Let H be the family of all pairs 〈C,U, 〉 such that C ⊆ G is a compact set
and U is a relatively compact neighborhood of the identity in G. Let ≤ be
the partial order on H such that

〈C1, U1〉 ≤ 〈C2, U2〉 ⇐⇒ C1 ⊇ C2 ∧ U1 ⊆ U2.

Fix a pair 〈C,U〉 ∈ H and put H(C,U) = {〈C ′, U ′〉 | 〈(C ′, U ′〉 ≤ 〈C,U〉}.
Obviously, the family M = {H(C,U) | 〈C,U〉 ∈ H} of subsets of H has the
finite intersection property. Thus, there exists an ultrafilter F on H such that
F ⊇M. Fix an arbitrary such ultrafilter F .

Recall that if α : H → X is an arbitrary map, X is a Hausdorff space
and a ∈ X, then limF α(C,U) = a if for any neighborhood Y of a one has
{〈C,U〉 | α(C,U) ∈ Y } ∈ F . It is known that if the set α(H) is relatively
compact, then the limF α(C,U) exists.

For each pair 〈C,U〉 fix a finite algebra HC,U that is a (C,U)-approximation
of G. Without loss of generality, we may assume that HC,U ⊂ G as a set. Fix
also a compact set V ⊆ G such that its interior is non-empty.

As usual, let C0(G) be the space of all continuous real-valued functions
with compact support on G. For an arbitrary f ∈ C0(G) put

Λ(f) = lim
F
|HC,U ∩ V )|−1

∑
h∈HC,U

f(h)(1)
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if this limit exists.

Theorem 1. If for any 〈C,U〉 ∈ H the algebra HC,U is a left (right)
quasigroup, then the limit on the right hand side of formula (1) exists for all
f ∈ C0(G). In this case the functional Λ : C0(G)→ R is a positive non-zero
left (right) invariant functional on C0(G).

The following corollary is obvious.

Corollary 1. If G is approximable by finite quasigroups then it is uni-
modular.

Moreover the following theorem is true.

Theorem 2. A locally compact group is approximable by finite quasi-
groups iff it is unimodular.

Theorem 1 is proved in Section 3. The approximability of discrete unimod-
ular groups by finite quasigroups is contained in Proposition 2 above. For
non-discrete groups it is proved in the companion paper [7].

Theorem 3. Any locally compact group G is approximable by finite l-
quasigroups (r-quasigroups).

Theorem 3 is proved in Section 4.
The following theorem deals with the approximation of locally compact

groups by finite semigroups.

Theorem 4. A locally compact group is approximable by finite semigroups
iff it is approximable by finite groups.

Theorem 4 is proved in Section 5.

3. Proof of Theorem 1

Throughout this section G is a fixed locally compact group.
To prove Theorem 1 we use the language of nonstandard analysis. See

[2], [13] for the fundamental notions of nonstandard analysis and [5, Chap-
ter 3, Sections 3 and 4] for the background on a nonstandard treatment of
topological groups.

First of all we reformulate the notion of approximability in this language.
We deal with a λ+-saturated nonstandard universe, where λ is greater or

equal to the weight of the topology on G (the minimal cardinality of a base
of the topology on G).

As usual, we denote by ∗S the nonstandard extension of a standard set S.
Denote by µ(e) the monad of the identity e in ∗G. We say that g1, g2 ∈ ∗G

are left (right) infinitesimally close and write g1 ≈L g2 (g1 ≈R g2) if g1 ∈
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g2 · µ(e) (g1 ∈ µ(e) · g2). Since µ(e) is a normal subgroup in ns( ∗G) (the
external subgroup of all nearstandard elements of ∗G), we have

∀g1, g2 ∈ ns( ∗G) (g1 ≈L g2 ⇐⇒ g1 ≈R g2).

In this case we write simply g1 ≈ g2.

Theorem 5. The group G is approximable by finite algebras from a class
K iff there exists a hyperfinite system H ∈ ∗K and an internal injection j :
H → G that satisfy the following conditions:

(1) ∀g ∈ G ∃h ∈ H (j(h) ≈ g).
(2) ∀h1, h2 ∈ j−1(ns( ∗G)) (j(h1 � h2) ≈ j(h1) ◦ j(h2)).

