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A TANGENCY PRINCIPLE AND APPLICATIONS

F. FONTENELE AND SÉRGIO L. SILVA

Abstract. In this paper we obtain a tangency principle for hypersur-

faces, with not necessarily constant r-mean curvature function Hr, of
an arbitrary Riemannian manifold. That is, we obtain sufficient geo-
metric conditions for two submanifolds of a Riemannian manifold to
coincide, as a set, in a neighborhood of a tangency point. As applica-
tions of our tangency principle, we obtain, under certain conditions on

the function Hr, sharp estimates on the size of the greatest ball that
fits inside a connected compact hypersurface embedded in a space form
of constant sectional curvature c ≤ 0 and on the size of the smallest

ball that encloses the image of an immersion of a compact Riemannian
manifold into a Riemannian manifold with sectional curvatures limited

from above. This generalizes results of Koutroufiotis, Coghlan-Itokawa,

Pui-Fai Leung, Vlachos and Markvorsen. We also generalize a result of
Serrin. Our techniques permit us to extend results of Hounie-Leite.

1. Introduction

Let Nn+1 be a complete Riemannian manifold with metric 〈 , 〉, Levi-
Civita connection ∇ and the usual exponential mapping exp: TN → N .
Consider a hypersurface Mn of Nn+1. Given p ∈ Mn and a fixed unitary
vector η0 that is normal to Mn at p, we can parametrize a neighborhood of
Mn containing p and contained in a normal ball of Nn+1 as

(1.1) ϕ(x) = expp(x+ µ(x)η0),

where the vector x varies in a neighborhood W of zero in TpM and µ : W → R

satisfies µ(0) = 0. Observe that µ is unique. Consider now a local orientation
η : W → T⊥ϕ(W )M of Mn with η(0) = η0. Denote by Aη(x) the second funda-
mental form of Mn in the direction η(x). Choosing the principal curvatures of
Mn at each x ∈W so that λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x), the functions λi be-
come continuous functions on W . Denote by λ(x) = (λ1(x), λ2(x), . . . , λn(x))
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the principal curvature vector at x ∈W . The r-mean curvatures Hr, 1 ≤ r ≤
n, are given by

(1.2) Hr(x) =
1

(nr )
σr(λ(x)),

where σr(λ(x)) is the value at λ(x) of the r-elementary symmetric function
σr : Rn → R defined by

(1.3) σr(z1, z2, . . . , zn) =
∑

i1<i2<···<ir

zi1zi2 . . . zir .

Denote by Γr the connected component in Rn of the set {σr > 0 } that
contains the vector a0 = (1, 1, . . . , 1). Observe that Γn is precisely the positive
cone On, defined by

(1.4) On = { (z1, z2, . . . , zn) ∈ Rn | zi > 0 for 1 ≤ i ≤ n },
and that On ⊂ Γr for 1 ≤ r ≤ n. In fact, we will show in Section 2 that, more
generally, Γr+1 ⊂ Γr for 1 ≤ r ≤ n− 1.

Definition. Let Mn
1 and Mn

2 be hypersurfaces of Nn+1 that are tangent
at p, i.e., which satisfy TpM1 = TpM2. Fix a unitary vector η0 that is normal
to Mn

1 at p. We say that Mn
1 remains above Mn

2 in a neighborhood of p
with respect to η0 if, when we parametrize Mn

1 and Mn
2 by ϕ1 and ϕ2 as

in (1.1), the corresponding functions µ1 and µ2 satisfy µ1(x) ≥ µ2(x) in a
neighborhood of zero.

We note in passing that this definition is equivalent to requiring that the
geodesics ofNn+1 that are normal to the hypersurface which is totally geodesic
at p (namely, expp(W )), in a neighborhood of p intercept Mn

2 before Mn
1 .

In this paper we obtain the following tangency principle:

Theorem 1.1. Let Mn
1 and Mn

2 be hypersurfaces of Nn+1 that are tan-
gent at p and let η0 be a unitary vector that is normal to Mn

1 at p. Suppose
that Mn

1 remains above Mn
2 in a neighborhood of p with respect to η0. De-

note by H1
r (x) and H2

r (x) the r-mean curvature at x ∈ W of Mn
1 and Mn

2 ,
respectively. Assume that, for some r, 1 ≤ r ≤ n, we have H2

r (x) ≥ H1
r (x)

in a neighborhood of zero; if r ≥ 2, assume also that λ2(0), the principal cur-
vature vector of M2 at zero, belongs to Γr. Then Mn

1 and Mn
2 coincide in a

neighborhood of p.

For hypersurfaces with boundaries, as a consequence of the proof of Theo-
rem 1.1, we obtain the following tangency principle:

Theorem 1.2. Let Mn
1 and Mn

2 be hypersurfaces of Nn+1 with boundaries
∂M1 and ∂M2, respectively. Suppose that Mn

1 and Mn
2 , as well as ∂M1 and

∂M2, are tangent at p ∈ ∂M1 ∩ ∂M2, and let η0 be normal to Mn
1 at p.
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Suppose that Mn
1 remains above Mn

2 in a neighborhood of p with respect to η0.
Denote by H1

r (x) and H2
r (x) the r-mean curvatures at x ∈W of Mn

1 and Mn
2 ,

respectively. Assume that, for some r, 1 ≤ r ≤ n, we have H2
r (x) ≥ H1

r (x)
in a neighborhood of zero. If r ≥ 2, assume also that λ2(0), the principal
curvature vector of M2 at zero, belongs to Γr. Then Mn

1 and Mn
2 coincide in

a neighborhood of p.

