Illinois Journal of Mathematics Volume 45, Number 1, Spring 2001, Pages 213–228 S 0019-2082

A TANGENCY PRINCIPLE AND APPLICATIONS

F. FONTENELE AND SÉRGIO L. SILVA

ABSTRACT. In this paper we obtain a tangency principle for hypersurfaces, with not necessarily constant r-mean curvature function H_r , of an arbitrary Riemannian manifold. That is, we obtain sufficient geometric conditions for two submanifolds of a Riemannian manifold to coincide, as a set, in a neighborhood of a tangency point. As applications of our tangency principle, we obtain, under certain conditions on the function H_r , sharp estimates on the size of the greatest ball that fits inside a connected compact hypersurface embedded in a space form of constant sectional curvature $c \leq 0$ and on the size of the smallest ball that encloses the image of an immersion of a compact Riemannian manifold into a Riemannian manifold with sectional curvatures limited from above. This generalizes results of Koutroufiotis, Coghlan-Itokawa, Pui-Fai Leung, Vlachos and Markvorsen. We also generalize a result of Serrin. Our techniques permit us to extend results of Hounie-Leite.

1. Introduction

Let N^{n+1} be a complete Riemannian manifold with metric \langle , \rangle , Levi-Civita connection ∇ and the usual exponential mapping exp: $TN \to N$. Consider a hypersurface M^n of N^{n+1} . Given $p \in M^n$ and a fixed unitary vector η_0 that is normal to M^n at p, we can parametrize a neighborhood of M^n containing p and contained in a normal ball of N^{n+1} as

(1.1)
$$\varphi(x) = \exp_p(x + \mu(x)\eta_0),$$

where the vector x varies in a neighborhood W of zero in $T_p M$ and $\mu: W \to \mathbb{R}$ satisfies $\mu(0) = 0$. Observe that μ is unique. Consider now a local orientation $\eta: W \to T_{\varphi(W)}^{\perp} M$ of M^n with $\eta(0) = \eta_0$. Denote by $A_{\eta(x)}$ the second fundamental form of M^n in the direction $\eta(x)$. Choosing the principal curvatures of M^n at each $x \in W$ so that $\lambda_1(x) \leq \lambda_2(x) \leq \cdots \leq \lambda_n(x)$, the functions λ_i become continuous functions on W. Denote by $\lambda(x) = (\lambda_1(x), \lambda_2(x), \ldots, \lambda_n(x))$

©2001 University of Illinois

Received October 11, 1999; received in final form March 29, 2000.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C42, 53C21. Secondary 35B50, 35J60.

the principal curvature vector at $x \in W$. The *r*-mean curvatures H_r , $1 \le r \le n$, are given by

(1.2)
$$H_r(x) = \frac{1}{\binom{n}{r}} \sigma_r(\lambda(x)),$$

where $\sigma_r(\lambda(x))$ is the value at $\lambda(x)$ of the *r*-elementary symmetric function $\sigma_r \colon \mathbb{R}^n \to \mathbb{R}$ defined by

(1.3)
$$\sigma_r(z_1, z_2, \dots, z_n) = \sum_{i_1 < i_2 < \dots < i_r} z_{i_1} z_{i_2} \dots z_{i_r}.$$

Denote by Γ_r the connected component in \mathbb{R}^n of the set $\{\sigma_r > 0\}$ that contains the vector $a_0 = (1, 1, ..., 1)$. Observe that Γ_n is precisely the positive cone \mathcal{O}^n , defined by

(1.4)
$$\mathcal{O}^n = \{ (z_1, z_2, \dots, z_n) \in \mathbb{R}^n \mid z_i > 0 \text{ for } 1 \le i \le n \},\$$

and that $\mathcal{O}^n \subset \Gamma_r$ for $1 \leq r \leq n$. In fact, we will show in Section 2 that, more generally, $\Gamma_{r+1} \subset \Gamma_r$ for $1 \leq r \leq n-1$.

DEFINITION. Let M_1^n and M_2^n be hypersurfaces of N^{n+1} that are tangent at p, i.e., which satisfy $T_pM_1 = T_pM_2$. Fix a unitary vector η_0 that is normal to M_1^n at p. We say that M_1^n remains above M_2^n in a neighborhood of pwith respect to η_0 if, when we parametrize M_1^n and M_2^n by φ^1 and φ^2 as in (1.1), the corresponding functions μ^1 and μ^2 satisfy $\mu^1(x) \ge \mu^2(x)$ in a neighborhood of zero.

We note in passing that this definition is equivalent to requiring that the geodesics of N^{n+1} that are normal to the hypersurface which is totally geodesic at p (namely, $\exp_p(W)$), in a neighborhood of p intercept M_2^n before M_1^n .

In this paper we obtain the following tangency principle:

THEOREM 1.1. Let M_1^n and M_2^n be hypersurfaces of N^{n+1} that are tangent at p and let η_0 be a unitary vector that is normal to M_1^n at p. Suppose that M_1^n remains above M_2^n in a neighborhood of p with respect to η_0 . Denote by $H_r^1(x)$ and $H_r^2(x)$ the r-mean curvature at $x \in W$ of M_1^n and M_2^n , respectively. Assume that, for some r, $1 \leq r \leq n$, we have $H_r^2(x) \geq H_r^1(x)$ in a neighborhood of zero; if $r \geq 2$, assume also that $\lambda^2(0)$, the principal curvature vector of M_2 at zero, belongs to Γ_r . Then M_1^n and M_2^n coincide in a neighborhood of p.

For hypersurfaces with boundaries, as a consequence of the proof of Theorem 1.1, we obtain the following tangency principle:

THEOREM 1.2. Let M_1^n and M_2^n be hypersurfaces of N^{n+1} with boundaries ∂M_1 and ∂M_2 , respectively. Suppose that M_1^n and M_2^n , as well as ∂M_1 and ∂M_2 , are tangent at $p \in \partial M_1 \cap \partial M_2$, and let η_0 be normal to M_1^n at p.

Suppose that M_1^n remains above M_2^n in a neighborhood of p with respect to η_0 . Denote by $H_r^1(x)$ and $H_r^2(x)$ the r-mean curvatures at $x \in W$ of M_1^n and M_2^n , respectively. Assume that, for some r, $1 \leq r \leq n$, we have $H_r^2(x) \geq H_r^1(x)$ in a neighborhood of zero. If $r \geq 2$, assume also that $\lambda^2(0)$, the principal curvature vector of M_2 at zero, belongs to Γ_r . Then M_1^n and M_2^n coincide in a neighborhood of p.

In connection with the above results see also Remark 4.4.

In order to state our applications, we need to introduce some notations. Denote by $\overline{B_{\rho}(p_0)}$ a geodesic closed ball centered at p_0 and of radius ρ in the ambient space, and let Q_c^{n+1} be the (n + 1)-dimensional simply connected space form of constant curvature c. Consider the functions

(1.5)
$$\mu_c(t) = \begin{cases} t\sqrt{-c} \coth(t\sqrt{-c}), & c < 0, \\ 1, & c = 0, \\ t\sqrt{c} \cot(t\sqrt{c}), & c > 0. \end{cases}$$

As a first application of Theorem 1.1, we obtain the following result.