Proof. (a) Let G be approximable by finite systems from the class K. Since
the group G is locally compact, there exists a ∗-compact set C ⊃ ns( ∗G).
Let U ⊂ µ(e) be an infinitesimal neighborhood of the identity. By the
transfer principle of nonstandard analysis, there exists a hyperfinite algebra
H ∈ ∗K and an internal injection j : H → ∗G such that 〈H, j〉 is a (C,U)-
approximation of ∗G. Since ns( ∗G) ⊂ C, the conditions (1) and (2) of the
theorem obviously hold.

(b) Assume that a hyperfinite algebra H ∈ ∗K and an internal injection
j : H → ∗G that satisfy conditions (1) and (2) of the theorem exist. Then it
is obvious that for any standard pair (C,U) ∈ H the pair 〈H, j〉 is a ( ∗C, ∗U)-
approximation of ∗G. By the transfer principle (applied in this case in the
opposite direction), we see that G is approximable by algebras from the class
K. �

Let 〈H, j〉 be a hyperfinite l-quasigroup and an injection, respectively, that
satisfy Theorem 5. In this case we say that 〈H, j〉 is a hyperfinite approxi-
mation of G. Let V ⊂ G be a compact set with nonempty interior. By the
regularity of the topological space G, there exists an open set W such that
W ⊂ V .

We write W @ D if W is a subset of the interior of D. In what follows we
use the following obvious fact:

Lemma 1. If W @ D, x ∈ ∗W and y ≈ x, then y ∈ ∗D.

Let ∆−1 = |j−1( ∗V )|. Define the functional I(f) for f ∈ C0(G) as follows:

I(f) = ◦

(
∆
∑
h∈H

∗f(j(h))

)
.(2)

Proposition 3. Formula (2) defines a non-zero positive left-invariant
functional on C0(G).

To prove Proposition 3 we need three technical lemma, which we prove
next.
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Lemma 2. Let D ⊆ G be compact and U @ D be an open set. Then for
all a ∈ G the following inequality holds:

|j−1(a · ∗U)| ≤ |j−1( ∗D)|.

Proof. Let x ∈ j−1(a· ∗U), i.e., j(x) ∈ a· ∗U ⊂ ns( ∗G). Then a−1·j(x) ∈ ∗U .
By Theorem 5, there exists β ∈ H such that a−1 ≈ j(β). So, a−1 · j(x) ≈

j(β � x) ∈ ∗D, since U @ D. Consequently, β � (j−1(a · ∗U)) ⊂ j−1( ∗D), but
the function lβ(x) = β � x is an injection, since H is an l-quasigroup. �

Lemma 3. Let X,Y ⊂ G be compact sets and suppose that Y has nonempty
interior. Then there exists 0 < CX,Y ∈ R, such that

|j−1( ∗X)|
|j−1( ∗Y )|

≤ CX,Y .

Proof. Take an open set U @ Y . Let la : G → G be a left shift on G,
which is a homeomorphism for any a ∈ G, since la−1 is the inverse mapping
to la. Thus, la(U) = a ·U is an open set for any a ∈ G. Since X is a compact
set, there exists a finite set F ⊂ G such that X ⊂ F · U . This means that
∗X ⊂ F · ∗U ( ∗F = F ). Consequently,

|j−1( ∗X)| ≤
∑
α∈F
|j−1(α · ∗U)|.

By Lemma 2, we have |j−1( ∗X)| ≤ |F | · |j−1( ∗Y )|. So, one can take CX,Y =
|F |. �

Lemma 4. Let an internal function φ : H → ∗R satisfy the following
conditions:

(1) ∀h ∈ H ϕ(h) ≥ 0;
(2) j(supp(ϕ)) ⊂ ∗S, where S ⊂ G is a compact set;
(3) there exist a compact set D ⊆ G with nonempty interior and a positive

real α ∈ R such that ∀h ∈ j−1( ∗D) ϕ(h) > α.
Then

1
CV,D

α ≤ ∆
∑
h∈H

φ(h) ≤ CS,V sup(φ).(3)

Proof. Recall that ∆−1 = |j−1( ∗V )|. By Lemma 3 we have

∆
∑
h∈H

φ(h) ≥ ∆
∑

j(h)∈ ∗D

φ(h) ≥ α

CV,D
.

This proves the first of the inequalities (3). The second inequality is obtained
as follows:

∆
∑
h∈H

φ(h) = ∆
∑

j(h)∈ ∗S

φ(h) ≤ CS,V · sup
x
φ(x). �
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Proof of Proposition 3. Let I be the functional defined on C0(G) in equa-
tion (2) above. We need to prove that it is non-zero, positive, and left-
invariant.

