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DIOPHANTINE APPROXIMATION BY CUBES OF PRIMES
AND AN ALMOST PRIME. II

J. BRÜDERN AND A. KUMCHEV

Abstract. Let λ1, . . . , λ4 be non-zero with λ1/λ2 irrational and nega-

tive, and let S be the set of values attained by the form λ1x3
1 +· · ·+λ4x3

4

when x1 has at most 3 prime divisors and the remaining variables are

prime. We prove that most real numbers are close to an element of S.

1. Introduction

Let λ1, . . . , λ4 be non-zero with λ1/λ2 irrational and negative. Recently,
the second author [8] showed that most real numbers are close to values taken
by the form

λ1x
3 + λ2p

3
1 + λ3p

3
2 + λ4p

3
3

when p1, p2, p3 are primes and x is a P6-number. (Henceforth, a number is
called a Pr-number if it has at most r prime factors, counted with multiplic-
ities.) This result falls short of current knowledge in the related problem for
representing integers as sums of three cubes of primes and a cube of an almost
prime, where the first author [1] and K. Kawada [7] obtained similar results in
which the almost prime is a P4- and a P3-number, respectively. In the present
paper we fix this defect by proving the following theorem.

Theorem 1. Let λ1, . . . , λ4 be non-zero real numbers with λ1/λ2 irra-
tional and negative. Let E(N) = E(N, δ) denote the Lebesgue measure of the
set of real numbers η for which |η| ≤ N and the inequality

(1.1)
∣∣λ1x

3 + λ2p
3
1 + λ3p

3
2 + λ4p

3
3 − η

∣∣ < N−δ

has no solutions in primes p1, p2, p3 and a P3-number x. Then, there exists
an absolute constant δ > 0 such that one can find arbitrarily large values of N
for which E(N) � N exp

(
−(logN)1/4

)
. If, in addition, λ1/λ2 is algebraic,

this estimate holds for all N .
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One can easily infer from Theorem 1 that if λ1, . . . , λ8 are non-zero and
λ1/λ2 is as above, the values taken by the form

λ1x
3 + λ2p

3
1 + · · ·+ λ8p

3
7

when x is a P3-number and p1, . . . , p7 are primes form a set dense in R. The
proof is analogous to that of [8, Theorem 2] and is essentially an application
of the pigeonhole principle.

The primary reason that [8, Theorem 1] is weaker than the result in [1]
is the use of the diminishing ranges lemmas due to Davenport and Roth [5],
which are weaker than the corresponding results for equations based on the
work of R. C. Vaughan [11]. Applying a technique of the first author [2], we
obtain an analogue for inequalities of Vaughan’s result that reads as follows.

Theorem 2. Let λ and µ be fixed non-zero real numbers. Also, let X ≥ 1
and Y = X5/6. Denote by S the number of solutions of the diophantine
inequality

(1.2)
∣∣λ(x3

1 − x3
2) + µ(y3

1 + y3
2 − y3

3 − y3
4)
∣∣ < 1

2

subject to

(1.3) X < xi ≤ 2X, Y < yi ≤ 2Y.

Then, for every ε > 0,
S� X1+εY 2.

In Section 2, we shall apply the linear sieve in order to derive Theorem 1
from Propositions 1 and 2 below. In Section 3, we prove Theorem 2, as well as
other results of the same nature, which we then use in Section 4 to establish
the propositions and so complete the proof of Theorem 1.

2. Outline of the proof of Theorem 1

Without loss of generality we can assume that λ1 > 0 and λ2 < 0. Also,
since the positive and the negative values of η can be treated similarly, we shall
consider only the case η > 0. Let ε > 0 be sufficiently small in terms of δ and
let a/q be a convergent to the continued fraction of λ1/λ2 with q ≥ q0(δ, ε).
Then, choose N so that

N1/8+16δ+20ε ≤ q ≤ N1/2−6δ−10ε.

If λ1/λ2 is also algebraic, one can argue somewhat differently. If qv is the
sequence of denominators of the convergents of λ1/λ2 in ascending order,
then by Roth’s theorem on diophantine approximation, one has qv+1 � q1+ε

v .
Hence, if now N is sufficiently large, one can choose a q such that the above
inequality holds; thus N is not restricted to certain intervals in this case.
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It suffices to show that, for M with N1−ε < M ≤ N , the measure E(M,N)
of the set of real numbers η ∈ (M, 2M ] for which (1.1) is not solvable satisfies

(2.1) E(M,N)� N exp
(
− (logN)1/4

)
.