THEOREM 1.3. Let M^n be a compact connected embedded hypersurface of Q_c^{n+1} , $c \leq 0$. Suppose that $|H_r| \geq [\mu_c(\rho)/\rho]^r$ on M^n for some $\rho > 0$. Then the largest sphere which fits inside M^n has radius less than ρ , unless M^n is a sphere.

Theorem 1.3 generalizes Theorem 1 in [11] and a result due to Blaschke ([3]; see also Theorem 3 in [11]). As a second application of Theorem 1.1, we generalize a result of Serrin, stated as Theorem 1 in [14], in the following theorem.

THEOREM 1.4. Let M^n be a compact connected hypersurface in Q_c^{n+1} with boundary ∂M contained in the closed ball $\overline{B_{\tau}(p_0)}$. Suppose that, for some $\rho > 0$, we have $|H_r| \leq [\mu_c(\rho)/\rho]^r$ and that M^n is contained in the closed ball $\overline{B_{\rho}(p_0)}$; if c > 0, suppose further that $\rho < \pi/2\sqrt{c}$. Then M^n is contained in $\overline{B_{\tau}(p_0)}$.

From Theorem 1.1 we also obtain the following result.

THEOREM 1.5. Let $F: M^n \to N^{n+1}$ be a smooth isometric immersion of a compact connected Riemannian manifold into a Riemannian manifold N^{n+1} . Suppose that F(M) is contained in a closed normal ball $\overline{B_{\rho}(p_0)}$ centered at p_0 and of radius ρ . Let c be the supremum of the sectional curvatures of N^{n+1} on $\overline{B_{\rho}(p_0)}$; if c > 0, assume also that $\rho < \pi/2 \sqrt{c}$. If $|H_r| \leq [\mu_c(\rho)/\rho]^r$, then F(M) is the boundary of $\overline{B_{\rho}(p_0)}$ and $B_{\rho}(p_0)$ is isometric to an open ball of radius ρ in Q_c^{n+1} . COROLLARY 1.6. Let $F: M^n \to N^{n+1}$ be a smooth isometric immersion of a compact connected Riemannian manifold into a Riemannian manifold N^{n+1} with sectional curvature function satisfying $K_N \leq c$ for some real constant c. Suppose that F(M) is contained in a closed normal ball $\overline{B_{\rho}(p_0)}$. If c > 0, assume furthermore that $\rho < \pi/2 \sqrt{c}$. If $|H_r| \leq [\mu_c(\rho)/\rho]^r$ then F(M)is the boundary of $\overline{B_{\rho}(p_0)}$ and $B_{\rho}(p_0)$ is isometric to an open ball of radius ρ in Q_c^{n+1} .

For the case of mean curvature, i.e., the case r = 1, Theorem 1.5 was obtained by Markvorsen in [13]. We point out that Coghlan, Itokawa, and Kosecki [6], assuming $\sup_M |H| = \mu_c(\rho)/\rho$ for the length of the mean curvature vector H of an immersion $G: M^n \to N^m$ such that $G(M) \subset \overline{B_{\rho}(p_0)}$, concluded that F must be a minimal immersion on the boundary of $\overline{B_{\rho}(p_0)}$. Here M^n is a complete connected Riemannian manifold with scalar curvature bounded away from $-\infty$, c is the supremum of the sectional curvature over $\overline{B_{\rho}(p_0)}$, and $\rho < \pi/2 \sqrt{c}$ if c > 0.

When N^{n+1} is the space form Q_c^{n+1} , rigidity theorems similar to Theorem 1.5 were obtained by Koutroufiotis [11] and Coghlan and Itokawa [5] for sectional curvature, by Pui-Fai Leung [12] for Ricci curvature, and by Vlachos [15] for all r-mean curvatures.

2. Elliptic operators and hyperbolic polynomials

For d = (n(n+1)/2) + 2n + 1, write an arbitrary point p at \mathbb{R}^d as

$$p = (r_{11}, \dots, r_{1n}, r_{22}, \dots, r_{2n}, \dots, r_{(n-1)n}, r_{nn}, r_1, \dots, r_n, z, x_1, \dots, x_n)$$

or, in short, as $p = (r_{ij}, r_i, z, x)$ with $1 \le i \le j \le n$ and $x = (x_1, \ldots, x_n)$. A C^1 -function $\Phi: \ \Gamma \to \mathbb{R}$ defined in an open set Γ of \mathbb{R}^d is said to be elliptic in $p \in \Gamma$ if

(2.1)
$$\sum_{i\leq j=1}^{n} \frac{\partial \Phi}{\partial r_{ij}}(p)\xi_i\xi_j > 0 \quad \text{for all nonzero} \quad (\xi_1,\xi_2,\ldots,\xi_n) \in \mathbb{R}^n.$$

We say that Φ is elliptic in Γ if Φ is elliptic in p for all $p \in \Gamma$. Given a function $f: U \to \mathbb{R}$ of class C^2 defined in an open set $U \subset \mathbb{R}^n$ and $x \in U$, we associate a point $\Lambda(f)(x)$ in \mathbb{R}^d by setting

(2.2)
$$\Lambda(f)(x) = (f_{ij}(x), f_i(x), f(x), x),$$

where $f_{ij}(x)$ and $f_i(x)$ stand for $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$ and $\frac{\partial f}{\partial x_i}(x)$, respectively. Saying that the function Φ is elliptic with respect to f means that $\Lambda(f)(x)$ belongs to Γ and Φ is elliptic in $\Lambda(f)(x)$ for all $x \in U$. For elliptic functions we have the following maximum principle (see [1]).

MAXIMUM PRINCIPLE. Let $f, g: U \to \mathbb{R}$ be C^2 -functions defined in an open set U of \mathbb{R}^n and let $\Phi: \Gamma \subset \mathbb{R}^d \to \mathbb{R}$ be a function of class C^1 . Suppose

that Φ is elliptic with respect to the functions (1-t)f + tg, $t \in [0,1]$. Assume also that

(2.3)
$$\Phi(\Lambda(f)(x)) \ge \Phi(\Lambda(g)(x)) \text{ for all } x \in U,$$

and that $f \leq g$ on U. Then f < g on U unless f and g coincide in a neighborhood of any point $x_0 \in U$ such that $f(x_0) = g(x_0)$.

To obtain this above maximum principle, which in the case n = 2 is stated in [11], one linearizes in a well-known fashion,

$$\Phi(\Lambda(f)(x)) - \Phi(\Lambda(g)(x)) = L(f - g)(x) \ge 0,$$

and then applies Hopf's maximum principle for linear operators to conclude that if $f(x_0) = g(x_0)$ for some $x_0 \in U$ then f and g coincide in a neighborhood of x_0 in U.