Lemma 4 implies immediately that I(f) is a non-zero positive bounded
functional defined on C0(G). Indeed, for any 0 < f ∈ C0(G) put ϕ(h) =
∗f(j(h)). Then ϕ satisfies the conditions of Lemma 4. Obviously, we have
ϕ(h) ≥ 0 and S = supp(f). Since f > 0, there exists a point a ∈ A such
that f(a) > 0. Thus, there exist an open set U 3 a and a positive α such
that ∀b ∈ U f(b) > α. Take any relatively compact open set W such that
W ⊂ U . Then D = W satisfies condition (3) of Lemma 4. By (2) and the
first inequality in (3), we have I(f) 6= 0. By the second inequality in (3), the
linear functional I is bounded.

It remains to prove that the functional I(f) is left-invariant.
Obviously, it is enough to prove that I satisfies the inequality I(f) ≥

I(la(f)) for any non-negative f ∈ C0(G).
Let S ⊂ G be a compact set such that there exists an open set U ⊂ G with

the property a−1 · supp(f) ⊂ U @ S. Let h ∈ H be such that j(h) ≈ a ∈ G.
Then the following equality holds:

◦

(
∆
∑
x∈H

∗f(a · j(x))−∆
∑
x∈H

∗f(j(h) · j(x))

)
= 0.(4)

To prove this, put ϕ(x) = | ∗f(a ·j(x))− ∗f(j(h) ·j(x))| and apply Lemma 4 as
follows. By the continuity of the multiplication operation and the operation
of taking the inverse element in G, we have

a · j(x) ∈ ns( ∗G)⇔ j(x) ∈ ns( ∗G)⇔ j(h) · j(x) ∈ ns( ∗G).

We next show that j(supp(ϕ)) ⊂ ∗S. It is enough to show that

j(x) /∈ ∗S =⇒ ∗f(a · j(x)) = ∗f(j(h) · j(x)) = 0.(5)

Assume that a · j(x) ∈ ∗supp(f). Thus, j(x) ∈ a−1 · supp(f) ⊂ ∗S. This
proves the first of the equalities (5).

Assume that j(h) · j(x) ∈ ∗supp(f). Then j(x) ∈ j(h)−1 · supp(f) ≈
a−1 · supp(f) ⊂ ∗U . But U @ S and j(x) ∈ ∗S. We get a contradiction, which
proves the second of the equalities (5).

Since a · j(x) ≈ j(h) · j(x) if j(x) ∈ ns( ∗G) and supp(ϕ) ∈ j−1( ∗S) ⊂
j−1(ns( ∗G)), we have supp(ϕ) ≈ 0 and, by the second of the inequalities (3),
∆
∑
h∈H ϕ(h) ≈ 0. This proves the equality (4).

Let us now show that the following inequality holds:

◦

(
∆
∑
x∈H

∗f(j(h� x))−∆
∑
x∈H

∗f(j(h) · j(x))

)
≥ 0.(6)
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By (5), we have

∆
∑
x∈H

∗f(j(h� x))−∆
∑
x∈H

∗f(j(h) · j(x))

= ∆
∑

j(x) 6∈ ∗S

∗f(j(h� x)) + ∆
∑

j(x)∈ ∗S

( ∗f(j(h� x))− ∗f(j(h) · j(x)))

Obviously,

∆
∑

j(x) 6∈ ∗S

∗f(j(h� x)) = c ≥ 0.

But

∆
∑

j(x)∈ ∗S

( ∗f(j(h� x))− ∗f(j(h) · j(x))) ≈ 0.

Indeed, since j(h), j(x) ∈ ns( ∗A) (because j(x) ∈ ∗S), we have j(h � x) ≈
j(h) ·j(h) by Theorem 5. Thus, by the continuity of f , we have ∗f(j(h�x)) ≈
∗f(j(h) · j(h)). Hence β = supj(x)∈ ∗S | ∗f(j(h� x))− ∗f(j(h) · j(x))| ≈ 0. By
Lemma 3, we have∣∣∣∣∣∣∆

∑
j(x)∈ ∗S

( ∗f(j(h� x))− ∗f(j(h)� j(x)))

∣∣∣∣∣∣ ≤ CS,V β ≈ 0.