In connection with the above results see also Remark 4.4.
In order to state our applications, we need to introduce some notations.

Denote by Bρ(p0) a geodesic closed ball centered at p0 and of radius ρ in the
ambient space, and let Qn+1

c be the (n + 1)-dimensional simply connected
space form of constant curvature c. Consider the functions

(1.5) µc(t) =


t
√
−c coth(t

√
−c), c < 0,

1, c = 0,
t
√
c cot(t

√
c), c > 0.

As a first application of Theorem 1.1, we obtain the following result.

Theorem 1.3. Let Mn be a compact connected embedded hypersurface of
Qn+1
c , c ≤ 0. Suppose that |Hr| ≥ [µc(ρ)/ρ]r on Mn for some ρ > 0. Then

the largest sphere which fits inside Mn has radius less than ρ, unless Mn is a
sphere.

Theorem 1.3 generalizes Theorem 1 in [11] and a result due to Blaschke
([3]; see also Theorem 3 in [11]). As a second application of Theorem 1.1,
we generalize a result of Serrin, stated as Theorem 1 in [14], in the following
theorem.

Theorem 1.4. Let Mn be a compact connected hypersurface in Qn+1
c with

boundary ∂M contained in the closed ball Bτ (p0). Suppose that, for some
ρ > 0, we have |Hr| ≤ [µc(ρ)/ρ]r and that Mn is contained in the closed ball
Bρ(p0); if c > 0, suppose further that ρ < π/2

√
c. Then Mn is contained in

Bτ (p0).

From Theorem 1.1 we also obtain the following result.

Theorem 1.5. Let F : Mn → Nn+1 be a smooth isometric immersion
of a compact connected Riemannian manifold into a Riemannian manifold
Nn+1. Suppose that F (M) is contained in a closed normal ball Bρ(p0) centered
at p0 and of radius ρ. Let c be the supremum of the sectional curvatures of
Nn+1 on Bρ(p0); if c > 0, assume also that ρ < π/2

√
c. If |Hr| ≤ [µc(ρ)/ρ]r,

then F (M) is the boundary of Bρ(p0) and Bρ(p0) is isometric to an open ball
of radius ρ in Qn+1

c .
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Corollary 1.6. Let F : Mn → Nn+1 be a smooth isometric immersion
of a compact connected Riemannian manifold into a Riemannian manifold
Nn+1 with sectional curvature function satisfying KN ≤ c for some real con-
stant c. Suppose that F (M) is contained in a closed normal ball Bρ(p0). If
c > 0, assume furthermore that ρ < π/2

√
c. If |Hr| ≤ [µc(ρ)/ρ]r then F (M)

is the boundary of Bρ(p0) and Bρ(p0) is isometric to an open ball of radius ρ
in Qn+1

c .

For the case of mean curvature, i.e., the case r = 1, Theorem 1.5 was
obtained by Markvorsen in [13]. We point out that Coghlan, Itokawa, and
Kosecki [6], assuming supM |H| = µc(ρ)/ρ for the length of the mean curva-
ture vector H of an immersion G : Mn → Nm such that G(M) ⊂ Bρ(p0),
concluded that F must be a minimal immersion on the boundary of Bρ(p0).
Here Mn is a complete connected Riemannian manifold with scalar curvature
bounded away from −∞, c is the supremum of the sectional curvature over
Bρ(p0), and ρ < π/2

√
c if c > 0.

When Nn+1 is the space form Qn+1
c , rigidity theorems similar to Theorem

1.5 were obtained by Koutroufiotis [11] and Coghlan and Itokawa [5] for sec-
tional curvature, by Pui-Fai Leung [12] for Ricci curvature, and by Vlachos
[15] for all r-mean curvatures.

2. Elliptic operators and hyperbolic polynomials

For d = (n(n+ 1)/2) + 2n+ 1, write an arbitrary point p at Rd as

p =
(
r11, . . . , r1n, r22, . . . r2n, . . . , r(n−1)n, rnn, r1, . . . , rn, z, x1, . . . , xn

)
or, in short, as p = (rij , ri, z, x) with 1 ≤ i ≤ j ≤ n and x = (x1, . . . , xn). A
C1-function Φ: Γ→ R defined in an open set Γ of Rd is said to be elliptic in
p ∈ Γ if

(2.1)
n∑

i≤j=1

∂Φ
∂rij

(p)ξiξj > 0 for all nonzero (ξ1, ξ2, . . . , ξn) ∈ Rn.

We say that Φ is elliptic in Γ if Φ is elliptic in p for all p ∈ Γ. Given a function
f : U → R of class C2 defined in an open set U ⊂ Rn and x ∈ U , we associate
a point Λ(f)(x) in Rd by setting

(2.2) Λ(f)(x) = (fij(x), fi(x), f(x), x),

where fij(x) and fi(x) stand for ∂2f
∂xi∂xj

(x) and ∂f
∂xi

(x), respectively. Saying
that the function Φ is elliptic with respect to f means that Λ(f)(x) belongs
to Γ and Φ is elliptic in Λ(f)(x) for all x ∈ U . For elliptic functions we have
the following maximum principle (see [1]).

