A TANGENCY PRINCIPLE AND APPLICATIONS

F. FONTENELE AND SÉRGIO L. SILVA

Abstract

In this paper we obtain a tangency principle for hypersurfaces, with not necessarily constant r-mean curvature function H_{r}, of an arbitrary Riemannian manifold. That is, we obtain sufficient geometric conditions for two submanifolds of a Riemannian manifold to coincide, as a set, in a neighborhood of a tangency point. As applications of our tangency principle, we obtain, under certain conditions on the function H_{r}, sharp estimates on the size of the greatest ball that fits inside a connected compact hypersurface embedded in a space form of constant sectional curvature $c \leq 0$ and on the size of the smallest ball that encloses the image of an immersion of a compact Riemannian manifold into a Riemannian manifold with sectional curvatures limited from above. This generalizes results of Koutroufiotis, Coghlan-Itokawa, Pui-Fai Leung, Vlachos and Markvorsen. We also generalize a result of Serrin. Our techniques permit us to extend results of Hounie-Leite.

1. Introduction

Let N^{n+1} be a complete Riemannian manifold with metric \langle,$\rangle , Levi-$ Civita connection ∇ and the usual exponential mapping exp: $T N \rightarrow N$. Consider a hypersurface M^{n} of N^{n+1}. Given $p \in M^{n}$ and a fixed unitary vector η_{0} that is normal to M^{n} at p, we can parametrize a neighborhood of M^{n} containing p and contained in a normal ball of N^{n+1} as

$$
\begin{equation*}
\varphi(x)=\exp _{p}\left(x+\mu(x) \eta_{0}\right) \tag{1.1}
\end{equation*}
$$

where the vector x varies in a neighborhood W of zero in $T_{p} M$ and $\mu: W \rightarrow \mathbb{R}$ satisfies $\mu(0)=0$. Observe that μ is unique. Consider now a local orientation $\eta: W \rightarrow T_{\varphi(W)}^{\perp} M$ of M^{n} with $\eta(0)=\eta_{0}$. Denote by $A_{\eta(x)}$ the second fundamental form of M^{n} in the direction $\eta(x)$. Choosing the principal curvatures of M^{n} at each $x \in W$ so that $\lambda_{1}(x) \leq \lambda_{2}(x) \leq \cdots \leq \lambda_{n}(x)$, the functions λ_{i} become continuous functions on W. Denote by $\lambda(x)=\left(\lambda_{1}(x), \lambda_{2}(x), \ldots, \lambda_{n}(x)\right)$

[^0]the principal curvature vector at $x \in W$. The r-mean curvatures $H_{r}, 1 \leq r \leq$ n, are given by
\[

$$
\begin{equation*}
H_{r}(x)=\frac{1}{\binom{n}{r}} \sigma_{r}(\lambda(x)), \tag{1.2}
\end{equation*}
$$

\]

where $\sigma_{r}(\lambda(x))$ is the value at $\lambda(x)$ of the r-elementary symmetric function $\sigma_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\sigma_{r}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\sum_{i_{1}<i_{2}<\cdots<i_{r}} z_{i_{1}} z_{i_{2}} \ldots z_{i_{r}} \tag{1.3}
\end{equation*}
$$

Denote by Γ_{r} the connected component in \mathbb{R}^{n} of the set $\left\{\sigma_{r}>0\right\}$ that contains the vector $a_{0}=(1,1, \ldots, 1)$. Observe that Γ_{n} is precisely the positive cone \mathcal{O}^{n}, defined by

$$
\begin{equation*}
\mathcal{O}^{n}=\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{R}^{n} \mid z_{i}>0 \quad \text { for } 1 \leq i \leq n\right\} \tag{1.4}
\end{equation*}
$$

and that $\mathcal{O}^{n} \subset \Gamma_{r}$ for $1 \leq r \leq n$. In fact, we will show in Section 2 that, more generally, $\Gamma_{r+1} \subset \Gamma_{r}$ for $1 \leq r \leq n-1$.

Definition. Let M_{1}^{n} and M_{2}^{n} be hypersurfaces of N^{n+1} that are tangent at p, i.e., which satisfy $T_{p} M_{1}=T_{p} M_{2}$. Fix a unitary vector η_{0} that is normal to M_{1}^{n} at p. We say that M_{1}^{n} remains above M_{2}^{n} in a neighborhood of p with respect to η_{0} if, when we parametrize M_{1}^{n} and M_{2}^{n} by φ^{1} and φ^{2} as in (1.1), the corresponding functions μ^{1} and μ^{2} satisfy $\mu^{1}(x) \geq \mu^{2}(x)$ in a neighborhood of zero.

We note in passing that this definition is equivalent to requiring that the geodesics of N^{n+1} that are normal to the hypersurface which is totally geodesic at $p\left(\right.$ namely, $\left.\exp _{p}(W)\right)$, in a neighborhood of p intercept M_{2}^{n} before M_{1}^{n}.

In this paper we obtain the following tangency principle:
TheOrem 1.1. Let M_{1}^{n} and M_{2}^{n} be hypersurfaces of N^{n+1} that are tangent at p and let η_{0} be a unitary vector that is normal to M_{1}^{n} at p. Suppose that M_{1}^{n} remains above M_{2}^{n} in a neighborhood of p with respect to η_{0}. Denote by $H_{r}^{1}(x)$ and $H_{r}^{2}(x)$ the r-mean curvature at $x \in W$ of M_{1}^{n} and M_{2}^{n}, respectively. Assume that, for some $r, 1 \leq r \leq n$, we have $H_{r}^{2}(x) \geq H_{r}^{1}(x)$ in a neighborhood of zero; if $r \geq 2$, assume also that $\lambda^{2}(0)$, the principal curvature vector of M_{2} at zero, belongs to Γ_{r}. Then M_{1}^{n} and M_{2}^{n} coincide in a neighborhood of p.

For hypersurfaces with boundaries, as a consequence of the proof of Theorem 1.1, we obtain the following tangency principle:

ThEOREM 1.2. Let M_{1}^{n} and M_{2}^{n} be hypersurfaces of N^{n+1} with boundaries ∂M_{1} and ∂M_{2}, respectively. Suppose that M_{1}^{n} and M_{2}^{n}, as well as ∂M_{1} and ∂M_{2}, are tangent at $p \in \partial M_{1} \cap \partial M_{2}$, and let η_{0} be normal to M_{1}^{n} at p.

Suppose that M_{1}^{n} remains above M_{2}^{n} in a neighborhood of p with respect to η_{0}. Denote by $H_{r}^{1}(x)$ and $H_{r}^{2}(x)$ the r-mean curvatures at $x \in W$ of M_{1}^{n} and M_{2}^{n}, respectively. Assume that, for some $r, 1 \leq r \leq n$, we have $H_{r}^{2}(x) \geq H_{r}^{1}(x)$ in a neighborhood of zero. If $r \geq 2$, assume also that $\lambda^{2}(0)$, the principal curvature vector of M_{2} at zero, belongs to Γ_{r}. Then M_{1}^{n} and M_{2}^{n} coincide in a neighborhood of p.

In connection with the above results see also Remark 4.4.
In order to state our applications, we need to introduce some notations. Denote by $\overline{B_{\rho}\left(p_{0}\right)}$ a geodesic closed ball centered at p_{0} and of radius ρ in the ambient space, and let Q_{c}^{n+1} be the ($n+1$)-dimensional simply connected space form of constant curvature c. Consider the functions

$$
\mu_{c}(t)= \begin{cases}t \sqrt{-c} \operatorname{coth}(t \sqrt{-c}), & c<0 \tag{1.5}\\ 1, & c=0 \\ t \sqrt{c} \cot (t \sqrt{c}), & c>0\end{cases}
$$

As a first application of Theorem 1.1, we obtain the following result.
ThEOREM 1.3. Let M^{n} be a compact connected embedded hypersurface of $Q_{c}^{n+1}, c \leq 0$. Suppose that $\left|H_{r}\right| \geq\left[\mu_{c}(\rho) / \rho\right]^{r}$ on M^{n} for some $\rho>0$. Then the largest sphere which fits inside M^{n} has radius less than ρ, unless M^{n} is a sphere.