Since {h� x | x ∈ H} is a permutation of H, we have

∆
∑
x∈H

∗f(j(x)) = ∆
∑
x∈H

∗f(j(h� x)).

Now it is easy to see that the following equalities hold:

I(f)− I(la(f)) = ◦

(
∆
∑
x∈H

∗f(j(x))−∆
∑
x∈H

∗f(a · j(x))

)

= ◦

((
∆
∑
x∈H

∗f(j(h� x))−∆
∑
x∈H

∗f(j(h) · j(x))

)

+

(
∆
∑
x∈H

∗f(j(h) · j(x))−∆
∑
x∈H

∗f(a · j(x))

))
.

The first term on the right hand side of this equality is positive by (6), and
the second one is infinitesimal by (4). Thus, we have I(f)− I(la(f)) ≥ 0.

This completes the proof of Proposition 3. �

For the proof of Theorem 1 we reformulate the definition of a limit over
an ultrafilter using nonstandard language. We say that a pair (C0, U0) ∈ ∗H
is infinite if ∀(C,U) ∈ H (C0, U0) ≤ ( ∗C, ∗U). We say that an infinite pair
(C0, U0) dominates a standard ultrafilter F if ∗H(C0, U0) ∈ F . It follows
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from the λ+-saturation of the nonstandard universe that for any standard
ultrafilter F on H there exists an infinite pair (C0, U0) that dominates F .

The following result is immediate:

Lemma 5. For a standard function α : H → R and a standard ultrafilter
F over H, limF α(C,U) = a iff for any infinite (C0, U0) ∈ H that dominates
F one has ∗α(C0, U0) ≈ a.

Now we complete the proof of Theorem 1.
For each (C,U) ∈ H let HC,U be a left (right) quasigroup that is a (C,U)-

approximation of G. As before, we may assume that HC,U ⊆ G as a set.
If an infinite pair (C0, U0) dominates F and H = HC0,U0 , then H is a

hyperfinite approximation of G, when we take j : H → ∗G to be an inclusion.
Let I(f) be the functional defined by formula (2) for this H. Then, by Lemma
5, we have Λ(f) = I(f). Proposition 3 thus yields Theorem 1. �

4. Proof of Theorem 3

Lemma 6. For any neighborhood U of the identity in G and any compact
set C ⊆ G there exist a finite set F ⊂ G and a collection {Ag,h ⊂ F ; g, h ∈ F}
satisfying the following conditions:

(1) F is a U -grid of C;
(2) if g, h ∈ C ∩ F , then Ag,h ⊂ ghU ;
(3) ∀g ∈ F ∀S ⊂ F |

⋃
h∈S Ag,h| ≥ |S|.

To prove Lemma 7 we need two technical lemmas, whose proofs are routine.
To state them, we need some notation. We take O to be a neighborhood of
the identity in G. For A ⊆ G, let (A : O) denote the minimum cardinality of
a set F ⊆ G satisfying A ⊆ FO. Note that (A : O) is finite if A is compact.
We take K to be a compact subset of G and F a finite subset of G such that
|F | = (K : O) and K ⊆ FO (F is an optimal O-grid of K).

Lemma 7. Let S ⊂ F . Then (SO : O) = |S|.

Lemma 8. Let M ⊂ K. Then |MO−1 ∩ F | ≥ (M : O).

Proof of Lemma 6. Given a neighborhood of the identity U ⊂ G and a
compact C ⊂ G, one can chose a neighborhood of the identity O and a
compact set K such that

• OO−1 ⊂ U ;
• C2 ⊂ K;
• CU ⊂ K.

Let F be an optimal O-grid of K. Define the sets Ag,h as follows:

Ag,h =
{
ghOO−1 ∩ F, if g, h ∈ C,
F, otherwise..
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It is easy to see that F is U -grid of C and item (2) of Lemma 6 is also satisfied.
We now prove item (3). The nontrivial case occurs when g ∈ C and S ⊂ C.