Maximum Principle. Let f, g : U → R be C2-functions defined in an
open set U of Rn and let Φ: Γ ⊂ Rd → R be a function of class C1. Suppose



A TANGENCY PRINCIPLE AND APPLICATIONS 217

that Φ is elliptic with respect to the functions (1− t)f + tg, t ∈ [0, 1]. Assume
also that

(2.3) Φ(Λ(f)(x)) ≥ Φ(Λ(g)(x)) for all x ∈ U,

and that f ≤ g on U . Then f < g on U unless f and g coincide in a
neighborhood of any point x0 ∈ U such that f(x0) = g(x0).

To obtain this above maximum principle, which in the case n = 2 is stated
in [11], one linearizes in a well-known fashion,

Φ(Λ(f)(x))− Φ(Λ(g)(x)) = L(f − g)(x) ≥ 0,

and then applies Hopf’s maximum principle for linear operators to conclude
that if f(x0) = g(x0) for some x0 ∈ U then f and g coincide in a neighborhood
of x0 in U .

For our proofs we will also need the following result from [7]. Let P : Rn →
R be a homogeneous polynomial of degree m and let a ∈ Rn be a fixed vector.
We say that P is a-hyperbolic or hyperbolic with respect to the vector a if
the s-polynomial P (sa + x) has m real roots for all x ∈ Rn. In [7], G̊arding
proved that the set

(2.4) C(P, a) = {x ∈ Rn | P (sa+ x) 6= 0, for all s ≥ 0 }

is an open convex cone that coincides with the connected component of
{P 6= 0} containing a and that if P is a-hyperbolic, then the homogeneous
polynomial of degree m− 1 given by

Q(x) =
d

d s
P (sa+ x)|s=0 =

n∑
j=1

aj
∂P

∂xj
(x)

is also a-hyperbolic and C(P, a) ⊂ C(Q, a).
Applying this result to the n-elementary symmetric function σn, which is

a0-hyperbolic with respect to a0 = (1, 1, . . . , 1), and observing that

σr(x) =
1

(n− r)!
dn−r

d sn−r
σn(sa+ x)|s=0,

it is not difficult to see that the homogeneous polynomials σr of degree r,
1 ≤ r ≤ n, are a0-hyperbolic and that the sets Γr = C(σr, a0), 1 ≤ r ≤ n,
satisfy

(2.5) Γn ⊂ Γn−1 ⊂ · · · ⊂ Γ1.

As we have already noted in the Introduction, Γn is precisely the positive cone
On. G̊arding also established an inequality for hyperbolic polynomials from
which it is possible to prove (see [4], Proposition 1.1) that

(2.6) Diσr =
∂σr
∂zi

> 0 on Γr, 1 ≤ i ≤ n, 1 ≤ r ≤ n.
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3. r-mean curvatures and ellipticity

Given a hypersurface Mn of a complete Riemannian manifold Nn+1 and
p ∈ Mn, parametrize Mn in a neighborhood of p as in (1.1). Our goal now
is to find a function Φr defined in some open set of Rd, d = n(n+1)

2 + 2n+ 1,
that contains the origin so that

Hr(x) = Φr(µij(x), µi(x), µ(x), x) = Φr(Λ(µ)(x)), x ∈W.
To this end we fix an orthonormal basis e1, e2, . . . , en in TpM and introduce
coordinates in TpM by setting x =

∑n
i=1 xiei for all x in TpM . Note that

the function µ satisfies µi(0) = ∂µ
∂xi

(0) = 0, 1 ≤ i ≤ n. Recall that η : W →
T⊥ϕ(W )M is a local orientation of Mn with η(0) = η0 and Aη(x) is the second
fundamental form of Mn in the direction η(x). Denote by ϕi(x) the vector
∂ϕ
∂xi

(x). If A(x) = (aij(x)) is the matrix of Aη(x) in the basis ϕi(x), 1 ≤ i ≤ n,
then A(x) satisfies Aη(x)ϕi(x) =

∑n
j=1 aji(x)ϕj(x). It is not difficult to verify

that

(3.1) A(x) = I(x)−1II(x),

where I(x) and II(x) are the matrices given by

I(x)ij = 〈ϕi(x), ϕj(x)〉
and

II(x)ij = 〈Aη(x)ϕi(x), ϕj(x)〉 = 〈(∇ϕiϕj)x , η(x)〉.

Lemma 3.1. There exists an n × n-matrix valued function Ã defined in
an open set R(n(n+1)/2)+n ×N of Rd such that

(3.2) Ã(µij(x), µi(x), µ(x), x) = A(x), x ∈W.