Theorem 1.3 generalizes Theorem 1 in [11] and a result due to Blaschke ([3]; see also Theorem 3 in [11]). As a second application of Theorem 1.1, we generalize a result of Serrin, stated as Theorem 1 in [14], in the following theorem.

THEOREM 1.4. Let M^{n} be a compact connected hypersurface in Q_{c}^{n+1} with boundary ∂M contained in the closed ball $\overline{B_{\tau}\left(p_{0}\right)}$. Suppose that, for some $\rho>0$, we have $\left|H_{r}\right| \leq\left[\mu_{c}(\rho) / \rho\right]^{r}$ and that M^{n} is contained in the closed ball $\overline{B_{\rho}\left(p_{0}\right)}$; if $c>0$, suppose further that $\rho<\pi / 2 \sqrt{c}$. Then M^{n} is contained in $\overline{B_{\tau}\left(p_{0}\right)}$.

From Theorem 1.1 we also obtain the following result.
Theorem 1.5. Let $F: M^{n} \rightarrow N^{n+1}$ be a smooth isometric immersion of a compact connected Riemannian manifold into a Riemannian manifold N^{n+1}. Suppose that $F(M)$ is contained in a closed normal ball $\overline{B_{\rho}\left(p_{0}\right)}$ centered at p_{0} and of radius ρ. Let c be the supremum of the sectional curvatures of N^{n+1} on $\overline{B_{\rho}\left(p_{0}\right)}$; if $c>0$, assume also that $\rho<\pi / 2 \sqrt{c}$. If $\left|H_{r}\right| \leq\left[\mu_{c}(\rho) / \rho\right]^{r}$, then $F(M)$ is the boundary of $\overline{B_{\rho}\left(p_{0}\right)}$ and $B_{\rho}\left(p_{0}\right)$ is isometric to an open ball of radius ρ in Q_{c}^{n+1}.

Corollary 1.6. Let $F: M^{n} \rightarrow N^{n+1}$ be a smooth isometric immersion of a compact connected Riemannian manifold into a Riemannian manifold N^{n+1} with sectional curvature function satisfying $K_{N} \leq c$ for some real constant c. Suppose that $F(M)$ is contained in a closed normal ball $\overline{B_{\rho}\left(p_{0}\right)}$. If $c>0$, assume furthermore that $\rho<\pi / 2 \sqrt{c}$. If $\left|H_{r}\right| \leq\left[\mu_{c}(\rho) / \rho\right]^{r}$ then $F(M)$ is the boundary of $\overline{B_{\rho}\left(p_{0}\right)}$ and $B_{\rho}\left(p_{0}\right)$ is isometric to an open ball of radius ρ in Q_{c}^{n+1}.

For the case of mean curvature, i.e., the case $r=1$, Theorem 1.5 was obtained by Markvorsen in [13]. We point out that Coghlan, Itokawa, and Kosecki [6], assuming $\sup _{M}|H|=\mu_{c}(\rho) / \rho$ for the length of the mean curvature vector H of an immersion $G: M^{n} \rightarrow N^{m}$ such that $G(M) \subset \overline{B_{\rho}\left(p_{0}\right)}$, concluded that F must be a minimal immersion on the boundary of $\overline{B_{\rho}\left(p_{0}\right)}$. Here M^{n} is a complete connected Riemannian manifold with scalar curvature bounded away from $-\infty, c$ is the supremum of the sectional curvature over $\overline{B_{\rho}\left(p_{0}\right)}$, and $\rho<\pi / 2 \sqrt{c}$ if $c>0$.

When N^{n+1} is the space form Q_{c}^{n+1}, rigidity theorems similar to Theorem 1.5 were obtained by Koutroufiotis [11] and Coghlan and Itokawa [5] for sectional curvature, by Pui-Fai Leung [12] for Ricci curvature, and by Vlachos [15] for all r-mean curvatures.

2. Elliptic operators and hyperbolic polynomials

For $d=(n(n+1) / 2)+2 n+1$, write an arbitrary point p at \mathbb{R}^{d} as

$$
p=\left(r_{11}, \ldots, r_{1 n}, r_{22}, \ldots r_{2 n}, \ldots, r_{(n-1) n}, r_{n n}, r_{1}, \ldots, r_{n}, z, x_{1}, \ldots, x_{n}\right)
$$

or, in short, as $p=\left(r_{i j}, r_{i}, z, x\right)$ with $1 \leq i \leq j \leq n$ and $x=\left(x_{1}, \ldots, x_{n}\right)$. A C^{1}-function $\Phi: \Gamma \rightarrow \mathbb{R}$ defined in an open set Γ of \mathbb{R}^{d} is said to be elliptic in $p \in \Gamma$ if

$$
\begin{equation*}
\sum_{i \leq j=1}^{n} \frac{\partial \Phi}{\partial r_{i j}}(p) \xi_{i} \xi_{j}>0 \text { for all nonzero }\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

We say that Φ is elliptic in Γ if Φ is elliptic in p for all $p \in \Gamma$. Given a function $f: U \rightarrow \mathbb{R}$ of class C^{2} defined in an open set $U \subset \mathbb{R}^{n}$ and $x \in U$, we associate a point $\Lambda(f)(x)$ in \mathbb{R}^{d} by setting

$$
\begin{equation*}
\Lambda(f)(x)=\left(f_{i j}(x), f_{i}(x), f(x), x\right) \tag{2.2}
\end{equation*}
$$

where $f_{i j}(x)$ and $f_{i}(x)$ stand for $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)$ and $\frac{\partial f}{\partial x_{i}}(x)$, respectively. Saying that the function Φ is elliptic with respect to f means that $\Lambda(f)(x)$ belongs to Γ and Φ is elliptic in $\Lambda(f)(x)$ for all $x \in U$. For elliptic functions we have the following maximum principle (see [1]).

Maximum Principle. Let $f, g: U \rightarrow \mathbb{R}$ be C^{2}-functions defined in an open set U of \mathbb{R}^{n} and let $\Phi: \Gamma \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function of class C^{1}. Suppose
that Φ is elliptic with respect to the functions $(1-t) f+t g, t \in[0,1]$. Assume also that

$$
\begin{equation*}
\Phi(\Lambda(f)(x)) \geq \Phi(\Lambda(g)(x)) \text { for all } x \in U \tag{2.3}
\end{equation*}
$$

and that $f \leq g$ on U. Then $f<g$ on U unless f and g coincide in a neighborhood of any point $x_{0} \in U$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.

To obtain this above maximum principle, which in the case $n=2$ is stated in [11], one linearizes in a well-known fashion,

$$
\Phi(\Lambda(f)(x))-\Phi(\Lambda(g)(x))=L(f-g)(x) \geq 0
$$

and then applies Hopf's maximum principle for linear operators to conclude that if $f\left(x_{0}\right)=g\left(x_{0}\right)$ for some $x_{0} \in U$ then f and g coincide in a neighborhood of x_{0} in U.