We start by restricting the variables in (1.1) to certain ranges. Define X, X1,
and Y by

(2.2) λ1X
3 = |λ2|X3

1 =
1
2
M, Y = X5/6,

and write τ = N−δ, L = logX. Then, let R(η) be the number of solutions of
(1.1) with the variable x being a P3-number in the range X < x ≤ 2X and
p1, p2, p3 being primes subject to

(2.3) X1 < p1 ≤ 2X1, Y < p2, p3 ≤ 2Y.

We will approach (2.1) via the version of the circle method due to Daven-
port and Heilbronn [4] combined with the linear sieve. Let K be a function
whose Fourier transform K̂ satisfies the inequality K̂ ≤ χ, χ being the charac-
teristic function of the interval (−1, 1) (see Lemma 1 below for the definition
of the particular function K we use). We have

(2.4) R(η) ≥
∑

x,p1,p2,p3

K̂

(
λ1x

3 + λ2p
3
1 + λ3p

3
2 + λ4p

3
3 − η

τ

)
,

where the summation is over P3-numbers x ∈ (X, 2X] and primes p1, p2, p3

satisfying (2.3). We then sift the right-hand side of (2.4). Let

z = X1/7, Π(z) =
∏
p<z

p, V (z) =
∏
p<z

(
1− 1

p

)
,

and, for m ∈ N, define Ω(m) as the number of prime divisors of m counted
with multiplicities. (In particular, m is a Pr-number if Ω(m) ≤ r.) Let R1(η)
be a sum analogous to that appearing on the right side of (2.4) in which the
condition Ω(x) ≤ 3 has been replaced with (x,Π(z)) = 1, and let R2(η) be
a similar sum in which the condition Ω(x) ≤ 3 is replaced by (x,Π(z)) = 1,
Ω(x) ≥ 4 and the prime p1 by an integer y with (y,Π(z)) = 1. We can deduce
from (2.4) that

(2.5) R(η) ≥ R1(η)− R2(η).

Let φ and Φ be the standard functions of the linear sieve defined as the
solutions of the simultaneous differential-difference equations{

Φ(u) = 2eγ/u, φ(u) = 0, 0 < u ≤ 2,
(uΦ(u))′ = φ(u− 1), (uφ(u))′ = Φ(u− 1), u ≥ 2;

here γ is Euler’s constant. For a squarefree d, let R1(η, d) be the sum anal-
ogous to R1(η) with the condition (x,Π(z)) = 1 replaced by x ≡ 0(mod d),
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and suppose that we can find a positive quantity J1(η) ≥ Xε and a D > z
such that

(2.6)
∑
d≤D

ξd

(
R1(η, d)− 1

d
J1(η)

)
� J1(η)L−2

for any choice of the complex numbers ξd, |ξd| ≤ 1. Then, the lower bound
linear sieve [6, (8.5.2)] yields

(2.7) R1(η) ≥ J1(η)V (z)
(
φ

(
logD
log z

)
+O

(
L−1/14

))
.

Similarly, if R2(η, d) is the sum R2(η) with the condition y ≡ 0(mod d) in
place of (y,Π(z)) = 1, and if we can find a function J2(η) ≥ Xε and a D > z
with

(2.8)
∑
d≤D

ξd

(
R2(η, d)− 1

d
J2(η)

)
� J2(η)L−2

whenever the coefficients ξd have absolute values ≤ 1, then the upper bound
sieve [6, (8.5.1)] gives

(2.9) R2(η) ≤ J2(η)V (z)
(

Φ
(

logD
log z

)
+O

(
L−1/14

))
.

Hence, if we could choose J1(η) and J2(η) so that (2.6) and (2.8) hold with
D = X0.333 and, in addition,

(2.10) J2(η) ≤ J1(η)
(
0.182 +O

(
L−1

))
,

it would follow from (2.5), (2.7), and (2.9) that

R(η)� J1(η)L−1.

However, proving an asymptotic formula like (2.6) or (2.8) is beyond the scope
of the present methods. What we can prove is that these two inequalities
hold on average over η. More precisely, we can establish the following two
propositions.

Proposition 1. Let θ < 1
3 and D = Xθ. Also, let ξd be complex numbers

of modulus ≤ 1 and let J1(η) be given by (4.2) below. Then,

(2.11)
∫ 2M

M

∣∣∣∣∣∣
∑
d≤D

ξd

(
R1(η, d)− 1

d
J1(η)

)∣∣∣∣∣∣
2

dη � τ2XY 4 exp
(
−(logN)1/4

)
.