Proof. We consider the entries in the matrices I(x) and II(x) given by
(3.1). For simplicity of notation, we set v(x) =

∑n
m=1 xmem + µ(x)η0. Since

ϕi(x) = d(expp)v(x)(ei + µi(x)η0),

the n× n-symmetric matrix I(x) can be written as a function of x, µ(x) and
µi(x), 1 ≤ i ≤ n. Note that the point p, the orthonormal basis ei, 1 ≤ i ≤ n,
in TpM , and η0 are fixed. In the matrix I(x) we replace, for all i, µi(x) by
ri, µ(x) by z, and xi by yi. We obtain an n×n-symmetric matrix F (ri, z, yi)
which has an inverse at points such that d(expp)(

∑n
i=1 yiei+z η0) is a linear

isomorphism. Take the maximal connected open set N in Rn+1 that contains
the origin and so that if (z, y1, . . . , yn) ∈ N then d(expp)(

∑n
i=1 yiei+z η0) is

a linear isomorphism. The existence of such a set N follows from the fact
that d(expp)0 is the identity. Thus, restricting F to Rn × N and setting
F (ri, z, yi) = F (ri, z, yi)−1, we have

I(x)−1 = F (µi(x), µ(x), xi), x ∈W.
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We now consider the entries in the n × n-symmetric matrix II(x). Observe
first that

(3.3) 〈∇ϕiϕj , η〉x =
〈
∇ϕid(expp)vej , η

〉
x

+ µij(x)〈d(expp)v(x)η0 , η(x)〉+ µj(x)
〈
∇ϕid(expp)vη0, η

〉
x
.

The vector-valued function η(x) depends on x, µ(x) and the first order deriva-
tives of µ(x), since η(x) is determined by the basis ϕi, 1 ≤ i ≤ n, and the
metric of Nn+1 at ϕ(x). Let G(rij , ri, z, yi) be the n × n-symmetric matrix
defined as follows: if k ≤ l then G(rij , ri, z, yi)kl is obtained from II(x)kl by
replacing, on the right hand side of (3.3), µkl(x) by rkl, µm(x) by rm, µ(x)
by z, and finally xm by ym, 1 ≤ m ≤ n; that is, if k ≤ l, then

(3.4) G(rij , ri, z, yi)kl =
〈
∇ψkd(expp)vel , η

〉
(ri,z,yi)

+ rkl〈d(expp)vη0 , η〉(ri,z,yi) + rl
〈
∇ψkd(expp)vη0, η

〉
(ri,z,yi)

,

where

v(z, yi) =
n∑

m=1

ymem + z η0, ψk(ri, z, yi) = d(expp)v(z,yi)(ek + rk η0)

and η(ri, z, yi) is a unitary vector that is normal to the hyperplane spanned
by ψm(ri, z, yi), 1 ≤ m ≤ n. Hence the n×n-symmetric matrix G(rij , ri, z, yi)
defined in R(n(n+1)/2)+n ×N satisfies

II(x) = G(µij(x), µi(x), µ(x), xi).

Taking

(3.5) Ã(rij , ri, z, yi) = F (ri, z, yi)G(rij , ri, z, yi),

we obtain an n×n-matrix valued function Ã in the open subset R(n(n+1)/2)+n×
N of Rd such that Ã(µij(x), µi(x), µ(x), x) = A(x), x ∈W . �

We point out that, since F (ri, z, yi) is a definite positive symmetric matrix
and G(rij , ri, z, yi) is symmetric, the matrix Ã(rij , ri, z, yi) given by (3.5) is
diagonalizable (see e.g. [8], p. 120); that is, there exists an n × n-invertible
real matrix P , depending on (rij , ri, z, yi), such that P−1Ã(rij , ri, z, yi)P is
diagonal.

Proposition 3.2. There exists a function Φr : R(n(n+1)/2)+n ×N → R

satisfying

(3.6) Φr(Λ(µ)(x)) = Φr(µij(x), µi(x), µ(x), x) = Hr(x).

Proof. Consider the function Φr defined by

(3.7) Φr =
1

(nr )
σr ◦ λ ◦ Ã.
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Here λ(Ã) = (λ1(Ã), λ2(Ã), . . . , λn(Ã)), where λ1(Ã) ≤ λ2(Ã) ≤ · · · ≤ λn(Ã)
are the eigenvalues of Ã. Now, (3.6) is an immediate consequence of (3.7),
(1.2) and (3.2). �

If A is an arbitrary n× n-real matrix, the eigenvalues λi(A), 1 ≤ i ≤ n, of
A are not necessarily real, but we can consider

(σr ◦ λ)(A) = σr(λ1(A), λ2(A), . . . , λn(A)),

where σr is given by (1.3). The value (σr ◦ λ)(A) does not depend on the
order of the eigenvalues of A we choose. The function σr ◦ λ : Mn(R) → R

defined in the set of all n× n-real matrices is differentiable since (σr ◦ λ)(A)
is a homogeneous polynomial of degree r in the entries of A.

In order to establish some ellipticity properties of Φr, we will need the
following lemma.

Lemma 3.3. If A0 ∈Mn(R) is symmetric and λ(A0) ∈ Γr then

(3.8)
n∑

i,j=1

∂(σr ◦ λ)
∂Aij

(A0)ξiξj > 0 for all nonzero (ξ1, ξ2, . . . , ξn) ∈ Rn.