For our proofs we will also need the following result from [7]. Let $P: \mathbb{R}^{n} \rightarrow$ \mathbb{R} be a homogeneous polynomial of degree m and let $a \in \mathbb{R}^{n}$ be a fixed vector. We say that P is a-hyperbolic or hyperbolic with respect to the vector a if the s-polynomial $P(s a+x)$ has m real roots for all $x \in \mathbb{R}^{n}$. In [7], Gårding proved that the set

$$
\begin{equation*}
C(P, a)=\left\{x \in \mathbb{R}^{n} \mid P(s a+x) \neq 0, \text { for all } s \geq 0\right\} \tag{2.4}
\end{equation*}
$$

is an open convex cone that coincides with the connected component of $\{P \neq 0\}$ containing a and that if P is a-hyperbolic, then the homogeneous polynomial of degree $m-1$ given by

$$
Q(x)=\left.\frac{d}{d s} P(s a+x)\right|_{s=0}=\sum_{j=1}^{n} a_{j} \frac{\partial P}{\partial x_{j}}(x)
$$

is also a-hyperbolic and $C(P, a) \subset C(Q, a)$.
Applying this result to the n-elementary symmetric function σ_{n}, which is a_{0}-hyperbolic with respect to $a_{0}=(1,1, \ldots, 1)$, and observing that

$$
\sigma_{r}(x)=\left.\frac{1}{(n-r)!} \frac{d^{n-r}}{d s^{n-r}} \sigma_{n}(s a+x)\right|_{s=0}
$$

it is not difficult to see that the homogeneous polynomials σ_{r} of degree r, $1 \leq r \leq n$, are a_{0}-hyperbolic and that the sets $\Gamma_{r}=C\left(\sigma_{r}, a_{0}\right), 1 \leq r \leq n$, satisfy

$$
\begin{equation*}
\Gamma_{n} \subset \Gamma_{n-1} \subset \cdots \subset \Gamma_{1} \tag{2.5}
\end{equation*}
$$

As we have already noted in the Introduction, Γ_{n} is precisely the positive cone \mathcal{O}^{n}. Gårding also established an inequality for hyperbolic polynomials from which it is possible to prove (see [4], Proposition 1.1) that

$$
\begin{equation*}
D_{i} \sigma_{r}=\frac{\partial \sigma_{r}}{\partial z_{i}}>0 \quad \text { on } \quad \Gamma_{r}, 1 \leq i \leq n, 1 \leq r \leq n \tag{2.6}
\end{equation*}
$$

3. r-mean curvatures and ellipticity

Given a hypersurface M^{n} of a complete Riemannian manifold N^{n+1} and $p \in M^{n}$, parametrize M^{n} in a neighborhood of p as in (1.1). Our goal now is to find a function Φ_{r} defined in some open set of $\mathbb{R}^{d}, d=\frac{n(n+1)}{2}+2 n+1$, that contains the origin so that

$$
H_{r}(x)=\Phi_{r}\left(\mu_{i j}(x), \mu_{i}(x), \mu(x), x\right)=\Phi_{r}(\Lambda(\mu)(x)), \quad x \in W
$$

To this end we fix an orthonormal basis $e_{1}, e_{2}, \ldots, e_{n}$ in $T_{p} M$ and introduce coordinates in $T_{p} M$ by setting $x=\sum_{i=1}^{n} x_{i} e_{i}$ for all x in $T_{p} M$. Note that the function μ satisfies $\mu_{i}(0)=\frac{\partial \mu}{\partial x_{i}}(0)=0,1 \leq i \leq n$. Recall that $\eta: W \rightarrow$ $T_{\varphi(W)}^{\perp} M$ is a local orientation of M^{n} with $\eta(0)=\eta_{0}$ and $A_{\eta(x)}$ is the second fundamental form of M^{n} in the direction $\eta(x)$. Denote by $\varphi_{i}(x)$ the vector $\frac{\partial \varphi}{\partial x_{i}}(x)$. If $A(x)=\left(a_{i j}(x)\right)$ is the matrix of $A_{\eta(x)}$ in the basis $\varphi_{i}(x), 1 \leq i \leq n$, then $A(x)$ satisfies $A_{\eta(x)} \varphi_{i}(x)=\sum_{j=1}^{n} a_{j i}(x) \varphi_{j}(x)$. It is not difficult to verify that

$$
\begin{equation*}
A(x)=I(x)^{-1} I I(x) \tag{3.1}
\end{equation*}
$$

where $I(x)$ and $I I(x)$ are the matrices given by

$$
I(x)_{i j}=\left\langle\varphi_{i}(x), \varphi_{j}(x)\right\rangle
$$

and

$$
I I(x)_{i j}=\left\langle A_{\eta(x)} \varphi_{i}(x), \varphi_{j}(x)\right\rangle=\left\langle\left(\nabla_{\varphi_{i}} \varphi_{j}\right)_{x}, \eta(x)\right\rangle .
$$

Lemma 3.1. There exists an $n \times n$-matrix valued function \tilde{A} defined in an open set $\mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N}$ of \mathbb{R}^{d} such that

$$
\begin{equation*}
\tilde{A}\left(\mu_{i j}(x), \mu_{i}(x), \mu(x), x\right)=A(x), \quad x \in W \tag{3.2}
\end{equation*}
$$

Proof. We consider the entries in the matrices $I(x)$ and $I I(x)$ given by (3.1). For simplicity of notation, we set $v(x)=\sum_{m=1}^{n} x_{m} e_{m}+\mu(x) \eta_{0}$. Since

$$
\varphi_{i}(x)=d\left(\exp _{p}\right)_{v(x)}\left(e_{i}+\mu_{i}(x) \eta_{0}\right)
$$

the $n \times n$-symmetric matrix $I(x)$ can be written as a function of $x, \mu(x)$ and $\mu_{i}(x), 1 \leq i \leq n$. Note that the point p, the orthonormal basis $e_{i}, 1 \leq i \leq n$, in $T_{p} M$, and η_{0} are fixed. In the matrix $I(x)$ we replace, for all $i, \mu_{i}(x)$ by $r_{i}, \mu(x)$ by z, and x_{i} by y_{i}. We obtain an $n \times n$-symmetric matrix $\bar{F}\left(r_{i}, z, y_{i}\right)$ which has an inverse at points such that $d\left(\exp _{p}\right)_{\left(\sum_{i=1}^{n} y_{i} e_{i}+z \eta_{0}\right)}$ is a linear isomorphism. Take the maximal connected open set \mathcal{N} in \mathbb{R}^{n+1} that contains the origin and so that if $\left(z, y_{1}, \ldots, y_{n}\right) \in \mathcal{N}$ then $d\left(\exp _{p}\right)_{\left(\sum_{i=1}^{n} y_{i} e_{i}+z \eta_{0}\right)}$ is a linear isomorphism. The existence of such a set \mathcal{N} follows from the fact that $d\left(\exp _{p}\right)_{0}$ is the identity. Thus, restricting \bar{F} to $\mathbb{R}^{n} \times \mathcal{N}$ and setting $F\left(r_{i}, z, y_{i}\right)=\bar{F}\left(r_{i}, z, y_{i}\right)^{-1}$, we have

$$
I(x)^{-1}=F\left(\mu_{i}(x), \mu(x), x_{i}\right), \quad x \in W
$$

We now consider the entries in the $n \times n$-symmetric matrix $I I(x)$. Observe first that

$$
\begin{align*}
\left\langle\nabla_{\varphi_{i}} \varphi_{j}\right. & , \eta\rangle_{x}=\left\langle\nabla_{\varphi_{i}} d\left(\exp _{p}\right)_{v} e_{j}, \eta\right\rangle_{x} \tag{3.3}\\
& +\mu_{i j}(x)\left\langle d\left(\exp _{p}\right)_{v(x)} \eta_{0}, \eta(x)\right\rangle+\mu_{j}(x)\left\langle\nabla_{\varphi_{i}} d\left(\exp _{p}\right)_{v} \eta_{0}, \eta\right\rangle_{x} .
\end{align*}
$$