For our proofs we will also need the following result from [7]. Let $P \colon \mathbb{R}^n \to \mathbb{R}$ be a homogeneous polynomial of degree m and let $a \in \mathbb{R}^n$ be a fixed vector. We say that P is *a*-hyperbolic or hyperbolic with respect to the vector a if the *s*-polynomial P(sa + x) has m real roots for all $x \in \mathbb{R}^n$. In [7], Gårding proved that the set

(2.4)
$$C(P,a) = \{ x \in \mathbb{R}^n \mid P(sa+x) \neq 0, \text{ for all } s \ge 0 \}$$

is an open convex cone that coincides with the connected component of $\{P \neq 0\}$ containing a and that if P is a-hyperbolic, then the homogeneous polynomial of degree m - 1 given by

$$Q(x) = \frac{d}{ds}P(sa+x)|_{s=0} = \sum_{j=1}^{n} a_j \frac{\partial P}{\partial x_j}(x)$$

is also a-hyperbolic and $C(P, a) \subset C(Q, a)$.

Applying this result to the *n*-elementary symmetric function σ_n , which is a_0 -hyperbolic with respect to $a_0 = (1, 1, \dots, 1)$, and observing that

$$\sigma_r(x) = \frac{1}{(n-r)!} \frac{d^{n-r}}{ds^{n-r}} \sigma_n(sa+x)|_{s=0},$$

it is not difficult to see that the homogeneous polynomials σ_r of degree r, $1 \leq r \leq n$, are a_0 -hyperbolic and that the sets $\Gamma_r = C(\sigma_r, a_0), 1 \leq r \leq n$, satisfy

(2.5)
$$\Gamma_n \subset \Gamma_{n-1} \subset \cdots \subset \Gamma_1.$$

As we have already noted in the Introduction, Γ_n is precisely the positive cone \mathcal{O}^n . Gårding also established an inequality for hyperbolic polynomials from which it is possible to prove (see [4], Proposition 1.1) that

(2.6)
$$D_i \sigma_r = \frac{\partial \sigma_r}{\partial z_i} > 0$$
 on $\Gamma_r, \ 1 \le i \le n, \ 1 \le r \le n.$

3. *r*-mean curvatures and ellipticity

Given a hypersurface M^n of a complete Riemannian manifold N^{n+1} and $p \in M^n$, parametrize M^n in a neighborhood of p as in (1.1). Our goal now is to find a function Φ_r defined in some open set of \mathbb{R}^d , $d = \frac{n(n+1)}{2} + 2n + 1$, that contains the origin so that

$$H_r(x) = \Phi_r(\mu_{ij}(x), \mu_i(x), \mu(x), x) = \Phi_r(\Lambda(\mu)(x)), \ x \in W.$$

To this end we fix an orthonormal basis e_1, e_2, \ldots, e_n in T_pM and introduce coordinates in T_pM by setting $x = \sum_{i=1}^n x_i e_i$ for all x in T_pM . Note that the function μ satisfies $\mu_i(0) = \frac{\partial \mu}{\partial x_i}(0) = 0, 1 \le i \le n$. Recall that $\eta \colon W \to T_{\varphi(W)}^{\perp}M$ is a local orientation of M^n with $\eta(0) = \eta_0$ and $A_{\eta(x)}$ is the second fundamental form of M^n in the direction $\eta(x)$. Denote by $\varphi_i(x)$ the vector $\frac{\partial \varphi}{\partial x_i}(x)$. If $A(x) = (a_{ij}(x))$ is the matrix of $A_{\eta(x)}$ in the basis $\varphi_i(x), 1 \le i \le n$, then A(x) satisfies $A_{\eta(x)}\varphi_i(x) = \sum_{j=1}^n a_{ji}(x)\varphi_j(x)$. It is not difficult to verify that

(3.1)
$$A(x) = I(x)^{-1}II(x),$$

where I(x) and II(x) are the matrices given by

$$I(x)_{ij} = \langle \varphi_i(x), \varphi_j(x) \rangle$$

and

$$II(x)_{ij} = \langle A_{\eta(x)}\varphi_i(x), \varphi_j(x) \rangle = \langle (\nabla_{\varphi_i}\varphi_j)_x, \eta(x) \rangle.$$

LEMMA 3.1. There exists an $n \times n$ -matrix valued function \hat{A} defined in an open set $\mathbb{R}^{(n(n+1)/2)+n} \times \mathcal{N}$ of \mathbb{R}^d such that

(3.2)
$$A(\mu_{ij}(x), \mu_i(x), \mu(x), x) = A(x), \ x \in W.$$

Proof. We consider the entries in the matrices I(x) and II(x) given by (3.1). For simplicity of notation, we set $v(x) = \sum_{m=1}^{n} x_m e_m + \mu(x)\eta_0$. Since

$$\varphi_i(x) = d(\exp_p)_{v(x)}(e_i + \mu_i(x)\eta_0),$$

the $n \times n$ -symmetric matrix I(x) can be written as a function of x, $\mu(x)$ and $\mu_i(x)$, $1 \leq i \leq n$. Note that the point p, the orthonormal basis e_i , $1 \leq i \leq n$, in $T_p M$, and η_0 are fixed. In the matrix I(x) we replace, for all i, $\mu_i(x)$ by r_i , $\mu(x)$ by z, and x_i by y_i . We obtain an $n \times n$ -symmetric matrix $\overline{F}(r_i, z, y_i)$ which has an inverse at points such that $d(\exp_p)_{(\sum_{i=1}^n y_i e_i + z \eta_0)}$ is a linear isomorphism. Take the maximal connected open set \mathcal{N} in \mathbb{R}^{n+1} that contains the origin and so that if $(z, y_1, \ldots, y_n) \in \mathcal{N}$ then $d(\exp_p)_{(\sum_{i=1}^n y_i e_i + z \eta_0)}$ is a linear isomorphism. The existence of such a set \mathcal{N} follows from the fact that $d(\exp_p)_0$ is the identity. Thus, restricting \overline{F} to $\mathbb{R}^n \times \mathcal{N}$ and setting $F(r_i, z, y_i) = \overline{F}(r_i, z, y_i)^{-1}$, we have

$$I(x)^{-1} = F(\mu_i(x), \mu(x), x_i), \quad x \in W.$$

We now consider the entries in the $n \times n$ -symmetric matrix II(x). Observe first that

(3.3)
$$\langle \nabla_{\varphi_i} \varphi_j, \eta \rangle_x = \langle \nabla_{\varphi_i} d(\exp_p)_v e_j, \eta \rangle_x$$

 $+ \mu_{ij}(x) \langle d(\exp_p)_{v(x)} \eta_0, \eta(x) \rangle + \mu_j(x) \langle \nabla_{\varphi_i} d(\exp_p)_v \eta_0, \eta \rangle_x.$