Proof. We divide the proof into three steps.
Step 1. Suppose that A0 is a diagonal matrix with distinct eigenvalues. In

this case, it is well known that the functions λi, 1 ≤ i ≤ n, are differentiable
in a neighborhood of A0, in Mn(R). Therefore,

(3.9)
∂(σr ◦ λ)
∂Akl

(A0) =
n∑
i=1

∂σr
∂zi

(λ(A0))
∂λi
∂Akl

(A0).

Let Ekl be the matrix defined by
(
Ekl
)
ij

= δki δlj . Using the multilinearity
of the determinant, we see that the matrices A0 and A0 + tEkl have the same
characteristic polynomial for all t and k 6= l. This implies that

(3.10)
∂λi
∂Akl

(A0) = 0 for k 6= l and 1 ≤ i ≤ n.

We now compute the above derivatives for k = l. Consider first the unique
permutation θ of { 1, 2, . . . , n} such that λθ(j) = (A0)jj . Since the functions
λi, 1 ≤ i ≤ n, are differentiable in a neighborhood of A0, we have that in a
neighborhood of zero the functions λi(A0+t Ekk), 1 ≤ i ≤ n, are differentiable
functions of t. Moreover, for t sufficiently small, the eigenvalues λi(A0+t Ekk),
1 ≤ i ≤ n, are distinct since the values λi(A0) are distinct by assumption.
Consequently, for small t, we have

λθ(j)(A0 + t Ekk) = (A0 + tEkk)jj .
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Therefore,
d

d t
λi(A0 + t Ekk)|t=0 =

{
0, k 6= θ−1(i),
1, k = θ−1(i),

and so

(3.11)
∂λi
∂Akk

(A0) =

{
0, k 6= θ−1(i),
1, k = θ−1(i).

From (3.9), (3.10) and (3.11), it follows that

∂(σr ◦ λ)
∂Akl

(A0) =

{
0, k 6= l,

Dθ(k)σr(λ(A0)), k = l.

The last equality and (2.6) show that (3.8) holds.
Step 2. Suppose A0 is diagonal. In this case, define A(t) by

A(t)kl =

{
0, k 6= l,

(A0)kk + t
k , k = l.

For small nonzero t we have:
(i) A(t) is diagonal with distinct eigenvalues;
(ii) λ(A(t)) ∈ Γr;
(iii) There exists an unique permutation θ of { 1, 2, . . . , n } such that

λθ(j)(A(t)) = A(t)jj for 1 ≤ j ≤ n.
By Step 1 we have

∂(σr ◦ λ)
∂Akl

(A(t)) =

{
0, k 6= l,

Dθ(k)σr(λ(A(t))), k = l.

Since σr is of class C1 and limt→0 λ(A(t)) = λ(A0), we conclude that

∂(σr ◦ λ)
∂Akl

(A0) =

{
0, k 6= l,

Dθ(k)σr(λ(A0)) > 0, k = l,

and that (3.8) holds.
Step 3. Suppose that A0 is symmetric. In this case, there exists an or-

thogonal matrix P so that P tA0P is diagonal. Observe that λ(P tA0P ) =
λ(A0) ∈ Γr and that (σr ◦λ)(P tAP ) = (σr ◦λ)(A) for all matrices A. Setting
C = P tAP , we have

∂(σr ◦ λ)
∂Akl

(A0) =
n∑

i,j=1

∂(σr ◦ λ)
∂Cij

(P tA0P )
∂Cij
∂Akl

(A0)

=
n∑

i,j=1

∂(σr ◦ λ)
∂Cij

(P tA0P )P tikP
t
jl.
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Thus,
n∑

k,l=1

∂(σr ◦ λ)
∂Akl

(A0)ξkξl =
n∑

i,j,k,l=1

∂(σr ◦ λ)
∂Cij

(P tA0P )P tikP
t
jlξkξl

=
n∑

i,j=1

∂(σr ◦ λ)
∂Cij

(P tA0P )wiwj ,

where w = P tξ 6= 0 for ξ 6= 0. Since the right hand side of the above expression
is positive by Step 2, we have proved Lemma 3.3. �

We observe that, in Lemma 3.3, we can replace the assumption λ(A0) ∈ Γr
by the less restrictive assumption that Dkσr(λ(A0)) > 0, 1 ≤ k ≤ n. This
is an immediate consequence of the proof of Lemma 3.3. We note also that
Lemma 3.3 is a reformulation of a result in [2]. We have included a proof here
only for the convenience of the reader.

Proposition 3.4. The functions Φr : R(n(n+1)/2)+n ×N → R, 2 ≤ r ≤
n, are elliptic at any point p0 = (r0

ij , r
0
i , z

0, x0
i ) in the open set Ωr = (λ ◦

Ã)−1(Γr), such that F (r0
i , z

0, x0
i ) is the identity. The function Φ1 is elliptic

over R(n(n+1)/2)+n ×N .

Proof. The set Ωr is open because λ ◦ Ã is continuous and Γr is open.
Assume first that r ≥ 2. For k ≤ l, we have

(3.12)
∂(σr ◦ λ ◦ Ã)

∂rkl
(p0) =

n∑
m,t=1

∂(σr ◦ λ)
∂Amt

(Ã(p0))
∂Ãmt
∂rkl

(p0).