The vector-valued function $\eta(x)$ depends on $x, \mu(x)$ and the first order derivatives of $\mu(x)$, since $\eta(x)$ is determined by the basis $\varphi_{i}, 1 \leq i \leq n$, and the metric of N^{n+1} at $\varphi(x)$. Let $G\left(r_{i j}, r_{i}, z, y_{i}\right)$ be the $n \times n$-symmetric matrix defined as follows: if $k \leq l$ then $G\left(r_{i j}, r_{i}, z, y_{i}\right)_{k l}$ is obtained from $I I(x)_{k l}$ by replacing, on the right hand side of (3.3), $\mu_{k l}(x)$ by $r_{k l}, \mu_{m}(x)$ by $r_{m}, \mu(x)$ by z, and finally x_{m} by $y_{m}, 1 \leq m \leq n$; that is, if $k \leq l$, then

$$
\begin{align*}
& G\left(r_{i j}, r_{i}, z, y_{i}\right)_{k l}=\left\langle\nabla_{\psi_{k}} d\left(\exp _{p}\right)_{v} e_{l}, \eta\right\rangle_{\left(r_{i}, z, y_{i}\right)} \tag{3.4}\\
& \quad+r_{k l}\left\langle d\left(\exp _{p}\right)_{v} \eta_{0}, \eta\right\rangle_{\left(r_{i}, z, y_{i}\right)}+r_{l}\left\langle\nabla_{\psi_{k}} d\left(\exp _{p}\right)_{v} \eta_{0}, \eta\right\rangle_{\left(r_{i}, z, y_{i}\right)},
\end{align*}
$$

where

$$
v\left(z, y_{i}\right)=\sum_{m=1}^{n} y_{m} e_{m}+z \eta_{0}, \quad \psi_{k}\left(r_{i}, z, y_{i}\right)=d\left(\exp _{p}\right)_{v\left(z, y_{i}\right)}\left(e_{k}+r_{k} \eta_{0}\right)
$$

and $\eta\left(r_{i}, z, y_{i}\right)$ is a unitary vector that is normal to the hyperplane spanned by $\psi_{m}\left(r_{i}, z, y_{i}\right), 1 \leq m \leq n$. Hence the $n \times n$-symmetric matrix $G\left(r_{i j}, r_{i}, z, y_{i}\right)$ defined in $\mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N}$ satisfies

$$
I I(x)=G\left(\mu_{i j}(x), \mu_{i}(x), \mu(x), x_{i}\right) .
$$

Taking

$$
\begin{equation*}
\tilde{A}\left(r_{i j}, r_{i}, z, y_{i}\right)=F\left(r_{i}, z, y_{i}\right) G\left(r_{i j}, r_{i}, z, y_{i}\right), \tag{3.5}
\end{equation*}
$$

we obtain an $n \times n$-matrix valued function \tilde{A} in the open subset $\mathbb{R}^{(n(n+1) / 2)+n} \times$ \mathcal{N} of \mathbb{R}^{d} such that $\tilde{A}\left(\mu_{i j}(x), \mu_{i}(x), \mu(x), x\right)=A(x), x \in W$.

We point out that, since $F\left(r_{i}, z, y_{i}\right)$ is a definite positive symmetric matrix and $G\left(r_{i j}, r_{i}, z, y_{i}\right)$ is symmetric, the matrix $\tilde{A}\left(r_{i j}, r_{i}, z, y_{i}\right)$ given by (3.5) is diagonalizable (see e.g. [8], p. 120); that is, there exists an $n \times n$-invertible real matrix P, depending on $\left(r_{i j}, r_{i}, z, y_{i}\right)$, such that $P^{-1} \tilde{A}\left(r_{i j}, r_{i}, z, y_{i}\right) P$ is diagonal.

Proposition 3.2. There exists a function $\Phi_{r}: \mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N} \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
\Phi_{r}(\Lambda(\mu)(x))=\Phi_{r}\left(\mu_{i j}(x), \mu_{i}(x), \mu(x), x\right)=H_{r}(x) . \tag{3.6}
\end{equation*}
$$

Proof. Consider the function Φ_{r} defined by

$$
\begin{equation*}
\Phi_{r}=\frac{1}{\binom{n}{r}} \sigma_{r} \circ \lambda \circ \tilde{A} . \tag{3.7}
\end{equation*}
$$

Here $\lambda(\tilde{A})=\left(\lambda_{1}(\tilde{A}), \lambda_{2}(\tilde{A}), \ldots, \lambda_{n}(\tilde{A})\right)$, where $\lambda_{1}(\tilde{A}) \leq \lambda_{2}(\tilde{A}) \leq \cdots \leq \lambda_{n}(\tilde{A})$ are the eigenvalues of \tilde{A}. Now, (3.6) is an immediate consequence of (3.7), (1.2) and (3.2).

If A is an arbitrary $n \times n$-real matrix, the eigenvalues $\lambda_{i}(A), 1 \leq i \leq n$, of A are not necessarily real, but we can consider

$$
\left(\sigma_{r} \circ \lambda\right)(A)=\sigma_{r}\left(\lambda_{1}(A), \lambda_{2}(A), \ldots, \lambda_{n}(A)\right)
$$

where σ_{r} is given by (1.3). The value $\left(\sigma_{r} \circ \lambda\right)(A)$ does not depend on the order of the eigenvalues of A we choose. The function $\sigma_{r} \circ \lambda: \mathcal{M}^{n}(\mathbb{R}) \rightarrow \mathbb{R}$ defined in the set of all $n \times n$-real matrices is differentiable since $\left(\sigma_{r} \circ \lambda\right)(A)$ is a homogeneous polynomial of degree r in the entries of A.

In order to establish some ellipticity properties of Φ_{r}, we will need the following lemma.

Lemma 3.3. If $A_{0} \in \mathcal{M}^{n}(\mathbb{R})$ is symmetric and $\lambda\left(A_{0}\right) \in \Gamma_{r}$ then

$$
\begin{equation*}
\sum_{i, j=1}^{n} \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial A_{i j}}\left(A_{0}\right) \xi_{i} \xi_{j}>0 \quad \text { for all nonzero } \quad\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \tag{3.8}
\end{equation*}
$$

Proof. We divide the proof into three steps.
Step 1. Suppose that A_{0} is a diagonal matrix with distinct eigenvalues. In this case, it is well known that the functions $\lambda_{i}, 1 \leq i \leq n$, are differentiable in a neighborhood of A_{0}, in $\mathcal{M}^{n}(\mathbb{R})$. Therefore,

$$
\begin{equation*}
\frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial A_{k l}}\left(A_{0}\right)=\sum_{i=1}^{n} \frac{\partial \sigma_{r}}{\partial z_{i}}\left(\lambda\left(A_{0}\right)\right) \frac{\partial \lambda_{i}}{\partial A_{k l}}\left(A_{0}\right) \tag{3.9}
\end{equation*}
$$

Let $E^{k l}$ be the matrix defined by $\left(E^{k l}\right)_{i j}=\delta_{k i} \delta_{l j}$. Using the multilinearity of the determinant, we see that the matrices A_{0} and $A_{0}+t E^{k l}$ have the same characteristic polynomial for all t and $k \neq l$. This implies that

$$
\begin{equation*}
\frac{\partial \lambda_{i}}{\partial A_{k l}}\left(A_{0}\right)=0 \quad \text { for } \quad k \neq l \quad \text { and } \quad 1 \leq i \leq n \tag{3.10}
\end{equation*}
$$

We now compute the above derivatives for $k=l$. Consider first the unique permutation θ of $\{1,2, \ldots, n\}$ such that $\lambda_{\theta(j)}=\left(A_{0}\right)_{j j}$. Since the functions $\lambda_{i}, 1 \leq i \leq n$, are differentiable in a neighborhood of A_{0}, we have that in a neighborhood of zero the functions $\lambda_{i}\left(A_{0}+t E^{k k}\right), 1 \leq i \leq n$, are differentiable functions of t. Moreover, for t sufficiently small, the eigenvalues $\lambda_{i}\left(A_{0}+t E^{k k}\right)$, $1 \leq i \leq n$, are distinct since the values $\lambda_{i}\left(A_{0}\right)$ are distinct by assumption. Consequently, for small t, we have

$$
\lambda_{\theta(j)}\left(A_{0}+t E^{k k}\right)=\left(A_{0}+t E^{k k}\right)_{j j}
$$