By Lemma 7, (SO : O) = |S|. Consequently, (gSO : O) = |S|. Then, by
Lemma 8,

|S| ≤ |gSOO−1 ∩ F | = |
⋃
h∈S

Ag,h|. �

Proof of Theorem 3. Lemma 6 (3) implies that the set F can be equipped
with an operation � satisfying the definition of l-quasigroup. Indeed, by
condition (3) the system {Ag,h | h ∈ F} satisfies Hall’s Theorem (Marriage
Lemma) for any fixed g ∈ F . Thus, for any g, h ∈ F there exists g� h ∈ Ag,h
such that for any g ∈ F {g � h | h ∈ F} is a permutation of F . Thus, 〈F,�〉
is an l-quasigroup. The conditions (1) and (2) of Lemma 6 imply that the
l-quasigroup 〈F,�〉 with the inclusion is a (C,U)-approximation of G; see
Definition 1(3). �

5. Proof of Theorem 4

First of all we formulate some necessary results about the structure of finite
semigroups. (See [16] for these results and their proofs.)

Let S be a finite semigroup.

Definition 3.

(1) An x ∈ S is said to be a zero (x = 0) if ∀y ∈ S xy = yx = x.
(Obviously if a zero exists it is unique.)

(2) A set I ⊆ S is said to be a left (right) ideal if SI ⊆ I (IS ⊆ I). A set
I ⊆ S is said to be an ideal if I is a left and a right ideal. (Obviously
an ideal (a left or a right ideal) is a subsemigroup.)

(3) The semigroup S is said to be 0-simple if it has no proper ideals except
{0} and ∅.

(4) The semigroup S is a zero semigroup iff ∀s, t ∈ S st = 0.
(5) Let I ⊂ S be an ideal in (S, ·). The quotient semigroup S/I is the set

(S\I) ∪ {0} with the multiplication “∗” defined by

s1 ∗ s2 =
{
s1 · s2, if s1 · s2 /∈ I,
0, if s1 · s2 ∈ I.

(6) A maximal sequence of ideals in S is an ordered sequence of ideals
of S,

S = I0 ⊃ I1 ⊃ I2 · · · In ⊃ In+1 = ∅,(7)

such that for any k = 0, . . . , n and for any ideal I ′ of S, if Ik ⊃ I ′ ⊃
Ik+1, then either I ′ = Ik or I ′ = Ik+1.

It is clear that any finite semigroup has a maximal sequence of ideals.
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Theorem 6. If the sequence (7) is a maximal sequence of ideals in S,
then for any i, 1 ≤ i ≤ n+ 1, the semigroup Ir−1/Ir is 0-simple or zero.

Let n,m ∈ N, H be a group, ρ : {1, .., n}×{1, ..,m} → H ∪{0}. The Rees
semigroup S(n,m,H, ρ) is defined as follows:

S(n,m,H, ρ) = {(i, j, h) | i = 1, . . . , n; j = 1, . . . ,m; h ∈ H} ∪ {0},

(i1, j1, h1)(i2, j2, h2) =
{

(i1, j2, h1ρ(i2, j1)h2), if ρ(i2, j1) ∈ H,
0, if ρ(i2, j1) = 0.

The Rees semigroup S(n,m,H, ρ) is called regular if ∀i ∃ j ρ(i, j) 6= 0 and
∀j ∃i ρ(i, j) 6= 0.

Theorem 7. Any finite 0-simple semigroup S (with a zero) is isomorphic
to a regular Rees semigroup.

(If S is a semigroup without a zero, we may add a zero to S or remove the
zero from the Rees semigroup.)

This theorem implies the following corollary.

Corollary 2. Let S be a 0-simple finite semigroup, 0 6= s ∈ S and
F = sSs. Then F is a zero subsemigroup or F\{0} is a group.

Proof. Let s = (is, js, hs). If F 6= {0}, then F = {sas, a ∈ S} =
{(is, js, h), h ∈ H} ∪ {0}. If ρ(is, js) = 0, then F is a zero semigroup. If
ρ(is, js) = g, then the map φ : F\{0} → H such that φ(is, js, h) = hg is an
isomorphism. �

We are able now to prove Theorem 4.
Let G be a locally compact group that is approximable by finite semigroups

and let 〈S, φ〉 be a hyperfinite approximation of G by a hyperfinite semigroup
S. (Such an approximation exists by Theorem 5.) The operations in G and in
S will both be denoted by ·, since this does not lead to any misunderstanding.

First of all, we show that if 0 ∈ S then φ(0) 6∈ ns( ∗G). Suppose that
φ(0) ∈ ns( ∗G). If φ(0) ≈ e, then ∀x ∈ G xe ≈ e, which is impossible. If
φ(0) ≈ x and x 6= e, then there exists y such that φ(y) ≈ x−1. Now

e = xx−1 ≈ φ(0)φ(y) ≈ φ(0 ∗ y) = φ(0) ≈ x.
This is impossible since x, e are standard and x 6= e.