We now compute the numbers ∂Ãmt
∂rkl

(p0). By the definition of Ã, we have

Ãmt(rij , ri, z, yi) =
∑
`

F (ri, z, yi)m`G(rij , ri, z, yi)`t.

Since F (r0
i , z

0, x0
i ) is the identity, we obtain that

∂Ãmt
∂rkl

(p0) =
∑
`

F (r0
i , z

0, x0
i )m`

∂G`t
∂rkl

(p0) =
∂Gmt
∂rkl

(p0).

It is not hard to verify that

(3.13)
∂Gmt
∂rkl

(p0) =

{
ω(r0

i , z
0, x0

i ), if(δmkδtl + δmlδtk) 6= 0,
0, otherwise,

where ω(r0
i , z

0, x0
i ) is given by

ω(r0
i , z

0, x0
i ) =

〈
d
(
expp

)
v(z0,x0

i )
η0 , η(r0

i , z
0, x0

i )
〉
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with v(z0, x0
i ) =

∑n
i=1 x

0
i ei + z0η0. Since at any point (r0

i , z
0, x0

i ) ∈ Rn ×N ,
η(r0

i , z
0, x0

i ) is a unitary vector that is orthogonal to the space spanned by the
vectors

ψ`(r0
i , z

0, x0
i ) = d

(
expp

)
v(z0,x0

i )
(e` + r0

`η0), 1 ≤ ` ≤ n,

and d
(
expp

)
v(z0,x0

i )
is an linear isomorphism, the function ω(r0

i , z
0, x0

i ) does

not change sign on Rn×N . Since ω(0, 0, 0) = 1, we conclude that ω(r0
i , z

0, x0
i )

is positive in Rn ×N . Now (3.12) becomes

∂(σr ◦ λ ◦ Ã)
∂rkl

(p0) =


ω(r0

i , z
0, x0

i ) (∂(σr◦λ)
∂rkl

+ ∂(σr◦λ)
∂rlk

)(Ã(p0)), if k < l

ω(r0
i , z

0, x0
i )

∂(σr◦λ)
∂rkk

(Ã(p0)), if k = l.

Since F (r0
i , z

0, x0
i ) is the identity matrix, the matrix Ã(p0) = G(p0) is sym-

metric. Consequently,
n∑

k≤l=1

∂Φr
∂rkl

(p0)ξkξl =
ω(r0

i , z
0, x0

i )
(nr )

n∑
k,l=1

∂(σr ◦ λ)
∂rkl

(Ã(p0))ξkξl

is positive for all nonzero vector (ξ1, ξ2, . . . , ξn) ∈ Rn by Lemma 3.3. This
proves Proposition 3.4 for r ≥ 2.

If r = 1, we have, by (3.5) and (3.7),

Φ1 =
1
n

∑
i

Ãii =
1
n

∑
i,m

FimGmi

at any point in R(n(n+1)/2)+n×N . Using (3.13) and the fact that F does not
depend on rkl, it is not difficult to verify that∑

k≤l

∂Φ1

∂rkl
ξkξl =

ω

n

∑
k,l

Fklξkξl for all (ξ1, ξ2, . . . , ξn).

Since F is a definite positive symmetric matrix at any point of R(n(n+1)/2)+n×
N , we obtain the ellipticity of Φ1 over R(n(n+1)/2)+n×N . This completes the
proof of Proposition 3.4. �

4. Proofs of the main results

For the proof of Theorem 1.1, we will need the following lemma.

Lemma 4.1. If p ∈ Γr and v ∈ On then p+ t v ∈ Γr for all t ≥ 0.

Proof. If the conclusion does not hold, then there exists t0 > 0 such that
σr(p + t v) > 0 in [0, t0) and σr(p + t0 v) = 0. This implies that d

d tσr(p +
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t v)|t=t′ < 0 for some t′ ∈ (0, t0). But

d

d t
σr(p+ t v)|t=t′ =

n∑
i=1

Diσr(p+ t′ v) vi ≥ 0

by (2.6). Thus we have obtained a contradiction. �

Proof of Theorem 1.1. Restricting W if necessary, our assumptions and
(3.6) imply

Φr(Λ(µ2)(x)) = H2
r (x) ≥ H1

r (x) = Φr(Λ(µ1)(x)), x ∈W.
In order to apply the Maximum Principle of Section 2 and conclude that µ1

coincides with µ2 in a neighborhood of zero, we will prove that, by restricting
W if necessary, the function Φr is elliptic with respect to the functions (1 −
t)µ2 + tµ1, t ∈ [0, 1]. To this end, observe first that if µ : W → R is a function
satisfying µ(0) = 0 and µi(0) = 0 for 1 ≤ i ≤ n, then F (µi(0), µ(0), 0) =
F (0, 0, 0) is the identity matrix and, consequently,

Ã(Λ(µ)(0))kl = Ã(µij(0), 0, 0, 0)kl = G(µij(0), 0, 0, 0)kl
=
〈
∇ekd(expp)vel|x=0 , η0

〉
+ µkl(0)

=
〈
D

d t
d(expp)v(tek)el|t=0 , η0

〉
+ µkl(0)