Therefore,

$$
\left.\frac{d}{d t} \lambda_{i}\left(A_{0}+t E^{k k}\right)\right|_{t=0}= \begin{cases}0, & k \neq \theta^{-1}(i) \\ 1, & k=\theta^{-1}(i)\end{cases}
$$

and so

$$
\frac{\partial \lambda_{i}}{\partial A_{k k}}\left(A_{0}\right)= \begin{cases}0, & k \neq \theta^{-1}(i) \tag{3.11}\\ 1, & k=\theta^{-1}(i)\end{cases}
$$

From (3.9), (3.10) and (3.11), it follows that

$$
\frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial A_{k l}}\left(A_{0}\right)= \begin{cases}0, & k \neq l \\ D_{\theta(k)} \sigma_{r}\left(\lambda\left(A_{0}\right)\right), & k=l\end{cases}
$$

The last equality and (2.6) show that (3.8) holds.
Step 2. Suppose A_{0} is diagonal. In this case, define $\mathrm{A}(t)$ by

$$
\mathrm{A}(t)_{k l}= \begin{cases}0, & k \neq l \\ \left(A_{0}\right)_{k k}+\frac{t}{k}, & k=l\end{cases}
$$

For small nonzero t we have:
(i) $\mathrm{A}(t)$ is diagonal with distinct eigenvalues;
(ii) $\lambda(\mathrm{A}(t)) \in \Gamma_{r}$;
(iii) There exists an unique permutation θ of $\{1,2, \ldots, n\}$ such that $\lambda_{\theta(j)}(\mathrm{A}(t))=\mathrm{A}(t)_{j j}$ for $1 \leq j \leq n$.
By Step 1 we have

$$
\frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial A_{k l}}(\mathrm{~A}(t))= \begin{cases}0, & k \neq l \\ D_{\theta(k)} \sigma_{r}(\lambda(\mathrm{~A}(t))), & k=l\end{cases}
$$

Since σ_{r} is of class C^{1} and $\lim _{t \rightarrow 0} \lambda(\mathrm{~A}(t))=\lambda\left(A_{0}\right)$, we conclude that

$$
\frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial A_{k l}}\left(A_{0}\right)= \begin{cases}0, & k \neq l \\ D_{\theta(k)} \sigma_{r}\left(\lambda\left(A_{0}\right)\right)>0, & k=l\end{cases}
$$

and that (3.8) holds.
Step 3. Suppose that A_{0} is symmetric. In this case, there exists an orthogonal matrix P so that $P^{t} A_{0} P$ is diagonal. Observe that $\lambda\left(P^{t} A_{0} P\right)=$ $\lambda\left(A_{0}\right) \in \Gamma_{r}$ and that $\left(\sigma_{r} \circ \lambda\right)\left(P^{t} A P\right)=\left(\sigma_{r} \circ \lambda\right)(A)$ for all matrices A. Setting $C=P^{t} A P$, we have

$$
\begin{aligned}
\frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial A_{k l}}\left(A_{0}\right) & =\sum_{i, j=1}^{n} \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial C_{i j}}\left(P^{t} A_{0} P\right) \frac{\partial C_{i j}}{\partial A_{k l}}\left(A_{0}\right) \\
& =\sum_{i, j=1}^{n} \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial C_{i j}}\left(P^{t} A_{0} P\right) P_{i k}^{t} P_{j l}^{t}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{k, l=1}^{n} \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial A_{k l}}\left(A_{0}\right) \xi_{k} \xi_{l} & =\sum_{i, j, k, l=1}^{n} \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial C_{i j}}\left(P^{t} A_{0} P\right) P_{i k}^{t} P_{j l}^{t} \xi_{k} \xi_{l} \\
& =\sum_{i, j=1}^{n} \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial C_{i j}}\left(P^{t} A_{0} P\right) w_{i} w_{j}
\end{aligned}
$$

where $w=P^{t} \xi \neq 0$ for $\xi \neq 0$. Since the right hand side of the above expression is positive by Step 2, we have proved Lemma 3.3.

We observe that, in Lemma 3.3, we can replace the assumption $\lambda\left(A_{0}\right) \in \Gamma_{r}$ by the less restrictive assumption that $D_{k} \sigma_{r}\left(\lambda\left(A_{0}\right)\right)>0,1 \leq k \leq n$. This is an immediate consequence of the proof of Lemma 3.3. We note also that Lemma 3.3 is a reformulation of a result in [2]. We have included a proof here only for the convenience of the reader.

Proposition 3.4. The functions $\Phi_{r}: \mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N} \rightarrow \mathbb{R}, 2 \leq r \leq$ n, are elliptic at any point $p^{0}=\left(r_{i j}^{0}, r_{i}^{0}, z^{0}, x_{i}^{0}\right)$ in the open set $\Omega_{r}=(\lambda \circ$ $\tilde{A})^{-1}\left(\Gamma_{r}\right)$, such that $F\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)$ is the identity. The function Φ_{1} is elliptic over $\mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N}$.

Proof. The set Ω_{r} is open because $\lambda \circ \tilde{A}$ is continuous and Γ_{r} is open. Assume first that $r \geq 2$. For $k \leq l$, we have

$$
\begin{equation*}
\frac{\partial\left(\sigma_{r} \circ \lambda \circ \tilde{A}\right)}{\partial r_{k l}}\left(p^{0}\right)=\sum_{m, t=1}^{n} \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial A_{m t}}\left(\tilde{A}\left(p^{0}\right)\right) \frac{\partial \tilde{A}_{m t}}{\partial r_{k l}}\left(p^{0}\right) \tag{3.12}
\end{equation*}
$$

We now compute the numbers $\frac{\partial \tilde{A}_{m t}}{\partial r_{k l}}\left(p^{0}\right)$. By the definition of \tilde{A}, we have

$$
\tilde{A}_{m t}\left(r_{i j}, r_{i}, z, y_{i}\right)=\sum_{\ell} F\left(r_{i}, z, y_{i}\right)_{m \ell} G\left(r_{i j}, r_{i}, z, y_{i}\right)_{\ell t}
$$

Since $F\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)$ is the identity, we obtain that

$$
\frac{\partial \tilde{A}_{m t}}{\partial r_{k l}}\left(p^{0}\right)=\sum_{\ell} F\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)_{m \ell} \frac{\partial G_{\ell t}}{\partial r_{k l}}\left(p^{0}\right)=\frac{\partial G_{m t}}{\partial r_{k l}}\left(p^{0}\right)
$$