Proposition 2. Let θ < 1
3 and D = Xθ. Also, let ξd be complex numbers

of modulus ≤ 1 and let J2(η) be given by (4.9) below. Then,

(2.12)
∫ 2M

M

∣∣∣∣∣∣
∑
d≤D

ξd

(
R2(η, d)− 1

d
J2(η)

)∣∣∣∣∣∣
2

dη � τ2XY 4 exp
(
−(logN)1/4

)
.
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Since both J1(η) and J2(η) will have orders of magnitude τX−1Y 2L−3,
these propositions imply that the measures of the sets E1(M,N) and E2(M,N)
of values of η for which (2.6) and (2.8) fail do not exceed O

(
N exp

(
−

(logN)1/4
))

and, therefore, complete the proof of (2.1).

3. Counting solutions of diophantine inequalities

3.1. Auxiliary results. Our first lemma constructs a function K that
combines the properties of the two kernels most commonly used in the present
context: (sinπx/πx)2 and the function constructed by Davenport (see [3,
Lemma 4]). The former, as Davenport mentioned in [3, p. 85], ‘leads to
unnecessary complications’ (due to its relatively slow decay). Davenport’s
kernel, however, changes sign and, in some situations (e.g., if one wants to
use convexity estimates), this also is a problem. The function K built in
the following lemma has all the properties of that in [3] and, in addition, is
non-negative.

Lemma 1. Let A > 0 be fixed. There is an even real-valued function
K ∈ L1(R) with the properties:

(1) There is a constant C(A) > 0, depending only on A, such that

|K(x)| ≤ C(A)
(1 + |x|)A

.

(2) Both K and its Fourier transform

K̂(y) =
∫
R

K(x)e(−xy) dx

are non-negative.
(3) If χ is the characteristic function of the interval (−1, 1), then, for all

real x, one has
1
3χ(4x) ≤ K̂(x) ≤ χ(x).

Proof. Actually, we only need to modify Davenport’s proof of [3, Lemma
4]. Let r be the integer with 2r < A ≤ (2r+ 2). In the notation of [3], choose
δ = (6r)−1 and ψ0(y) = max(0, 1 − |y|) and define K as the inverse Fourier
transform of ψ2r( 4

3y). Then, mutatis mutandis, Davenport’s argument yields
the properties of K̂. Also, using [10, (11.3)] in place of [3, (20)], we obtain
the explicit formula

K(x) = Kr(x) =
3
4

(
sin 3πx/4

3πx/4

)2( sinπx/4r
πx/4r

)2r

,

from which the desired properties of K follow readily. �

Our next lemma contains a device developed recently by the first author
[2, Lemma 3].
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Lemma 2. Let Q ≥ 1, N ≥ 1 and define the set of major arcs M as the
union of all intervals

M(q, a) = {α : |qα− a| ≤ Q/N},

where a and q are integers satisfying 1 ≤ q ≤ Q and (a, q) = 1. Let Ψ ∈ L1(T)
be defined by

(3.1) Ψ(α) =

{
(q +N |qα− a|)−1 for α ∈M(q, a),
0 for α 6∈M,

and let K ∈ L1(R) be a continuous function whose Fourier transform vanishes
for |α| ≥ A. Finally, let F be a function given by

F (α) =
∑
v∈V

ave(−αv),

where av are real coefficients and V is a finite set of real numbers contained
in the interval [−V, V ] for some V ≥ 1. Then, for any ε > 0,∫

M

Ψ(α)F (α)K(α) dα� (QNV )εN−1

∑
v∈V

|av|+Q
∑
|v|≤A

|av|

 .

The implied constant depends on ε and K.

3.2. Proof of Theorem 2. Let S0 and S1 denote the numbers of solutions
of (1.2), (1.3) subject to x1 = x2 and x1 > x2, respectively; by symmetry,
S = S0 + 2S1. Since, by a standard divisor argument, S0 � X1+εY 2, it
remains to estimate S1. Write x1 = x+ h, x2 = x. Then, (1.2) becomes

(3.2)
∣∣λh(3x2 + 3hx+ h2) + µ(y3

1 + y3
2 − y3

3 − y3
4)
∣∣ < 1/2

and the unknowns satisfy the inequalities

(3.3) 1 ≤ h ≤ CX1/2, X < x ≤ 2X, Y < yi ≤ 2Y,

where C > 0 depends only on λ and µ.
We now express the number of solutions of (3.2) subject to (3.3) by a

Fourier integral. Let K0 be the function obtained from Lemma 1 with A = 2
and let K(x) = 2K0(2x). Write H = CX1/2 and define

F (α) =
∑
h≤H

∑
X<x≤2X

e(αh(3x2 + 3hx+ h2)), g(α) =
∑

Y <y≤2Y

e(αy3).