=
〈
D

d t

D

d s
expp(v(tek) + s el)|t=0, s=0 , η0

〉
+ µkl(0)

=
〈
D

ds
d(expp)s elek|s=0 , η0

〉
+ µkl(0)

by (3.3). Therefore,

Ã((1− t) Λ(µ2)(0) + tΛ(µ1)(0))kl = Ã((1− t)µ2
ij(0) + t µ1

ij(0), 0, 0, 0)kl

=
〈
D

ds
d(expp)s elek|s=0 , η0

〉
+ (1− t)µ2

kl(0) + t µ1
kl(0)

= Ã(Λ(µ2)(0))kl + t (µ1
kl(0)− µ2

kl(0));

that is,

Ã((1− t) Λ(µ2)(0) + tΛ(µ1)(0))− Ã(Λ(µ2)(0))

= t [(Hessµ1)(0)− (Hessµ2)(0)].

Since µ1 ≥ µ2 in a neighborhood of zero, µ1(0) = 0 = µ2(0) and µji (0) = 0,
for 1 ≤ i ≤ n, j = 1, 2, we have (Hessµ1)(0) − (Hessµ2)(0) ≥ 0 in the sense
that

n∑
k,l=1

(Hessµ1 −Hessµ2)kl(0)ξkξl ≥ 0 for all (ξ1, ξ2, . . . , ξn) ∈ Rn.
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We deduce

Ã((1− t) Λ(µ2)(0) + tΛ(µ1)(0))− Ã(Λ(µ2)(0)) ≥ 0, t ∈ [0, 1].

Hence (see [8], p. 130), for 1 ≤ i ≤ n we have

λi(Ã((1− t) Λ(µ2)(0) + tΛ(µ1)(0)))− λi(Ã(Λ(µ2)(0))) ≥ 0, t ∈ [0, 1],

and thus

λ(Ã((1− t) Λ(µ2)(0) + tΛ(µ1)(0)))− λ(Ã(Λ(µ2)(0))) ∈ On, 0 ≤ t ≤ 1,

where On is the closure of On. Thus, by Lemma 4.1, λ(Ã((1− t) Λ(µ2)(0) +
tΛ(µ1)(0))) belongs to Γr, 0 ≤ t ≤ 1. Proposition 3.4 then shows that Φr is
elliptic at the points given by (1 − t) Λ(µ2)(0) + tΛ(µ1)(0), t ∈ [0, 1]. Since
ellipticity is an open condition and Ωr is open, restricting W if necessary, we
conclude by continuity and by the compactness of [0, 1] that Φr is elliptic at
the points (1 − t) Λ(µ2)(x) + tΛ(µ1)(x), x ∈ W, t ∈ [0, 1]. This means that
Φr is elliptic with respect to the functions (1 − t)µ2 + t µ1, t ∈ [0, 1]. The
Maximum Principle now enables us to conclude that µ1 and µ2 coincide in a
neighborhood of zero. This proves Theorem 1.1. �

For the remaining proofs we will make use of the fact that the functions
µc(t)/t are monotone decreasing on t > 0.

Proof of Theorem 1.3. Let ∂Bρ′(p0) be the largest sphere that fits inside
Mn. Suppose that ρ′ > ρ. Then, µc(ρ′)/ρ′ < µc(ρ)/ρ and thus

(4.1) |Hr| ≥
[
µc(ρ)
ρ

]r
>

[
µc(ρ′)
ρ′

]r
on Mn.

Since Mn is compact and embedded, we can orient Mn by the normals point-
ing inward and find a point q ∈ Mn where all principal curvatures are posi-
tive; that is, the principal curvature vector of Mn at q belongs to the positive
cone On ⊂ Γr. Let λ : Mn → R

n be the continuous function that asso-
ciates to each point in Mn its principal curvature vector with the choices
λ1 ≤ λ2 ≤ · · · ≤ λn. Since, by assumption, Hr does not change sign on Mn,
and Hr(q) > 0, we deduce that Hr > 0 on Mn. Hence, λ(Mn) is a connected
compact set in Rn, contained in the connected component of {σr > 0 } that
contains On, and therefore λ(Mn) ⊂ Γr. Observe now that Mn and ∂Bρ′(p0)
are tangent at p. We can apply Theorem 1.1 and conclude that Mn and
∂Bρ′(p0) coincide in a neighborhood of p, since [µc(ρ′)/ρ′]r is precisely the
constant value of the r-mean curvature of ∂Bρ′(p0), oriented by the normals
pointing inward, at any point. But this contradicts (4.1). Therefore, ρ′ ≤ ρ.
If equality holds here, then Theorem 1.1 applies again and shows that Mn

and ∂Bρ(p0) coincide in a neighborhood of points of tangency, and a stan-
dard argument using the connectedness ensures that these hypersurfaces are
identical. �
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Proof of Theorem 1.4. If ρ ≤ τ , then there is nothing to prove. Suppose
that ρ > τ and Mn 6⊂ Bτ (p0). In this case, if p is a point in Mn farthest
from p0, then p ∈M − ∂M , ρ′ = d(p0, p) > τ and Bρ′(p0) is the smallest ball
centered at p0 enclosing Mn. Here d(p0, .) stands for the distance function
from p0 in the space form Qn+1

c . The farthest point p from p0, since it is an
interior point of Mn, is a point where Mn and ∂Bρ′(p0) are tangent. Orient
Mn at p with the unitary normal vector η0 pointing inward to ∂Bρ′(p0). Since
ρ′ ≤ ρ and µc(t)/t is positive and monotone decreasing on t, we have over Mn[

µc(ρ′)
ρ′

]r
≥
[
µc(ρ)
ρ

]r
≥ |Hr| ≥ Hr.