It is not hard to verify that

$$
\frac{\partial G_{m t}}{\partial r_{k l}}\left(p^{0}\right)= \begin{cases}\omega\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right), & \text { if }\left(\delta_{m k} \delta_{t l}+\delta_{m l} \delta_{t k}\right) \neq 0 \tag{3.13}\\ 0, & \text { otherwise }\end{cases}
$$

where $\omega\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)$ is given by

$$
\omega\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)=\left\langle d\left(\exp _{p}\right)_{v\left(z^{0}, x_{i}^{0}\right)} \eta_{0}, \eta\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)\right\rangle
$$

with $v\left(z^{0}, x_{i}^{0}\right)=\sum_{i=1}^{n} x_{i}^{0} e_{i}+z^{0} \eta_{0}$. Since at any point $\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right) \in \mathbb{R}^{n} \times \mathcal{N}$, $\eta\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)$ is a unitary vector that is orthogonal to the space spanned by the vectors

$$
\psi_{\ell}\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)=d\left(\exp _{p}\right)_{v\left(z^{0}, x_{i}^{0}\right)}\left(e_{\ell}+r_{\ell}^{0} \eta_{0}\right), \quad 1 \leq \ell \leq n
$$

and $d\left(\exp _{p}\right)_{v\left(z^{0}, x_{i}^{0}\right)}$ is an linear isomorphism, the function $\omega\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)$ does not change sign on $\mathbb{R}^{n} \times \mathcal{N}$. Since $\omega(0,0,0)=1$, we conclude that $\omega\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)$ is positive in $\mathbb{R}^{n} \times \mathcal{N}$. Now (3.12) becomes

$$
\frac{\partial\left(\sigma_{r} \circ \lambda \circ \tilde{A}\right)}{\partial r_{k l}}\left(p^{0}\right)= \begin{cases}\omega\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)\left(\frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial r_{k l}}+\frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial r_{l k}}\right)\left(\tilde{A}\left(p^{0}\right)\right), & \text { if } k<l \\ \omega\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right) \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial r_{k k}}\left(\tilde{A}\left(p^{0}\right)\right), & \text { if } k=l\end{cases}
$$

Since $F\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)$ is the identity matrix, the matrix $\tilde{A}\left(p^{0}\right)=G\left(p^{0}\right)$ is symmetric. Consequently,

$$
\sum_{k \leq l=1}^{n} \frac{\partial \Phi_{r}}{\partial r_{k l}}\left(p^{0}\right) \xi_{k} \xi_{l}=\frac{\omega\left(r_{i}^{0}, z^{0}, x_{i}^{0}\right)}{\binom{n}{r}} \sum_{k, l=1}^{n} \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial r_{k l}}\left(\tilde{A}\left(p^{0}\right)\right) \xi_{k} \xi_{l}
$$

is positive for all nonzero vector $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$ by Lemma 3.3. This proves Proposition 3.4 for $r \geq 2$.

If $r=1$, we have, by (3.5) and (3.7),

$$
\Phi_{1}=\frac{1}{n} \sum_{i} \tilde{A}_{i i}=\frac{1}{n} \sum_{i, m} F_{i m} G_{m i}
$$

at any point in $\mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N}$. Using (3.13) and the fact that F does not depend on $r_{k l}$, it is not difficult to verify that

$$
\sum_{k \leq l} \frac{\partial \Phi_{1}}{\partial r_{k l}} \xi_{k} \xi_{l}=\frac{\omega}{n} \sum_{k, l} F_{k l} \xi_{k} \xi_{l} \text { for all }\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)
$$

Since F is a definite positive symmetric matrix at any point of $\mathbb{R}^{(n(n+1) / 2)+n} \times$ \mathcal{N}, we obtain the ellipticity of Φ_{1} over $\mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N}$. This completes the proof of Proposition 3.4.

4. Proofs of the main results

For the proof of Theorem 1.1, we will need the following lemma.
Lemma 4.1. If $p \in \Gamma_{r}$ and $v \in \overline{\mathcal{O}^{n}}$ then $p+t v \in \Gamma_{r}$ for all $t \geq 0$.
Proof. If the conclusion does not hold, then there exists $t_{0}>0$ such that $\sigma_{r}(p+t v)>0$ in $\left[0, t_{0}\right)$ and $\sigma_{r}\left(p+t_{0} v\right)=0$. This implies that $\frac{d}{d t} \sigma_{r}(p+$
$t v)\left.\right|_{t=t^{\prime}}<0$ for some $t^{\prime} \in\left(0, t_{0}\right)$. But

$$
\left.\frac{d}{d t} \sigma_{r}(p+t v)\right|_{t=t^{\prime}}=\sum_{i=1}^{n} D_{i} \sigma_{r}\left(p+t^{\prime} v\right) v_{i} \geq 0
$$

by (2.6). Thus we have obtained a contradiction.
Proof of Theorem 1.1. Restricting W if necessary, our assumptions and (3.6) imply

$$
\Phi_{r}\left(\Lambda\left(\mu^{2}\right)(x)\right)=H_{r}^{2}(x) \geq H_{r}^{1}(x)=\Phi_{r}\left(\Lambda\left(\mu^{1}\right)(x)\right), \quad x \in W
$$

In order to apply the Maximum Principle of Section 2 and conclude that μ^{1} coincides with μ^{2} in a neighborhood of zero, we will prove that, by restricting W if necessary, the function Φ_{r} is elliptic with respect to the functions (1$t) \mu^{2}+t \mu^{1}, t \in[0,1]$. To this end, observe first that if $\mu: W \rightarrow \mathbb{R}$ is a function satisfying $\mu(0)=0$ and $\mu_{i}(0)=0$ for $1 \leq i \leq n$, then $F\left(\mu_{i}(0), \mu(0), 0\right)=$ $F(0,0,0)$ is the identity matrix and, consequently,

$$
\begin{aligned}
\tilde{A}(\Lambda(\mu)(0))_{k l} & =\tilde{A}\left(\mu_{i j}(0), 0,0,0\right)_{k l}=G\left(\mu_{i j}(0), 0,0,0\right)_{k l} \\
& =\left\langle\left.\nabla_{e_{k}} d\left(\exp _{p}\right)_{v} e_{l}\right|_{x=0}, \eta_{0}\right\rangle+\mu_{k l}(0) \\
& =\left\langle\left.\frac{D}{d t} d\left(\exp _{p}\right)_{v\left(t e_{k}\right)} e_{l}\right|_{t=0}, \eta_{0}\right\rangle+\mu_{k l}(0) \\
& =\left\langle\left.\frac{D}{d t} \frac{D}{d s} \exp _{p}\left(v\left(t e_{k}\right)+s e_{l}\right)\right|_{t=0, s=0}, \eta_{0}\right\rangle+\mu_{k l}(0) \\
& =\left\langle\left.\frac{D}{d s} d\left(\exp _{p}\right)_{s e_{l}} e_{k}\right|_{s=0}, \eta_{0}\right\rangle+\mu_{k l}(0)
\end{aligned}
$$

by (3.3). Therefore,

$$
\begin{aligned}
\tilde{A}\left((1-t) \Lambda\left(\mu^{2}\right)(0)\right. & \left.+t \Lambda\left(\mu^{1}\right)(0)\right)_{k l}=\tilde{A}\left((1-t) \mu_{i j}^{2}(0)+t \mu_{i j}^{1}(0), 0,0,0\right)_{k l} \\
& =\left\langle\left.\frac{D}{d s} d\left(\exp _{p}\right)_{s e_{l}} e_{k}\right|_{s=0}, \eta_{0}\right\rangle+(1-t) \mu_{k l}^{2}(0)+t \mu_{k l}^{1}(0) \\
& =\tilde{A}\left(\Lambda\left(\mu^{2}\right)(0)\right)_{k l}+t\left(\mu_{k l}^{1}(0)-\mu_{k l}^{2}(0)\right)
\end{aligned}
$$

that is,

$$
\begin{aligned}
& \tilde{A}\left((1-t) \Lambda\left(\mu^{2}\right)(0)+t \Lambda\left(\mu^{1}\right)(0)\right)-\tilde{A}\left(\Lambda\left(\mu^{2}\right)(0)\right) \\
&=t\left[\left(\operatorname{Hess} \mu^{1}\right)(0)-\left(\operatorname{Hess} \mu^{2}\right)(0)\right]
\end{aligned}
$$