It then follows that

(3.4) S1 �
∫
R

F (λα)|g(µα)|4K(α) dα�
∫
R

F (α)|g(µ1α)|4K1(α) dα,

where µ1 = µ/λ and K1(α) = K(α/λ). Let M be the set of major arcs
defined in Lemma 2 corresponding to N = HX2 � Y 3 and Q = X. By
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Cauchy’s inequality and an estimate of Vaughan [12, Lemma 3.1], we now
have

(3.5) F (α)� HX1+εΨ(α)1/2 +X1+ε,

where Ψ is given by (3.1). Substituting (3.5) into (3.4), we get

S1 � HX1+ε

∫
M

Ψ(α)1/2|g(µ1α)|4K1(α) dα

+X1+ε

∫
R

|g(µ1α)|4K1(α) dα.
(3.6)

The second integral is bounded by the number of solutions of∣∣µ(y3
1 + y3

2 − y3
3 − y3

4)
∣∣ < 2

with Y < yi ≤ 2Y , and is therefore O(Y 2+ε). So, the second term in (3.6)
contributes � X1+2εY 2. By Cauchy’s inequality, the first integral in (3.6) is

�
(∫

M

Ψ(α)|g(µ1α)|2K1(α) dα
)1/2(∫

R

|g(µ1α)|6K1(α) dα
)1/2

.

By convexity and Hua’s lemma [10, Lemma 2.5],

(3.7)
∫
R

|g(µ1α)|6K1(α) dα� Y 7/2+ε.

Also, Lemma 2 with A = 2, Q = X, V = N = Y 3, and F (α) = |g(µ1α)|2
yields ∫

M

Ψ(α)|g(µ1α)|2K1(α) dα� Y −3+ε
(
XY + Y 2

)
� X1+εY −2.

Thus, the first term in (3.6) is O(X2+2εY 3/4) = O(XY 2). �

3.3. Further lemmas on diophantine inequalities. In this section we
prove analogues of [1, Lemma 3] and [1, (5.9)]; the reader should also compare
them with [8, Lemmas 1 and 2]. The following result is weaker than [1, (5.9)]
just by a factor of Xε.

Lemma 3. Let λ and µ be fixed non-zero real numbers. Also, let X ≥ 1
and Y = X5/6, and denote by S the number of solutions of the diophantine
inequality

(3.8)
∣∣λ(x3

1 − x3
2) + µ(y3

1 + y3
2 + y3

3 − y3
4 − y3

5 − y3
6)
∣∣ < 1/2

with X < xi ≤ 2X, Y < yi ≤ 2Y . Then, for every ε > 0,

S� X−1+εY 6.
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Proof. The proof is similar to that of Theorem 2. The number of solutions
of (3.8) with x1 = x2 is � XS0, where S0 is the number of solutions of the
inequality ∣∣µ(y3

1 + y3
2 + y3

3 − y3
4 − y3

4 − y3
6)
∣∣ < 1/2.

Replacing S0 by a Fourier integral, we can use (3.7) to estimate it and, hence,
the solutions of (3.8) with x1 = x2 contribute O(X1+εY 7/2) = O(X−1Y 6).
Now, let S1 be the number of solutions of (3.8) with x1 > x2 and keep all the
notation used in the estimation of the corresponding quantity in Section 3.2.
Similarly to (3.6), we obtain

S1 � HX1+ε

∫
M

Ψ(α)1/2|g(µ1α)|6K1(α) dα

+X1+ε

∫
R

|g(µ1α)|6K1(α) dα.
(3.9)

Again, we can use (3.7) to estimate the last integral and see that the contri-
bution from the second term in (3.9) is O(X−1Y 6). By Cauchy’s inequality,
the first integral on the right-hand side of (3.9) is

�
(∫

M

Ψ(α)|g(µ1α)|4K1(α) dα
)1/2(∫

R

|g(µ1α)|8K1(α) dα
)1/2

.