The vector-valued function $\eta(x)$ depends on x, $\mu(x)$ and the first order derivatives of $\mu(x)$, since $\eta(x)$ is determined by the basis $\varphi_i, 1 \leq i \leq n$, and the metric of N^{n+1} at $\varphi(x)$. Let $G(r_{ij}, r_i, z, y_i)$ be the $n \times n$ -symmetric matrix defined as follows: if $k \leq l$ then $G(r_{ij}, r_i, z, y_i)_{kl}$ is obtained from $II(x)_{kl}$ by replacing, on the right hand side of (3.3), $\mu_{kl}(x)$ by $r_{kl}, \mu_m(x)$ by $r_m, \mu(x)$ by z, and finally x_m by $y_m, 1 \leq m \leq n$; that is, if $k \leq l$, then

$$(3.4) \quad G(r_{ij}, r_i, z, y_i)_{kl} = \left\langle \nabla_{\psi_k} d(\exp_p)_v e_l, \eta \right\rangle_{(r_i, z, y_i)} + r_{kl} \langle d(\exp_p)_v \eta_0, \eta \rangle_{(r_i, z, y_i)} + r_l \left\langle \nabla_{\psi_k} d(\exp_p)_v \eta_0, \eta \right\rangle_{(r_i, z, y_i)},$$

where

$$v(z, y_i) = \sum_{m=1}^n y_m e_m + z \eta_0, \quad \psi_k(r_i, z, y_i) = d(\exp_p)_{v(z, y_i)}(e_k + r_k \eta_0)$$

and $\eta(r_i, z, y_i)$ is a unitary vector that is normal to the hyperplane spanned by $\psi_m(r_i, z, y_i), 1 \leq m \leq n$. Hence the $n \times n$ -symmetric matrix $G(r_{ij}, r_i, z, y_i)$ defined in $\mathbb{R}^{(n(n+1)/2)+n} \times \mathcal{N}$ satisfies

$$II(x) = G(\mu_{ij}(x), \mu_i(x), \mu(x), x_i).$$

Taking

(3.5)
$$\hat{A}(r_{ij}, r_i, z, y_i) = F(r_i, z, y_i)G(r_{ij}, r_i, z, y_i),$$

we obtain an $n \times n$ -matrix valued function \tilde{A} in the open subset $\mathbb{R}^{(n(n+1)/2)+n} \times \mathcal{N}$ of \mathbb{R}^d such that $\tilde{A}(\mu_{ij}(x), \mu_i(x), \mu(x), x) = A(x), x \in W$. \Box

We point out that, since $F(r_i, z, y_i)$ is a definite positive symmetric matrix and $G(r_{ij}, r_i, z, y_i)$ is symmetric, the matrix $\tilde{A}(r_{ij}, r_i, z, y_i)$ given by (3.5) is diagonalizable (see e.g. [8], p. 120); that is, there exists an $n \times n$ -invertible real matrix P, depending on (r_{ij}, r_i, z, y_i) , such that $P^{-1}\tilde{A}(r_{ij}, r_i, z, y_i)P$ is diagonal.

PROPOSITION 3.2. There exists a function $\Phi_r \colon \mathbb{R}^{(n(n+1)/2)+n} \times \mathcal{N} \to \mathbb{R}$ satisfying

(3.6)
$$\Phi_r(\Lambda(\mu)(x)) = \Phi_r(\mu_{ij}(x), \mu_i(x), \mu(x), x) = H_r(x).$$

Proof. Consider the function Φ_r defined by

(3.7)
$$\Phi_r = \frac{1}{\binom{n}{r}} \sigma_r \circ \lambda \circ \tilde{A}.$$

Here $\lambda(\tilde{A}) = (\lambda_1(\tilde{A}), \lambda_2(\tilde{A}), \dots, \lambda_n(\tilde{A}))$, where $\lambda_1(\tilde{A}) \leq \lambda_2(\tilde{A}) \leq \dots \leq \lambda_n(\tilde{A})$ are the eigenvalues of \tilde{A} . Now, (3.6) is an immediate consequence of (3.7), (1.2) and (3.2).

If A is an arbitrary $n \times n$ -real matrix, the eigenvalues $\lambda_i(A)$, $1 \le i \le n$, of A are not necessarily real, but we can consider

$$(\sigma_r \circ \lambda)(A) = \sigma_r(\lambda_1(A), \lambda_2(A), \dots, \lambda_n(A)),$$

where σ_r is given by (1.3). The value $(\sigma_r \circ \lambda)(A)$ does not depend on the order of the eigenvalues of A we choose. The function $\sigma_r \circ \lambda$: $\mathcal{M}^n(\mathbb{R}) \to \mathbb{R}$ defined in the set of all $n \times n$ -real matrices is differentiable since $(\sigma_r \circ \lambda)(A)$ is a homogeneous polynomial of degree r in the entries of A.

In order to establish some ellipticity properties of Φ_r , we will need the following lemma.

LEMMA 3.3. If $A_0 \in \mathcal{M}^n(\mathbb{R})$ is symmetric and $\lambda(A_0) \in \Gamma_r$ then

(3.8)
$$\sum_{i,j=1}^{n} \frac{\partial(\sigma_r \circ \lambda)}{\partial A_{ij}} (A_0) \xi_i \xi_j > 0 \quad \text{for all nonzero} \quad (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n.$$

Proof. We divide the proof into three steps.

Step 1. Suppose that A_0 is a diagonal matrix with distinct eigenvalues. In this case, it is well known that the functions λ_i , $1 \leq i \leq n$, are differentiable in a neighborhood of A_0 , in $\mathcal{M}^n(\mathbb{R})$. Therefore,

(3.9)
$$\frac{\partial(\sigma_r \circ \lambda)}{\partial A_{kl}}(A_0) = \sum_{i=1}^n \frac{\partial\sigma_r}{\partial z_i}(\lambda(A_0)) \frac{\partial\lambda_i}{\partial A_{kl}}(A_0).$$

Let E^{kl} be the matrix defined by $(E^{kl})_{ij} = \delta_{ki} \delta_{lj}$. Using the multilinearity of the determinant, we see that the matrices A_0 and $A_0 + tE^{kl}$ have the same characteristic polynomial for all t and $k \neq l$. This implies that

(3.10)
$$\frac{\partial \lambda_i}{\partial A_{kl}}(A_0) = 0 \quad \text{for} \quad k \neq l \quad \text{and} \quad 1 \le i \le n.$$

We now compute the above derivatives for k = l. Consider first the unique permutation θ of $\{1, 2, ..., n\}$ such that $\lambda_{\theta(j)} = (A_0)_{jj}$. Since the functions $\lambda_i, 1 \leq i \leq n$, are differentiable in a neighborhood of A_0 , we have that in a neighborhood of zero the functions $\lambda_i(A_0 + t E^{kk}), 1 \leq i \leq n$, are differentiable functions of t. Moreover, for t sufficiently small, the eigenvalues $\lambda_i(A_0 + t E^{kk}), 1 \leq i \leq n$, are distinct since the values $\lambda_i(A_0)$ are distinct by assumption. Consequently, for small t, we have

$$\lambda_{\theta(j)}(A_0 + t \, E^{kk}) = (A_0 + t E^{kk})_{jj}.$$

1

Therefore,

$$\frac{d}{dt}\lambda_i(A_0 + t E^{kk})|_{t=0} = \begin{cases} 0, & k \neq \theta^{-1}(i), \\ 1, & k = \theta^{-1}(i), \end{cases}$$

and so

(3.11)
$$\frac{\partial \lambda_i}{\partial A_{kk}}(A_0) = \begin{cases} 0, & k \neq \theta^{-1}(i), \\ 1, & k = \theta^{-1}(i). \end{cases}$$

From (3.9), (3.10) and (3.11), it follows that

$$\frac{\partial(\sigma_r \circ \lambda)}{\partial A_{kl}}(A_0) = \begin{cases} 0, & k \neq l, \\ D_{\theta(k)}\sigma_r(\lambda(A_0)), & k = l. \end{cases}$$

The last equality and (2.6) show that (3.8) holds.