Since $\mu^{1} \geq \mu^{2}$ in a neighborhood of zero, $\mu^{1}(0)=0=\mu^{2}(0)$ and $\mu_{i}^{j}(0)=0$, for $1 \leq i \leq n, j=1,2$, we have $\left(\operatorname{Hess} \mu^{1}\right)(0)-\left(H e s s ~ \mu^{2}\right)(0) \geq 0$ in the sense that

$$
\sum_{k, l=1}^{n}\left(\operatorname{Hess} \mu^{1}-\operatorname{Hess} \mu^{2}\right)_{k l}(0) \xi_{k} \xi_{l} \geq 0 \text { for all }\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}
$$

We deduce

$$
\tilde{A}\left((1-t) \Lambda\left(\mu^{2}\right)(0)+t \Lambda\left(\mu^{1}\right)(0)\right)-\tilde{A}\left(\Lambda\left(\mu^{2}\right)(0)\right) \geq 0, \quad t \in[0,1]
$$

Hence (see [8], p. 130), for $1 \leq i \leq n$ we have

$$
\lambda_{i}\left(\tilde{A}\left((1-t) \Lambda\left(\mu^{2}\right)(0)+t \Lambda\left(\mu^{1}\right)(0)\right)\right)-\lambda_{i}\left(\tilde{A}\left(\Lambda\left(\mu^{2}\right)(0)\right)\right) \geq 0, \quad t \in[0,1]
$$

and thus

$$
\lambda\left(\tilde{A}\left((1-t) \Lambda\left(\mu^{2}\right)(0)+t \Lambda\left(\mu^{1}\right)(0)\right)\right)-\lambda\left(\tilde{A}\left(\Lambda\left(\mu^{2}\right)(0)\right)\right) \in \overline{\mathcal{O}^{n}}, \quad 0 \leq t \leq 1
$$

where $\overline{\mathcal{O}^{n}}$ is the closure of \mathcal{O}^{n}. Thus, by Lemma $4.1, \lambda\left(\tilde{A}\left((1-t) \Lambda\left(\mu^{2}\right)(0)+\right.\right.$ $\left.t \Lambda\left(\mu^{1}\right)(0)\right)$) belongs to $\Gamma_{r}, \quad 0 \leq t \leq 1$. Proposition 3.4 then shows that Φ_{r} is elliptic at the points given by $(1-t) \Lambda\left(\mu^{2}\right)(0)+t \Lambda\left(\mu^{1}\right)(0), t \in[0,1]$. Since ellipticity is an open condition and Ω_{r} is open, restricting W if necessary, we conclude by continuity and by the compactness of $[0,1]$ that Φ_{r} is elliptic at the points $(1-t) \Lambda\left(\mu^{2}\right)(x)+t \Lambda\left(\mu^{1}\right)(x), x \in W, t \in[0,1]$. This means that Φ_{r} is elliptic with respect to the functions $(1-t) \mu^{2}+t \mu^{1}, t \in[0,1]$. The Maximum Principle now enables us to conclude that μ_{1} and μ_{2} coincide in a neighborhood of zero. This proves Theorem 1.1.

For the remaining proofs we will make use of the fact that the functions $\mu_{c}(t) / t$ are monotone decreasing on $t>0$.

Proof of Theorem 1.3. Let $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$ be the largest sphere that fits inside M^{n}. Suppose that $\rho^{\prime}>\rho$. Then, $\mu_{c}\left(\rho^{\prime}\right) / \rho^{\prime}<\mu_{c}(\rho) / \rho$ and thus

$$
\begin{equation*}
\left|H_{r}\right| \geq\left[\frac{\mu_{c}(\rho)}{\rho}\right]^{r}>\left[\frac{\mu_{c}\left(\rho^{\prime}\right)}{\rho^{\prime}}\right]^{r} \quad \text { on } M^{n} \tag{4.1}
\end{equation*}
$$

Since M^{n} is compact and embedded, we can orient M^{n} by the normals pointing inward and find a point $q \in M^{n}$ where all principal curvatures are positive; that is, the principal curvature vector of M^{n} at q belongs to the positive cone $\mathcal{O}^{n} \subset \Gamma_{r}$. Let $\lambda: M^{n} \rightarrow \mathbb{R}^{n}$ be the continuous function that associates to each point in M^{n} its principal curvature vector with the choices $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$. Since, by assumption, H_{r} does not change sign on M^{n}, and $H_{r}(q)>0$, we deduce that $H_{r}>0$ on M^{n}. Hence, $\lambda\left(M^{n}\right)$ is a connected compact set in \mathbb{R}^{n}, contained in the connected component of $\left\{\sigma_{r}>0\right\}$ that contains \mathcal{O}^{n}, and therefore $\lambda\left(M^{n}\right) \subset \Gamma_{r}$. Observe now that M^{n} and $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$ are tangent at p. We can apply Theorem 1.1 and conclude that M^{n} and $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$ coincide in a neighborhood of p, since $\left[\mu_{c}\left(\rho^{\prime}\right) / \rho^{\prime}\right]^{r}$ is precisely the constant value of the r-mean curvature of $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$, oriented by the normals pointing inward, at any point. But this contradicts (4.1). Therefore, $\rho^{\prime} \leq \rho$. If equality holds here, then Theorem 1.1 applies again and shows that M^{n} and $\partial \overline{B_{\rho}\left(p_{0}\right)}$ coincide in a neighborhood of points of tangency, and a standard argument using the connectedness ensures that these hypersurfaces are identical.

Proof of Theorem 1.4. If $\rho \leq \tau$, then there is nothing to prove. Suppose that $\rho>\tau$ and $M^{n} \not \subset \overline{B_{\tau}\left(p_{0}\right)}$. In this case, if p is a point in M^{n} farthest from p_{0}, then $p \in M-\partial M, \rho^{\prime}=d\left(p_{0}, p\right)>\tau$ and $\overline{B_{\rho^{\prime}}\left(p_{0}\right)}$ is the smallest ball centered at p_{0} enclosing M^{n}. Here $d\left(p_{0},.\right)$ stands for the distance function from p_{0} in the space form Q_{c}^{n+1}. The farthest point p from p_{0}, since it is an interior point of M^{n}, is a point where M^{n} and $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$ are tangent. Orient M^{n} at p with the unitary normal vector η_{0} pointing inward to $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$. Since $\rho^{\prime} \leq \rho$ and $\mu_{c}(t) / t$ is positive and monotone decreasing on t, we have over M^{n}

$$
\left[\frac{\mu_{c}\left(\rho^{\prime}\right)}{\rho^{\prime}}\right]^{r} \geq\left[\frac{\mu_{c}(\rho)}{\rho}\right]^{r} \geq\left|H_{r}\right| \geq H_{r}
$$

Since $\left[\mu_{c}\left(\rho^{\prime}\right) / \rho^{\prime}\right]^{r}$ is the constant value of the r-mean curvature of $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$, oriented by the normals pointing inward, we can apply Theorem 1.1 and conclude that M^{n} coincides with $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$ in a neighborhood of p. Arguing via connectedness, we obtain that $M-\partial M$ is contained in $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$. But ∂M is also contained in $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$, contradicting the relation $\partial M \subset \overline{B_{\tau}\left(p_{0}\right)}$ and $\tau<\rho^{\prime}$.