By Hua’s lemma, the second integral is O(Y 5+ε) and the first one can be
estimated via Lemma 2, the resulting estimate being O(Y 1+ε). Hence, the
contribution from the first term in (3.9) is

� X3/2+εY 3+ε � X−1+2εY 6. �

The next lemma is our version of [1, Lemma 3]. Note that, when W � X,
it is weaker than the expected estimate just by a factor of Xε, and it yields
a bound that is O(X1−εY 4), if W is ‘thin’, e.g., if W � X1−3ε. The proof
repeats that of [8, Lemma 2] with Theorem 2 and Lemma 3 in place of [8,
Lemma 1], so we omit it.

Lemma 4. Let λ, µ, and κ be fixed non-zero real numbers. Also, let X ≥ 1,
X1 � X, Y = X5/6, and let W be a subset of (X1, 2X1]∩Z with W elements.
Denote by S(W) the number of solutions of the diophantine inequality∣∣λ(x3

1 − x3
2) + µ(w3

1 − w3
2) + κ(y3

1 + y3
2 − y3

3 − y3
4)
∣∣ < 1/2

with wi ∈W, X < xi ≤ 2X, Y < yi ≤ 2Y . Then, for every ε > 0,

S(W)� X43/12+εW 3/4.
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4. The proof of Theorem 1 completed

4.1. Proof of Proposition 1. We start with the definition of some ex-
ponential sums and integrals. Let

f(α) =
∑
d≤D

∑
X<dn≤2X

ξd e(α(dn)3),

g(α) =
∑

X1<p≤2X1

e(αp3), h(α) =
∑

Y <p≤2Y

e(αp3),

the summations in g and h being over primes only. Also write

v(β,Ξ) =
∫ 2Ξ

Ξ

e(βt3) dt and w(β,Ξ) =
1
3

∫ 2Ξ

Ξ

e(βt3)
log t

dt.

If K is the function defined in Lemma 1 with A = 4/ε and Kτ (α) = τK(τα),
upon using Fourier inversion, we have

(4.1)
∑
d≤D

ξdR1(η, d) =
∫
R

F (α)Kτ (α)e(−αη) dα,

where
F (α) = f(λ1α)g(λ2α)h(λ3α)h(λ4α).

Also, define J1(η) by

(4.2) J1(η) =
∫
R

F1(α)Kτ (α)e(−αη) dα,

where
F1(α) = v(λ1α,X)w(λ2α,X1)w(λ3α, Y )w(λ4α, Y ),

and let
F2(α) = F1(α)

∑
d≤D

ξd/d.

The left side of (2.11) then does not exceed∫
R

∣∣∣∣∫
R

(
F (α)− F2(α)

)
Kτ (α)e(−αη) dα

∣∣∣∣2 dη,
which, by Plancherel’s theorem, is equal to∫

R

∣∣F (α)− F2(α)
∣∣2Kτ (α)2 dα.

Hence, (2.11) will follow from the inequality

(4.3)
∫
R

∣∣F (α)− F2(α)
∣∣2Kτ (α) dα� τXY 4 exp

(
− (logN)1/4

)
.

Writing ω = D−1X−2−ε and H = τXε, we dissect the real line into the
following three subsets

M = (−ω, ω), m = {α : ω ≤ |α| ≤ H}, t = {α : |α| > H}.
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It is easy to see that

(4.4)
∫

t

∣∣F (α)− F2(α)
∣∣2Kτ (α) dα� τY 4, say.

On the ‘major arc’ M, we can approximate f , g, and h by exponential
integrals. The Poisson summation formula [10, Lemma 4.2] yields

f(λ1α) = v(λ1α,X)
∑
d≤D

ξd/d+O(D),

and, by a standard technique based on the explicit formula for ψ(x) as a sum
over the zeros of ζ(s) and zero-density estimates,

g(λ2α) = w(λ2α,X1) +O
(
X exp

(
− (logN)1/4

))
,

h(λjα) = w(λjα, Y ) +O
(
Y exp

(
− (logN)1/4

))
(j = 3, 4).

Combining these approximations and the mean-value estimates∫ ω

−ω
|g(λ2α)|2dα� X−1L2,

∫ ω

−ω
|v(λ1α,X)|2dα� X−1L,

we now have

(4.5)
∫

M

∣∣F (α)− F2(α)
∣∣2Kτ (α) dα� τXY 4 exp

(
− (logN)1/4

)
.