Step 2. Suppose A_0 is diagonal. In this case, define A(t) by

$$\mathbf{A}(t)_{kl} = \begin{cases} 0, & k \neq l, \\ (A_0)_{kk} + \frac{t}{k}, & k = l. \end{cases}$$

For small nonzero t we have:

- (i) A(t) is diagonal with distinct eigenvalues;
- (ii) $\lambda(\mathbf{A}(t)) \in \Gamma_r$;
- (iii) There exists an unique permutation θ of $\{1, 2, ..., n\}$ such that $\lambda_{\theta(j)}(\mathbf{A}(t)) = \mathbf{A}(t)_{jj}$ for $1 \le j \le n$.

By Step 1 we have

$$\frac{\partial(\sigma_r \circ \lambda)}{\partial A_{kl}}(\mathbf{A}(t)) = \begin{cases} 0, & k \neq l, \\ D_{\theta(k)}\sigma_r(\lambda(\mathbf{A}(t))), & k = l. \end{cases}$$

Since σ_r is of class C^1 and $\lim_{t\to 0} \lambda(\mathbf{A}(t)) = \lambda(A_0)$, we conclude that

$$\frac{\partial(\sigma_r \circ \lambda)}{\partial A_{kl}}(A_0) = \begin{cases} 0, & k \neq l, \\ D_{\theta(k)}\sigma_r(\lambda(A_0)) > 0, & k = l, \end{cases}$$

and that (3.8) holds.

Step 3. Suppose that A_0 is symmetric. In this case, there exists an orthogonal matrix P so that P^tA_0P is diagonal. Observe that $\lambda(P^tA_0P) = \lambda(A_0) \in \Gamma_r$ and that $(\sigma_r \circ \lambda)(P^tAP) = (\sigma_r \circ \lambda)(A)$ for all matrices A. Setting $C = P^tAP$, we have

$$\frac{\partial(\sigma_r \circ \lambda)}{\partial A_{kl}}(A_0) = \sum_{i,j=1}^n \frac{\partial(\sigma_r \circ \lambda)}{\partial C_{ij}}(P^t A_0 P) \frac{\partial C_{ij}}{\partial A_{kl}}(A_0)$$
$$= \sum_{i,j=1}^n \frac{\partial(\sigma_r \circ \lambda)}{\partial C_{ij}}(P^t A_0 P) P_{ik}^t P_{jl}^t.$$

Thus,

$$\sum_{k,l=1}^{n} \frac{\partial(\sigma_r \circ \lambda)}{\partial A_{kl}} (A_0) \xi_k \xi_l = \sum_{i,j,k,l=1}^{n} \frac{\partial(\sigma_r \circ \lambda)}{\partial C_{ij}} (P^t A_0 P) P_{ik}^t P_{jl}^t \xi_k \xi_l$$
$$= \sum_{i,j=1}^{n} \frac{\partial(\sigma_r \circ \lambda)}{\partial C_{ij}} (P^t A_0 P) w_i w_j,$$

where $w = P^t \xi \neq 0$ for $\xi \neq 0$. Since the right hand side of the above expression is positive by Step 2, we have proved Lemma 3.3.

We observe that, in Lemma 3.3, we can replace the assumption $\lambda(A_0) \in \Gamma_r$ by the less restrictive assumption that $D_k \sigma_r(\lambda(A_0)) > 0$, $1 \leq k \leq n$. This is an immediate consequence of the proof of Lemma 3.3. We note also that Lemma 3.3 is a reformulation of a result in [2]. We have included a proof here only for the convenience of the reader.

PROPOSITION 3.4. The functions $\Phi_r: \mathbb{R}^{(n(n+1)/2)+n} \times \mathcal{N} \to \mathbb{R}, 2 \leq r \leq n$, are elliptic at any point $p^0 = (r_{ij}^0, r_i^0, z^0, x_i^0)$ in the open set $\Omega_r = (\lambda \circ \tilde{A})^{-1}(\Gamma_r)$, such that $F(r_i^0, z^0, x_i^0)$ is the identity. The function Φ_1 is elliptic over $\mathbb{R}^{(n(n+1)/2)+n} \times \mathcal{N}$.

Proof. The set Ω_r is open because $\lambda \circ \tilde{A}$ is continuous and Γ_r is open. Assume first that $r \geq 2$. For $k \leq l$, we have

(3.12)
$$\frac{\partial(\sigma_r \circ \lambda \circ \tilde{A})}{\partial r_{kl}}(p^0) = \sum_{m,t=1}^n \frac{\partial(\sigma_r \circ \lambda)}{\partial A_{mt}}(\tilde{A}(p^0)) \frac{\partial \tilde{A}_{mt}}{\partial r_{kl}}(p^0).$$

We now compute the numbers $\frac{\partial \tilde{A}_{mt}}{\partial r_{kl}}(p^0)$. By the definition of \tilde{A} , we have

$$\tilde{A}_{mt}(r_{ij}, r_i, z, y_i) = \sum_{\ell} F(r_i, z, y_i)_{m\ell} G(r_{ij}, r_i, z, y_i)_{\ell t}.$$

Since $F(r_i^0, z^0, x_i^0)$ is the identity, we obtain that

$$\frac{\partial A_{mt}}{\partial r_{kl}}(p^0) = \sum_{\ell} F(r_i^0, z^0, x_i^0)_{m\ell} \frac{\partial G_{\ell t}}{\partial r_{kl}}(p^0) = \frac{\partial G_{mt}}{\partial r_{kl}}(p^0).$$