Proof of Theorem 1.5. Consider the function $g=\frac{1}{2} d_{p_{0}}(.)^{2}$, where $d_{p_{0}}($. stands for the distance function from p_{0} on N^{n+1}. Note that the function g is differentiable in a neighborhood of $\overline{B_{\rho}\left(p_{0}\right)}$. Let $\varphi: M \rightarrow \mathbb{R}$ be given by $\varphi=g \circ F$. The function φ is differentiable since $F(M)$ is contained in the closed normal ball $\overline{B_{\rho}\left(p_{0}\right)}$. We now show that $\overline{B_{\rho}\left(p_{0}\right)}$ is the smallest ball centered at p_{0} that contains $F(M)$. If this is not the case, there exists a closed ball $\overline{B_{\rho^{\prime}}\left(p_{0}\right)}$ with $\rho^{\prime}<\rho$ that contains $F(M)$. Let $p \in M^{n}$ be a point such that $d_{p_{0}}(F(p))=\rho^{\prime}$. It is well known that if η is the unitary vector that is normal to M^{n} at p, pointing inward to $\partial \overline{B_{\rho^{\prime}}\left(p_{0}\right)}$, then

$$
\eta=-\frac{\operatorname{grad} g_{F(p)}}{\left|\operatorname{grad} g_{F(p)}\right|}
$$

with $\left|\operatorname{grad} g_{F(p)}\right|=d_{p_{0}}(F(p))=\rho^{\prime}$. Here $\operatorname{grad} g_{F(p)}$ is the value at $F(p)$ of the gradient of g in N^{n+1}. It follows from Lemma 2.5 in [10] and the fact that, for fixed $t, \mu_{c}(t)$ is monotone decreasing in c, that the Hessian of φ in p satisfies

$$
\operatorname{Hess} \varphi_{p}(X, X) \geq \mu_{c}\left(d_{p_{0}}(F(p))\right)\langle X, X\rangle+\left\langle\operatorname{grad} g_{F(p)}, \alpha(X, X)\right\rangle
$$

for all $X \in T_{p} M$, where α is the second fundamental form of F at p. Consider now an arbitrary principal curvature λ_{i} of A_{η} with unitary principal direction e_{i}. Since φ attains a maximum at p, we deduce that

$$
0 \geq \operatorname{Hess} \varphi_{p}\left(e_{i}, e_{i}\right) \geq \mu_{c}\left(\rho^{\prime}\right)-\rho^{\prime} \lambda_{i}
$$

that is, $\lambda_{i} \geq \mu_{c}\left(\rho^{\prime}\right) / \rho^{\prime}$. Consequently, we have

$$
H_{r}(p) \geq\left[\frac{\mu_{c}\left(\rho^{\prime}\right)}{\rho^{\prime}}\right]^{r}>\left[\frac{\mu_{c}(\rho)}{\rho}\right]^{r}
$$

which contradicts the hypothesis. Therefore, $\rho^{\prime}=\rho$ and $\overline{B_{\rho}\left(p_{0}\right)}$ is the smallest ball centered at p_{0} that contains $F(M)$. Observe that if we consider the constant function defined as the restriction of g to $\partial \overline{B_{\rho}\left(p_{0}\right)}$, then proceeding as above we deduce that for $\partial \overline{B_{\rho}\left(p_{0}\right)}$, oriented by the normals pointing inward, at any point all principal curvatures are greater than or equal to $\mu_{c}(\rho) / \rho$. This implies that at any point the principal curvature vector of $\partial \overline{B_{\rho}\left(p_{0}\right)}$ belongs to \mathcal{O}^{n} and that the r-mean curvature H_{r}^{\prime} of $\partial \overline{B_{\rho}\left(p_{0}\right)}$ satisfies

$$
H_{r}^{\prime} \geq\left[\frac{\mu_{c}(\rho)}{\rho}\right]^{r} \geq H_{r}
$$

By Theorem 1.1, this implies that $F(M)$ and $\partial \overline{B_{\rho}\left(p_{0}\right)}$ coincide in a neighborhood of $F(p)$. Arguing via connectedness, we conclude that $F(M)$ is the boundary of $\overline{B_{\rho}\left(p_{0}\right)}$. Since now M^{n} has all principal curvatures greater than or equal to $\mu_{c}(\rho) / \rho$ and, by assumption, $\left|H_{r}\right| \leq\left[\mu_{c}(\rho) / \rho\right]^{r}$, it follows that all principal curvatures are equal to $\mu_{c}(\rho) / \rho$. In particular, if H is the mean curvature vector function on M^{n} then $|H|=\mu_{c}(\rho) / \rho$. Theorem 1.5 now follows from Proposition 3.4 in [13].

REmARK 4.2. It is clear from the proofs of our results that when r is even we can assume the less restrictive hypothesis $H_{r} \leq\left[\mu_{c}(\rho) / \rho\right]^{r}$ in Theorems 1.4 and 1.5.

REMARK 4.3. It follows from Theorem 1.1 that, in any ambient space, if a hypersurface remains on one side of another hypersurface in a neighborhood of a tangency point and both hypersurfaces have the same constant mean curvature, then they coincide in a neighborhood of such a point.

Remark 4.4. In [9], J. Hounie and M.L. Leite have obtained tangency principles for hypersurfaces in Euclidean space satisfying $H_{r}=0$. The proofs of their tangency principles are based on the fact that such hypersurfaces satisfy a nonlinear equation $G_{r}(\operatorname{Hess} \mu, \operatorname{grad} \mu)=0$ and on algebraic results. In any Riemannian manifold, if we have a hypersurface with $H_{r}=0$ then, as we have seen above, the nonlinear equation $\Phi_{r}(\Lambda(\mu)(x))=0$ is also satisfied. This fact permits us to extend their tangency principles, stated as Theorem 0.1 and Theorem 0.2, to hypersurfaces in any Riemannian manifold. The proofs are identical.

References

[1] A.D. Alexandrov, Uniqueness theorems for surfaces in the large I, Amer. Math. Soc. Transl., Ser. 2, 21 (1962), 341-354.
[2] H.J. Morais de Araújo, A rigidez das esferas para uma função de curvatura constante, Tese de Mestrado, Universidade Federal de Pernambuco, Brasil, 1994.
[3] W. Blaschke, Kreis und Kugel, 2. Aufl., Walter de Gruyter, Berlin, 1956.
[4] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261-301.
[5] L. Coghlan and Y. Itokawa, On the sectional curvature of compact hypersurfaces, Proc. Amer. Math. Soc. 109 (1990), 215-221.
[6] L. Coghlan, Y. Itokawa, and R. Kosecki, On the solutions to certain Laplace inequalities with applications to geometry of submanifolds, J. Geom. Anal. 2 (1992), 195-211.
[7] L. Gårding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957965.
[8] I. Gelfand, Lectures on linear algebra, Interscience Publishers, New York-London, 1961.
[9] J. Hounie and M.L. Leite, The maximum principle for hypersurfaces with vanishing curvature functions, J. Differential Geom. 41 (1995), 247-258.
[10] L. Jorge and D. Koutroufiotis, An estimate for the curvature of bounded submanifolds, Amer. J. Math. 103 (1981), 711-725.
[11] D. Koutroufiotis, Elementary geometric applications of a maximum principle for nonlinear elliptic operators, Arch. Math. 24 (1973), 97-99.
[12] Pui-Fai Leung, On the Ricci curvature of a compact hypersurface in Euclidean space, Ann. Global Anal. Geom. 13 (1995), 55-58.
[13] S. Markvorsen, A sufficient condition for a compact immersion to be spherical, Math. Z. 183 (1983), 407-411.
[14] J. Serrin, On surfaces of constant mean curvature which span a given space curve, Math. Z. 112 (1969), 77-88.
[15] T. Vlachos, A characterization for geodesic spheres in space forms, Geom. Dedicata 68 (1997), 73-78.
F. Fontenele, Departamento de Geometria, Instituto de Matemática, Universidade Federal Fluminense, 24020-005, Niterói, BRAZIL

E-mail address: fontenele@mat.uff.br
Sérgio L. Silva, Departamento de Estruturas Matemáticas, IME, Universidade Estatual do Rio de Janeiro, 20550-013, Rio de Janeiro, BRAZIL

E-mail address: sergiol@magnum.ime.uerj.br

[^0]: Received October 11, 1999; received in final form March 29, 2000.
 2000 Mathematics Subject Classification. Primary 53C42, 53C21. Secondary 35B50, 35J60.