Thus, it remains to bound the contribution of the ‘minor arcs’ m. Since for
α ∈ m (cf. [10, Lemma 6.2])

(4.6) v(α,Ξ), w(α,Ξ)� Ξ−2|α|−1,

we obtain easily that

(4.7)
∫

m

∣∣F2(α)
∣∣2Kτ (α) dα� τX1−εY 4.

Finally, we also have

(4.8)
∫

m

∣∣F (α)
∣∣2Kτ (α) dα� τX1−εY 4.

The proof of this inequality is the most difficult part of the proof. It is,
however, almost identical to the proof of the corresponding estimate in [8]
with Theorem 2 and Lemmas 3 and 4 in place of Lemmas 1 and 2 in that
paper, so we omit it.

Combining (4.4), (4.5), (4.7), and (4.8), we complete the proof of (4.3). �
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4.2. Proof of Proposition 2. The approach is similar to that in the
previous section. Let h, v, w, and Kτ be the same as before and change X to
X1 in the definition of f . Also, define the exponential sums

g(α) =
∑

X<x≤2X
(x,Π(z))=1
4≤Ω(x)≤6

e(αx3) and gr(α) =
∑

X<x≤2X
(x,Π(z))=1

Ω(x)=r

e(αx3) (r = 4, 5, 6).

Then, (4.1) holds with R2(η, d) in place of R1(η, d) and F defined by

F (α) = g(λ1α)f(λ2α)h(λ3α)h(λ4α).

Let
F1(α) = w1(λ1α)v(λ2α,X1)w(λ3α, Y )w(λ4α, Y ),

where w1 is given by (4.10) below, and define

(4.9) J2(η) =
∫
R

F1(α)Kτ (α)e(−αη) dα.

Keeping (formally) the definition of F2 the same as in Section 4.1, we see that
it suffices to establish (4.3).

Consider the integral over the major arc M. As before, we can replace f
and h by v and w, so it remains to be shown that∫

M

∣∣G(α)− F2(α)
∣∣2Kτ (α) dα� τXY 4 exp

(
− (logN)1/4

)
,

where
G(α) = g(λ1α)v(λ2α,X1)w(λ3α, Y )w(λ4α, Y ).

Using (4.6), we can prune M to

M0 =
{
α : |α| < X−3 exp

(
(logN)1/4

)}
.

For α ∈M0 and r = 4, 5, 6, the prime number theorem and partial summation
yield the approximations

gr(λ1α) =
∫ 2X

X

cr(t)e(λ1αt
3) dt+O

(
X exp

(
− (logN)1/4

))
,

where

cr(t) =
∑
· · ·
∑

z≤p1≤···≤pr−1

p1···pr−2p
2
r−1≤t

1
p1 · · · pr−1

(
log t− log(p1 · · · pr−1)

) .
Hence, for α ∈M0,

g(λ1α) =
6∑
r=4

gr(λ1α) = w1(λ1α) +O
(
X exp

(
− (logN)1/4

))
,
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where

(4.10) w1(β) =
∫ 2X

X

(
c4(t) + c5(t) + c6(t)

)
e(βt3) dt.

So, we can also replace g by w1 and, thus, finish the proof of (4.5).
Inequalities (4.4), (4.7), and (4.8) also stay true. The proofs are identical

to the ones given before, the only exception being the estimation of g on the
minor arc m, which is, in fact, easier. One just needs to observe that the
summation variables in the sums gr can always be combined as to produce
a ‘type II sum’, which can then be estimated via [8, Lemma 4]. Thus, (4.3)
follows. �

4.3. The integrals J1(η) and J2(η). Finally, we will show that J1 and
J2 have the properties mentioned in Section 2. For example, Fourier inversion
and some routine calculations show that

J1(η) =
1
81

∫
. . .

∫
X3<t1≤8X3

X3
1<t2≤8X3

1
Y 3<t3,t4≤8Y 3

(t1 · · · t4)−2/3

log t2 · · · log t4
K̂

(
λ1t1 + · · ·+ λ4t4 − η

τ

)
dt1 · · · dt4.

In view of (2.2), it then follows that there exist constants c2 > c1 > 0,
depending only on the λi’s, for which

c1τX
−1Y 2L−3 ≤ J1(η) ≤ c2τX−1Y 2L−3.

Furthermore, since K. Kawada [7, p. 18] has shown that

w1(β) = Cw(β,X) +O
(
XL−2

)
,

with an absolute constant C ∈ (0, 0.182), we can easily derive similar estimates
for J2 and then deduce (2.10).

This completes the proof of Theorem 1. �
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