It is not hard to verify that

(3.13)
$$\frac{\partial G_{mt}}{\partial r_{kl}}(p^0) = \begin{cases} \omega(r_i^0, z^0, x_i^0), & \text{if}(\delta_{mk}\delta_{tl} + \delta_{ml}\delta_{tk}) \neq 0, \\ 0, & \text{otherwise}, \end{cases}$$

where $\omega(r_i^0, z^0, x_i^0)$ is given by

$$\omega(r_i^0, z^0, x_i^0) = \left\langle d\left(\exp_p\right)_{v(z^0, x_i^0)} \eta_0 \,, \, \eta(r_i^0, z^0, x_i^0) \right\rangle$$

with $v(z^0, x_i^0) = \sum_{i=1}^n x_i^0 e_i + z^0 \eta_0$. Since at any point $(r_i^0, z^0, x_i^0) \in \mathbb{R}^n \times \mathcal{N}$, $\eta(r_i^0, z^0, x_i^0)$ is a unitary vector that is orthogonal to the space spanned by the vectors

$$\psi_{\ell}(r_i^0, z^0, x_i^0) = d\left(\exp_p\right)_{v(z^0, x_i^0)} (e_{\ell} + r_{\ell}^0 \eta_0), \ 1 \le \ell \le n,$$

and $d(\exp_p)_{v(z^0,x_i^0)}$ is an linear isomorphism, the function $\omega(r_i^0, z^0, x_i^0)$ does not change sign on $\mathbb{R}^n \times \mathcal{N}$. Since $\omega(0,0,0) = 1$, we conclude that $\omega(r_i^0, z^0, x_i^0)$ is positive in $\mathbb{R}^n \times \mathcal{N}$. Now (3.12) becomes

$$\frac{\partial(\sigma_r \circ \lambda \circ \tilde{A})}{\partial r_{kl}}(p^0) = \begin{cases} \omega(r_i^0, z^0, x_i^0) \left(\frac{\partial(\sigma_r \circ \lambda)}{\partial r_{kl}} + \frac{\partial(\sigma_r \circ \lambda)}{\partial r_{lk}}\right) (\tilde{A}(p^0)), & \text{if } k < l \\ \\ \omega(r_i^0, z^0, x_i^0) \frac{\partial(\sigma_r \circ \lambda)}{\partial r_{kk}} (\tilde{A}(p^0)), & \text{if } k = l. \end{cases}$$

Since $F(r_i^0, z^0, x_i^0)$ is the identity matrix, the matrix $\tilde{A}(p^0) = G(p^0)$ is symmetric. Consequently,

$$\sum_{k\leq l=1}^{n} \frac{\partial \Phi_r}{\partial r_{kl}}(p^0)\xi_k\xi_l = \frac{\omega(r_i^0, z^0, x_i^0)}{\binom{n}{r}} \sum_{k,l=1}^{n} \frac{\partial(\sigma_r \circ \lambda)}{\partial r_{kl}}(\tilde{A}(p^0))\xi_k\xi_l$$

is positive for all nonzero vector $(\xi_1, \xi_2, \ldots, \xi_n) \in \mathbb{R}^n$ by Lemma 3.3. This proves Proposition 3.4 for $r \geq 2$.

If r = 1, we have, by (3.5) and (3.7),

$$\Phi_1 = \frac{1}{n} \sum_i \tilde{A}_{ii} = \frac{1}{n} \sum_{i,m} F_{im} G_{mi}$$

at any point in $\mathbb{R}^{(n(n+1)/2)+n} \times \mathcal{N}$. Using (3.13) and the fact that F does not depend on r_{kl} , it is not difficult to verify that

$$\sum_{k \le l} \frac{\partial \Phi_1}{\partial r_{kl}} \xi_k \xi_l = \frac{\omega}{n} \sum_{k,l} F_{kl} \xi_k \xi_l \quad \text{for all} \quad (\xi_1, \xi_2, \dots, \xi_n).$$

Since F is a definite positive symmetric matrix at any point of $\mathbb{R}^{(n(n+1)/2)+n} \times \mathcal{N}$, we obtain the ellipticity of Φ_1 over $\mathbb{R}^{(n(n+1)/2)+n} \times \mathcal{N}$. This completes the proof of Proposition 3.4.

4. Proofs of the main results

For the proof of Theorem 1.1, we will need the following lemma.

LEMMA 4.1. If $p \in \Gamma_r$ and $v \in \overline{\mathcal{O}^n}$ then $p + t v \in \Gamma_r$ for all $t \ge 0$.

Proof. If the conclusion does not hold, then there exists $t_0 > 0$ such that $\sigma_r(p+tv) > 0$ in $[0, t_0)$ and $\sigma_r(p+t_0v) = 0$. This implies that $\frac{d}{dt}\sigma_r(p+t_0v) = 0$.

 $|tv||_{t=t'} < 0$ for some $t' \in (0, t_0)$. But

$$\frac{d}{dt}\sigma_r(p+tv)|_{t=t'} = \sum_{i=1}^n D_i\sigma_r(p+t'v)v_i \ge 0$$

by (2.6). Thus we have obtained a contradiction.

Proof of Theorem 1.1. Restricting W if necessary, our assumptions and (3.6) imply

$$\Phi_r(\Lambda(\mu^2)(x)) = H_r^2(x) \ge H_r^1(x) = \Phi_r(\Lambda(\mu^1)(x)), \quad x \in W.$$

In order to apply the Maximum Principle of Section 2 and conclude that μ^1 coincides with μ^2 in a neighborhood of zero, we will prove that, by restricting W if necessary, the function Φ_r is elliptic with respect to the functions (1 $t)\mu^2 + t\mu^1, t \in [0,1]$. To this end, observe first that if $\mu: W \to \mathbb{R}$ is a function satisfying $\mu(0) = 0$ and $\mu_i(0) = 0$ for $1 \le i \le n$, then $F(\mu_i(0), \mu(0), 0) =$ F(0,0,0) is the identity matrix and, consequently,

$$\begin{split} \tilde{A}(\Lambda(\mu)(0))_{kl} &= \tilde{A}(\mu_{ij}(0), 0, 0, 0)_{kl} = G(\mu_{ij}(0), 0, 0, 0)_{kl} \\ &= \langle \nabla_{e_k} d(\exp_p)_v e_l|_{x=0}, \eta_0 \rangle + \mu_{kl}(0) \\ &= \left\langle \frac{D}{dt} d(\exp_p)_{v(te_k)} e_l|_{t=0}, \eta_0 \right\rangle + \mu_{kl}(0) \\ &= \left\langle \frac{D}{dt} \frac{D}{ds} \exp_p(v(te_k) + s e_l)|_{t=0, s=0}, \eta_0 \right\rangle + \mu_{kl}(0) \\ &= \left\langle \frac{D}{ds} d(\exp_p)_{s e_l} e_k|_{s=0}, \eta_0 \right\rangle + \mu_{kl}(0) \end{split}$$

by (3.3). Therefore,

$$\begin{split} \tilde{A}((1-t)\Lambda(\mu^2)(0) + t\Lambda(\mu^1)(0))_{kl} &= \tilde{A}((1-t)\mu_{ij}^2(0) + t\mu_{ij}^1(0), 0, 0, 0)_{kl} \\ &= \left\langle \frac{D}{ds} d(\exp_p)_{s\,e_l} e_k|_{s=0}, \eta_0 \right\rangle + (1-t)\mu_{kl}^2(0) + t\mu_{kl}^1(0) \\ &= \tilde{A}(\Lambda(\mu^2)(0))_{kl} + t(\mu_{kl}^1(0) - \mu_{kl}^2(0)); \end{split}$$

that is,

$$\tilde{A}((1-t)\Lambda(\mu^2)(0) + t\Lambda(\mu^1)(0)) - \tilde{A}(\Lambda(\mu^2)(0)) = t [(\text{Hess } \mu^1)(0) - (\text{Hess } \mu^2)(0)].$$