Consider an internal hyperfinite maximal sequence of ideals in S (see Def-
inition 3(6)),

S = I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ In+1 = ∅,
which exists by the transfer principle.

By assumption, φ(S) ∩ ns( ∗G) 6= ∅. Hence there exists r ∈ ∗N such that
φ(Ir−1) ∩ ns( ∗G) 6= ∅ and φ(Ir) ∩ ns( ∗G) = ∅. There are two cases.
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(1) Ir = ∅. Then put F = Ir−1 and ψ = φ|F .
(2) Ir 6= ∅. Then put F = Ir−1/Ir and define ψ : F → G by ψ(x) = φ(x)

for x 6= 0 and ψ(0) = g /∈ ns( ∗G) ∪ Im(φ).

Such an element g exists since G is not compact. Indeed, otherwise ∗G =
ns( ∗G). However, φ(Ir) ⊆ ∗G \ ns( ∗G) and φ(Ir) 6= ∅, since Ir 6= ∅.

It is easy to see that there exists an internal compact set D ⊃ ns( ∗G).
The set ∗G \ ∗D is non-compact and thus, is non-hyperfinite. So, ∗G \
(ns( ∗G) ∪ Im(φ)) 6= ∅.

Next we prove that 〈F,ψ〉 approximates G in the sense of Theorem 5.
Denote the operation on F by ◦ .

First we show that ψ is an almost homomorphism, i.e.,

∀x, y ∈ F (ψ(x), ψ(y) ∈ ns( ∗G) =⇒ ψ(x ◦ y) ≈ ψ(x)ψ(y)).

Let x, y ∈ F and ψ(x), ψ(y) ∈ ns( ∗G). We have to prove that ψ(x ◦ y) ≈
ψ(x)ψ(y). For case (1) this is trivial, since ψ is a restriction of φ to a subsemi-
group. Consider now case (2). Since ψ(x), ψ(y) ∈ ns( ∗G), one has x, y 6= 0.
Thus, ψ(x) = φ(x) and ψ(y) = φ(y). Then ns( ∗G) 3 φ(x)φ(y) ≈ φ(xy).
Hence φ(xy) ∈ ns( ∗G) and thus, xy 6∈ Ir. By the definition of the operation
in a quotient semigroup, we have x ◦ y = xy 6= 0, and by the construction of
ψ, we have ψ(x ◦ y) = φ(xy).

It remains to prove that ∀g ∈ G ∃x ∈ F g ≈ ψ(x), or equivalently, that
∀g ∈ G ∃x ∈ Ir−1 g ≈ φ(x). Since φ(Ir−1) ∩ ns( ∗G) 6= ∅, there exists
an element x ∈ Ir−1 such that φ(x) ∈ ns( ∗G). Since −1 is a continuous
operation, (φ(x))−1 ∈ ns( ∗G) and there exists y ∈ S φ(y) ≈ (φ(x))−1. Hence
e ≈ φ(y)φ(x) ≈ φ(yx). Notice that yx ∈ Ir−1 since Ir−1 is an ideal and
x ∈ Ir−1. Let g ∈ G and s ∈ S be such that φ(s) ≈ g. Then φ(yxs) ≈ g and
yxs ∈ Ir−1.

Obviously, a zero semigroup can never approximate an infinite group. Thus,
the hyperfinite semigroup F is 0-simple by Theorem 6.

Let s ∈ F be such that ψ(s) ≈ e. Consider the semigroup T = sFs. It is
easy to see that if j = ψ|T then the pair 〈T, j〉 approximates G.

By Corollary 2 of Theorem 7, H = T \ {0} is a hyperfinite group. This
completes the proof since j(0) 6∈ ns( ∗G). �

References

[1] M. A. Alekseev, L. Y. Glebsky, and E. I. Gordon, On approximations of groups, group
actions and Hopf algebras, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov

(POMI) 256 (1999), 224–262 (in Russian); English translation, J. Math. Sci. 107

(2001), 4305–4332. MR 1708567 (2000j:20050)
[2] S. Albeverio, R. Høegh-Krohn, J. E. Fenstad, and T. Lindstrøm, Nonstandard methods

in stochastic analysis and mathematical physics, Pure and Applied Mathematics, vol.
122, Academic Press Inc., Orlando, FL, 1986. MR 859372 (88f:03061)



APPROXIMATION OF TOPOLOGICAL GROUPS 15

[3] S. Albeverio, E. I. Gordon, and A. Y. Khrennikov, Finite-dimensional approximations
of operators in the Hilbert spaces of functions on locally compact abelian groups, Acta

Appl. Math. 64 (2000), 33–73. MR 1828556 (2002f:47030)
[4] J. Braconnier, Sur les groupes topologiques localement compacts, J. Math. Pures Appl.