Since [µc(ρ′)/ρ′]r is the constant value of the r-mean curvature of ∂Bρ′(p0),
oriented by the normals pointing inward, we can apply Theorem 1.1 and
conclude that Mn coincides with ∂Bρ′(p0) in a neighborhood of p. Arguing
via connectedness, we obtain that M−∂M is contained in ∂Bρ′(p0). But ∂M
is also contained in ∂Bρ′(p0), contradicting the relation ∂M ⊂ Bτ (p0) and
τ < ρ′. �

Proof of Theorem 1.5. Consider the function g = 1
2dp0( . )2, where dp0( . )

stands for the distance function from p0 on Nn+1. Note that the function
g is differentiable in a neighborhood of Bρ(p0). Let ϕ : M → R be given
by ϕ = g ◦ F . The function ϕ is differentiable since F (M) is contained in
the closed normal ball Bρ(p0). We now show that Bρ(p0) is the smallest ball
centered at p0 that contains F (M). If this is not the case, there exists a closed
ball Bρ′(p0) with ρ′ < ρ that contains F (M). Let p ∈ Mn be a point such
that dp0(F (p)) = ρ′. It is well known that if η is the unitary vector that is
normal to Mn at p, pointing inward to ∂Bρ′(p0), then

η = −
grad gF (p)∣∣grad gF (p)

∣∣
with

∣∣grad gF (p)

∣∣ = dp0(F (p)) = ρ′. Here grad gF (p) is the value at F (p) of
the gradient of g in Nn+1. It follows from Lemma 2.5 in [10] and the fact
that, for fixed t, µc(t) is monotone decreasing in c, that the Hessian of ϕ in p
satisfies

Hessϕp(X,X) ≥ µc(dp0(F (p)))〈X,X〉+ 〈grad gF (p), α(X,X)〉

for all X ∈ TpM , where α is the second fundamental form of F at p. Consider
now an arbitrary principal curvature λi of Aη with unitary principal direction
ei. Since ϕ attains a maximum at p, we deduce that

0 ≥ Hessϕp(ei, ei) ≥ µc(ρ′)− ρ′λi,
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that is, λi ≥ µc(ρ′)/ρ′. Consequently, we have

Hr(p) ≥
[
µc(ρ′)
ρ′

]r
>

[
µc(ρ)
ρ

]r
,

which contradicts the hypothesis. Therefore, ρ′ = ρ and Bρ(p0) is the smallest
ball centered at p0 that contains F (M). Observe that if we consider the
constant function defined as the restriction of g to ∂Bρ(p0), then proceeding
as above we deduce that for ∂Bρ(p0), oriented by the normals pointing inward,
at any point all principal curvatures are greater than or equal to µc(ρ)/ρ. This
implies that at any point the principal curvature vector of ∂Bρ(p0) belongs
to On and that the r-mean curvature H ′r of ∂Bρ(p0) satisfies

H ′r ≥
[
µc(ρ)
ρ

]r
≥ Hr.

By Theorem 1.1, this implies that F (M) and ∂Bρ(p0) coincide in a neigh-
borhood of F (p). Arguing via connectedness, we conclude that F (M) is the
boundary of Bρ(p0). Since now Mn has all principal curvatures greater than
or equal to µc(ρ)/ρ and, by assumption, |Hr| ≤ [µc(ρ)/ρ]r, it follows that all
principal curvatures are equal to µc(ρ)/ρ. In particular, if H is the mean cur-
vature vector function on Mn then |H| = µc(ρ)/ρ. Theorem 1.5 now follows
from Proposition 3.4 in [13]. �

Remark 4.2. It is clear from the proofs of our results that when r is even
we can assume the less restrictive hypothesis Hr ≤ [µc(ρ)/ρ]r in Theorems
1.4 and 1.5.

Remark 4.3. It follows from Theorem 1.1 that, in any ambient space, if a
hypersurface remains on one side of another hypersurface in a neighborhood
of a tangency point and both hypersurfaces have the same constant mean
curvature, then they coincide in a neighborhood of such a point.

Remark 4.4. In [9], J. Hounie and M.L. Leite have obtained tangency
principles for hypersurfaces in Euclidean space satisfying Hr = 0. The proofs
of their tangency principles are based on the fact that such hypersurfaces
satisfy a nonlinear equation Gr(Hessµ, gradµ) = 0 and on algebraic results.
In any Riemannian manifold, if we have a hypersurface with Hr = 0 then, as
we have seen above, the nonlinear equation Φr(Λ(µ)(x)) = 0 is also satisfied.
This fact permits us to extend their tangency principles, stated as Theorem
0.1 and Theorem 0.2, to hypersurfaces in any Riemannian manifold. The
proofs are identical.
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