Since $\mu^1 \ge \mu^2$ in a neighborhood of zero, $\mu^1(0) = 0 = \mu^2(0)$ and $\mu_i^j(0) = 0$, for $1 \le i \le n, j = 1, 2$, we have $(\text{Hess } \mu^1)(0) - (\text{Hess } \mu^2)(0) \ge 0$ in the sense that

$$\sum_{k,l=1}^{n} (\operatorname{Hess} \mu^{1} - \operatorname{Hess} \mu^{2})_{kl}(0)\xi_{k}\xi_{l} \ge 0 \text{ for all } (\xi_{1},\xi_{2},\ldots,\xi_{n}) \in \mathbb{R}^{n}.$$

224

We deduce

$$\tilde{A}((1-t)\Lambda(\mu^2)(0) + t\Lambda(\mu^1)(0)) - \tilde{A}(\Lambda(\mu^2)(0)) \ge 0, \ t \in [0,1].$$

Hence (see [8], p. 130), for $1 \le i \le n$ we have

$$\lambda_i(\tilde{A}((1-t)\Lambda(\mu^2)(0) + t\Lambda(\mu^1)(0))) - \lambda_i(\tilde{A}(\Lambda(\mu^2)(0))) \ge 0, \ t \in [0,1],$$

and thus

$$\lambda(\tilde{A}((1-t)\Lambda(\mu^2)(0) + t\Lambda(\mu^1)(0))) - \lambda(\tilde{A}(\Lambda(\mu^2)(0))) \in \overline{\mathcal{O}^n}, \ 0 \le t \le 1,$$

where $\overline{\mathcal{O}^n}$ is the closure of \mathcal{O}^n . Thus, by Lemma 4.1, $\lambda(\tilde{A}((1-t)\Lambda(\mu^2)(0) + t\Lambda(\mu^1)(0)))$ belongs to Γ_r , $0 \leq t \leq 1$. Proposition 3.4 then shows that Φ_r is elliptic at the points given by $(1-t)\Lambda(\mu^2)(0) + t\Lambda(\mu^1)(0)$, $t \in [0,1]$. Since ellipticity is an open condition and Ω_r is open, restricting W if necessary, we conclude by continuity and by the compactness of [0,1] that Φ_r is elliptic at the points $(1-t)\Lambda(\mu^2)(x) + t\Lambda(\mu^1)(x)$, $x \in W$, $t \in [0,1]$. This means that Φ_r is elliptic with respect to the functions $(1-t)\mu^2 + t\mu^1$, $t \in [0,1]$. The Maximum Principle now enables us to conclude that μ_1 and μ_2 coincide in a neighborhood of zero. This proves Theorem 1.1.

For the remaining proofs we will make use of the fact that the functions $\mu_c(t)/t$ are monotone decreasing on t > 0.

Proof of Theorem 1.3. Let $\partial \overline{B_{\rho'}(p_0)}$ be the largest sphere that fits inside M^n . Suppose that $\rho' > \rho$. Then, $\mu_c(\rho')/\rho' < \mu_c(\rho)/\rho$ and thus

(4.1)
$$|H_r| \ge \left[\frac{\mu_c(\rho)}{\rho}\right]^r > \left[\frac{\mu_c(\rho')}{\rho'}\right]^r \text{ on } M^n.$$

Since M^n is compact and embedded, we can orient M^n by the normals pointing inward and find a point $q \in M^n$ where all principal curvatures are positive; that is, the principal curvature vector of M^n at q belongs to the positive cone $\mathcal{O}^n \subset \Gamma_r$. Let $\lambda: M^n \to \mathbb{R}^n$ be the continuous function that associates to each point in M^n its principal curvature vector with the choices $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Since, by assumption, H_r does not change sign on M^n , and $H_r(q) > 0$, we deduce that $H_r > 0$ on M^n . Hence, $\lambda(M^n)$ is a connected compact set in \mathbb{R}^n , contained in the connected component of $\{\sigma_r > 0\}$ that contains \mathcal{O}^n , and therefore $\lambda(M^n) \subset \Gamma_r$. Observe now that M^n and $\partial \overline{B_{\rho'}(p_0)}$ are tangent at p. We can apply Theorem 1.1 and conclude that M^n and $\partial \overline{B_{\rho'}(p_0)}$ coincide in a neighborhood of p, since $[\mu_c(\rho')/\rho']^r$ is precisely the constant value of the r-mean curvature of $\partial \overline{B_{\rho'}(p_0)}$, oriented by the normals pointing inward, at any point. But this contradicts (4.1). Therefore, $\rho' \leq \rho$. If equality holds here, then Theorem 1.1 applies again and shows that M^n and $\partial \overline{B_{\rho}(p_0)}$ coincide in a neighborhood of points of tangency, and a standard argument using the connectedness ensures that these hypersurfaces are identical. \Box

Proof of Theorem 1.4. If $\rho \leq \tau$, then there is nothing to prove. Suppose that $\rho > \tau$ and $M^n \not\subset \overline{B_{\tau}(p_0)}$. In this case, if p is a point in M^n farthest from p_0 , then $p \in M - \partial M$, $\rho' = d(p_0, p) > \tau$ and $\overline{B_{\rho'}(p_0)}$ is the smallest ball centered at p_0 enclosing M^n . Here $d(p_0, .)$ stands for the distance function from p_0 in the space form Q_c^{n+1} . The farthest point p from p_0 , since it is an interior point of M^n , is a point where M^n and $\partial \overline{B_{\rho'}(p_0)}$ are tangent. Orient M^n at p with the unitary normal vector η_0 pointing inward to $\partial \overline{B_{\rho'}(p_0)}$. Since $\rho' \leq \rho$ and $\mu_c(t)/t$ is positive and monotone decreasing on t, we have over M^n

$$\left[\frac{\mu_c(\rho')}{\rho'}\right]^r \ge \left[\frac{\mu_c(\rho)}{\rho}\right]^r \ge |H_r| \ge H_r.$$

Since $[\mu_c(\rho')/\rho']^r$ is the constant value of the *r*-mean curvature of $\partial \overline{B_{\rho'}(p_0)}$, oriented by the normals pointing inward, we can apply Theorem 1.1 and conclude that M^n coincides with $\partial \overline{B_{\rho'}(p_0)}$ in a neighborhood of *p*. Arguing via connectedness, we obtain that $M - \partial M$ is contained in $\partial \overline{B_{\rho'}(p_0)}$. But ∂M is also contained in $\partial \overline{B_{\rho'}(p_0)}$, contradicting the relation $\partial M \subset \overline{B_{\tau}(p_0)}$ and $\tau < \rho'$.