(9) 27 (1948), 1–85. MR 0025473 (10,11c)

[5] M. Davis, Applied nonstandard analysis, Wiley-Interscience, New York, 1977.
MR 0505473 (58 #21590)

[6] L. Yu. Glebsky and E. I. Gordon, On approximation of topological groups by finite
algebraic systems, Preprint; available at http://arxiv.org/abs/math.GR/0201101.

[7] L. Yu. Glebsky, E. I. Gordon, and C. J. Rubio, On approximation of unimodular groups

by finite quasigroups, Illinois J. Math. 49 (2005), 17–31.
[8] E. I. Gordon, Nonstandard methods in commutative harmonic analysis, Translations

of Mathematical Monographs, vol. 164, American Mathematical Society, Providence,
RI, 1997. MR 1449873 (98f:03056)

[9] E. I. Gordon and O. A. Rezvova, On hyperfinite approximations of the field R, Re-
uniting the antipodes—constructive and nonstandard views of the continuum (Venice,
1999), Synthese Lib., vol. 306, Kluwer Acad. Publ., Dordrecht, 2001, pp. 93–102.
MR 1895385 (2003c:03128)

[10] M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc.

(JEMS) 1 (1999), 109–197. MR 1694588 (2000f:14003)
[11] P. R. Halmos, Naive set theory, Springer-Verlag, New York, 1974. MR 0453532 (56

#11794)

[12] E. Hewitt and K. Ross, Abstract harmonic analysis. Volume I, Springer-Verlag, Berlin,
1963. MR 0156915 (28 #158)

[13] P. A. Loeb and M. P. H. Wolff, editors, Nonstandard analysis for the working math-

ematician, Mathematics and its Applications, vol. 510, Kluwer Academic Publishers,
Dordrecht, 2000. MR 1790871 (2001e:03006)

[14] J. von Neumann, Invariant measures, American Mathematical Society, Providence,
RI, 1999. MR 1744399 (2002b:28012)

[15] H. O. Pflugfelder and J. D. H. Smith, editors, Quasigroups and loops: theory and

applications, Sigma Series in Pure Mathematics, vol. 8, Heldermann Verlag, Berlin,
1990. MR 1125806 (93g:20133)

[16] J. Rhodes and B. Tilson, Theorems on local structure of finite semigroup, Algebraic
theory of machines, languages, and semigroups, Academic Press, New York, 1968.

MR 0232875 (38 #1198)

[17] D. Ross, Measures invariant under local homeomorphisms, Proc. Amer. Math. Soc.
102 (1988), 901–905. MR 934864 (89c:28015)

[18] , Loeb measure and probability, Nonstandard analysis (Edinburgh, 1996), NATO

Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 493, Kluwer Acad. Publ., Dordrecht, 1997,
pp. 91–120. MR 1603231 (99d:28042)

[19] H. J. Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, No.
14, Mathematical Association of America, 1963. MR 0150048 (27 #51)

[20] M. A. Arbib, editor, Algebraic theory of machines, languages, and semigroups, Aca-

demic Press, New York, 1968. MR 0232875 (38 #1198)
[21] A. M. Vershik and E. I. Gordon, Groups that are locally embeddable in the class of

finite groups, Algebra i Analiz 9 (1997), 71–97 (in Russian); English translation, St.
Petersburg Math. J. 9 (1998), 49–67. MR 1458419 (98f:20025)



16 L. YU. GLEBSKY AND E. I. GORDON

L. Yu. Glebsky, IICO-UASLP, Av. Karakorum 1470, Lomas 4ta Session, San Luis

Potosi SLP, 7820 Mexico

E-mail address: glebsky@cactus.iico.uaslp.mx

E. I. Gordon, Department of Mathematics and Computer Science, Eastern Illi-

nois University, 600 Lincoln Avenue, Charleston, IL 61920-3099, USA

E-mail address: cfyig@eiu.edu