Proof of Theorem 1.5. Consider the function $g = \frac{1}{2}d_{p_0}(.)^2$, where $d_{p_0}(.)$ stands for the distance function from p_0 on N^{n+1} . Note that the function g is differentiable in a neighborhood of $\overline{B_{\rho}(p_0)}$. Let $\varphi: M \to \mathbb{R}$ be given by $\varphi = g \circ F$. The function φ is differentiable since F(M) is contained in the closed normal ball $\overline{B_{\rho}(p_0)}$. We now show that $\overline{B_{\rho}(p_0)}$ is the smallest ball centered at p_0 that contains F(M). If this is not the case, there exists a closed ball $\overline{B_{\rho'}(p_0)}$ with $\rho' < \rho$ that contains F(M). Let $p \in M^n$ be a point such that $d_{p_0}(F(p)) = \rho'$. It is well known that if η is the unitary vector that is normal to M^n at p, pointing inward to $\partial \overline{B_{\rho'}(p_0)}$, then

$$\eta = -\frac{\operatorname{grad} g_{F(p)}}{\left|\operatorname{grad} g_{F(p)}\right|}$$

with $|\operatorname{grad} g_{F(p)}| = d_{p_0}(F(p)) = \rho'$. Here $\operatorname{grad} g_{F(p)}$ is the value at F(p) of the gradient of g in N^{n+1} . It follows from Lemma 2.5 in [10] and the fact that, for fixed t, $\mu_c(t)$ is monotone decreasing in c, that the Hessian of φ in p satisfies

Hess
$$\varphi_p(X, X) \ge \mu_c(d_{p_0}(F(p)))\langle X, X \rangle + \langle \operatorname{grad} g_{F(p)}, \alpha(X, X) \rangle$$

for all $X \in T_p M$, where α is the second fundamental form of F at p. Consider now an arbitrary principal curvature λ_i of A_η with unitary principal direction e_i . Since φ attains a maximum at p, we deduce that

$$0 \geq \operatorname{Hess} \varphi_p(e_i, e_i) \geq \mu_c(\rho') - \rho' \lambda_i,$$

that is, $\lambda_i \geq \mu_c(\rho')/\rho'$. Consequently, we have

$$H_r(p) \ge \left[\frac{\mu_c(\rho')}{\rho'}\right]^r > \left[\frac{\mu_c(\rho)}{\rho}\right]^r,$$

which contradicts the hypothesis. Therefore, $\rho' = \rho$ and $\overline{B_{\rho}(p_0)}$ is the smallest ball centered at p_0 that contains F(M). Observe that if we consider the constant function defined as the restriction of g to $\partial \overline{B_{\rho}(p_0)}$, then proceeding as above we deduce that for $\partial \overline{B_{\rho}(p_0)}$, oriented by the normals pointing inward, at any point all principal curvatures are greater than or equal to $\mu_c(\rho)/\rho$. This implies that at any point the principal curvature vector of $\partial \overline{B_{\rho}(p_0)}$ belongs to \mathcal{O}^n and that the r-mean curvature H'_r of $\partial \overline{B_{\rho}(p_0)}$ satisfies

$$H_r' \ge \left[\frac{\mu_c(\rho)}{\rho}\right]^r \ge H_r$$

By Theorem 1.1, this implies that F(M) and $\partial \overline{B_{\rho}(p_0)}$ coincide in a neighborhood of F(p). Arguing via connectedness, we conclude that F(M) is the boundary of $\overline{B_{\rho}(p_0)}$. Since now M^n has all principal curvatures greater than or equal to $\mu_c(\rho)/\rho$ and, by assumption, $|H_r| \leq [\mu_c(\rho)/\rho]^r$, it follows that all principal curvatures are equal to $\mu_c(\rho)/\rho$. In particular, if H is the mean curvature vector function on M^n then $|H| = \mu_c(\rho)/\rho$. Theorem 1.5 now follows from Proposition 3.4 in [13].

REMARK 4.2. It is clear from the proofs of our results that when r is even we can assume the less restrictive hypothesis $H_r \leq [\mu_c(\rho)/\rho]^r$ in Theorems 1.4 and 1.5.

REMARK 4.3. It follows from Theorem 1.1 that, in any ambient space, if a hypersurface remains on one side of another hypersurface in a neighborhood of a tangency point and both hypersurfaces have the same constant mean curvature, then they coincide in a neighborhood of such a point.

REMARK 4.4. In [9], J. Hounie and M.L. Leite have obtained tangency principles for hypersurfaces in Euclidean space satisfying $H_r = 0$. The proofs of their tangency principles are based on the fact that such hypersurfaces satisfy a nonlinear equation $G_r(\text{Hess }\mu, \text{grad }\mu) = 0$ and on algebraic results. In any Riemannian manifold, if we have a hypersurface with $H_r = 0$ then, as we have seen above, the nonlinear equation $\Phi_r(\Lambda(\mu)(x)) = 0$ is also satisfied. This fact permits us to extend their tangency principles, stated as Theorem 0.1 and Theorem 0.2, to hypersurfaces in any Riemannian manifold. The proofs are identical.

References

 A.D. Alexandrov, Uniqueness theorems for surfaces in the large I, Amer. Math. Soc. Transl., Ser. 2, 21 (1962), 341–354.

- [2] H.J. Morais de Araújo, A rigidez das esferas para uma função de curvatura constante, Tese de Mestrado, Universidade Federal de Pernambuco, Brasil, 1994.
- [3] W. Blaschke, Kreis und Kugel, 2. Aufl., Walter de Gruyter, Berlin, 1956.
- [4] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261–301.
- [5] L. Coghlan and Y. Itokawa, On the sectional curvature of compact hypersurfaces, Proc. Amer. Math. Soc. 109 (1990), 215–221.
- [6] L. Coghlan, Y. Itokawa, and R. Kosecki, On the solutions to certain Laplace inequalities with applications to geometry of submanifolds, J. Geom. Anal. 2 (1992), 195–211.
- [7] L. Gårding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957– 965.
- [8] I. Gelfand, Lectures on linear algebra, Interscience Publishers, New York-London, 1961.
- [9] J. Hounie and M.L. Leite, The maximum principle for hypersurfaces with vanishing curvature functions, J. Differential Geom. 41 (1995), 247–258.
- [10] L. Jorge and D. Koutroufiotis, An estimate for the curvature of bounded submanifolds, Amer. J. Math. 103 (1981), 711–725.
- D. Koutroufiotis, Elementary geometric applications of a maximum principle for nonlinear elliptic operators, Arch. Math. 24 (1973), 97–99.
- [12] Pui-Fai Leung, On the Ricci curvature of a compact hypersurface in Euclidean space, Ann. Global Anal. Geom. 13 (1995), 55–58.
- S. Markvorsen, A sufficient condition for a compact immersion to be spherical, Math. Z. 183 (1983), 407–411.
- [14] J. Serrin, On surfaces of constant mean curvature which span a given space curve, Math. Z. 112 (1969), 77–88.
- [15] T. Vlachos, A characterization for geodesic spheres in space forms, Geom. Dedicata 68 (1997), 73–78.

F. FONTENELE, DEPARTAMENTO DE GEOMETRIA, INSTITUTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL FLUMINENSE, 24020-005, NITERÓI, BRAZIL

E-mail address: fontenele@mat.uff.br

Sérgio L. Silva, Departamento de Estruturas Matemáticas, IME, Universidade Estatual do Rio de Janeiro, 20550-013, Rio de Janeiro, BRAZIL

E-mail address: sergiol@magnum.ime.uerj.br